

INSTITUTE

ULTRAFAST SPECTROSCOPY AND LASERS

THE CITY COLLEGE
OF THE CITY UNIVERSITY OF NEW YORK

DISTINGUISHED PROFESSOR OF SCIENCE AND ENGINEERING AND DIRECTOR

March 1, 2012

DR. ROBERT R. ALFANO

Draft:

Research Results Summary: Temperature of Magnegas Flames for Magnegas Corporation

The following is a summary of results of 4 measurements for the temperature of the Magnegas flame and it's comparison to Blackbody distribution.

Temperature was calculated using Wien's law: $T=(2.9x10^6)/\lambda max$:

<u>1-Temperature of Magnegas from crude oil+Oxygen, Flame only</u>: 3mm from base and fit with Blackbody. The peak wavelength of the flame at λ max=473nm. The corresponding temperature is: **T=6,132 Kelvin (10,578 Fahrenheit; 5,859 Celsius).**

2-Temperature Flame of Magnegas from crude oil+Oxygen cutting metal: at 3mm above the surface of metal while cutting it.(approximately 2mm from base of flame) And fit with Blackbody. The peak wavelength of the flame at λ max=739nm. The corresponding temperature is: **T=3,920 Kelvin** (6,597 Fahrenheit; 3,647 Celsius).

3-Temperature of Magnegas from antifreeze+ Oxygen, Flame only: 3mm from base and fit with Blackbody. The peak wavelength of the flame at λ max=476nm. The corresponding temperature is **T=6,092 Kelvin** (10506 Fahrenheit; 5,819 Celsius).

4-Temperature Flame of Magnegas from antifreeze+ Oxygen cutting metal: at 3mm above the surface of metal while cutting it.(approximately 2mm from base of flame), and fit with Blackbody. The peak wavelength of the flame at λ max=735nm. The corresponding temperature is: **T=3,943 Kelvin** (6,638 Fahrenheit; 3,670 Celsius).

The peak wavelength from the flame has a non Blackbody distribution form. Additional details are provided on a separate report. The measurements were done by Hani Ahmar and Yuri Budansky on February 15th-18th-2012

Robert R. Alfano
Distinguished Professor of Science & Engineering
Physics Department and Electrical Engineering Department
The City College of the City University of New York
160 Convent Avenue, MR-419
New York, NY 10031

Tel: 212-650-5531

Email: ralfano@ccny.cuny.edu