
Urban Forests for Carbon Sequestration and Heat Island
Mitigation

LEVENTE J KLEIN∗, IBM TJ Watson Research Center, USA
CONRAD M ALBRECHT∗, German Aerospace Center, Germany

Urban forests serve both as a carbon sequestration pool and heat island mitigation tool. Climate change will
increase the frequency and severity of urban heat islands. Thus, new urban planning strategies demand our
attention. Based on multimodal, remotely sensed data, we map the tree density, its carbon sequestered, and its
impact on urban heat islands for Long Island, NY and Dallas, TX. Using local climate zones we investigate
concepts of urban planning through optimized tree planting and adjusting building designs to mitigate urban
heat islands.
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1 INTRODUCTION & MOTIVATION
By 2050, more than 2/3 of the world’s population will live in urban areas. It implies the relevance
of adaptation to climate hazards, and to develop strategies for sustainable resource management
[1]. Increased temperatures due to climate change require redesign of current city layouts, and it
calls for rethinking the blueprints of future urban spaces [2]. Most urban areas historically grew
over decades or even centuries—with buildings, roads, and green spaces developed based on social,
economical, or safety considerations. Adaptation to climate change may require refurbishing some
areas in cities, e.g. through improved urban forests layout and enhanced buildings designs. In this
work, we demonstrate that exiting remote sensing analytics has capacity to implement identification
and mitigation of urban heat islands to turn cities into more attractive living spaces.
The impact of heat islands in cities has been recognized in the past. Metrics were developed to

identify the main driving factors [3]. A popular metric is Local Climate Zones (LCZ) that are most
commonly based on visual inspections and interpretation of photographs [4]. The risk of errors in
visual assessment was quickly realized, and the methodology did get automated to consistently
generalize the assessments [5]. Although automated, supervised learning approaches still require
significant effort to manually label images [6, 7]. To overcome manual efforts in image labeling,
rapid label generation may get achieved by noisy and imperfect data to train machine learning
models [8].
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Fig. 1. Flow diagram with data processing and geospatial analytics to calculate carbon sequestered (CSEQ)
in trees, and to determine the impact of land cover classes on Urban Heat Islands (UHI).

Terrain rich in vegetation is naturally cooler when compared to an area that is sealed by concrete
and asphalt. Cooling the ambient temperature by vegetation is due to evapo-transpiration and tree
shades. To identify the height and distribution of vegetation, Light Detection and Ranging (LiDAR)
is a commonly used remote sensing approach. Access to high quality LiDAR data may not be
always possible due to significant financial resources required to conduct surveys. Exploiting open
source, non-classified point cloud data may be an alternative in combination with orthoimagery
or satellite data. High quality LiDAR may always serve as a source to calibrate satellite images
across small geospatial patches. After, the use of satellite imagery in other areas serves to detect
and calibrate tree growth models [9]. To scale such models globally, multimodal data processing
(LiDAR, satellite, orthoimagery, radar, and crowdsourcing data) is required to generate consistent
maps across different geographies, and to identify the best available data for a given geo-location
and analytics task [10].

In addition to heat island mitigation, trees serve as natural sink for atmospheric carbon dioxide
when entrapped into the tree’s biomass. The number of trees in urban areas constitute a significant
storage of carbon with direct impact on a city’s carbon footprint assessments. A major challenge
in nature-based carbon sequestration is effective quantification [11]. There is ongoing interest to
exploit satellite imagery to model carbon stored in trees and soils. Modeling is commonly based
on dimensional scaling models where tree height is related to canopy diameter, and tree biomass
gets correlated with carbon storage. These scaling models termed allometric equations are popular
within the remote sensing community [12, 13]. Previous studies did demonstrate the utility of
allometric equations [12] and the methodology got adopted to large geographies and eco-regions
[14]. Uncertainty quantification in addition to estimates of carbon sequestered must be part of
carbon sequestration modeling.
As the world’s population continues to grow clustered in future mega-cities while, at the same

time, the climate crisis unleashes its threats for life on Earth, we need to take immediate action in
order to redesign our living spaces resilient to natural hazards. Our contribution paves the way
to rethink urban planning in order to reduce our carbon footprint, and to mitigate the increased
frequency of heat waves as projected by reports of the IPCC [15].
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Fig. 2. (a) Carbon stored in trees for a residential area. Our analytics identified a total of about 36 million trees
on all of Long Island, NY including Brooklyn andQueens, boroughs of New York City (NYC). We estimate the
total carbon sequestered in trees to be 5.1·106 tonne. (b) A snapshot of the PAIRS graphical web user interface
visualizing carbon sequestered in trees mapped out around Brookhaven National Laboratory’s Relativistic
Heavy Ion Collider.

2 METHODS & DATASETS
2.1 Multimodal Geospatial Platform
The data volume generated by satellites in combination with climate and weather modeling easily
does exceed hundred of petabytes [16]. Many sets in the corpus of satellite and climate data is
hosted by dedicated databases and cloud platforms. A well-known challenge of geospatial data
processing poses the variability in spatial resolution, a plurality of geographic projections, and
various geodata formats. Curation of training data for machine learning models provided a given
geospatial area requires significant compute, and detailed domain and data knowledge drawn
from corresponding metadata analysis. The PAIRS platform [10] was developed to overcome such
challenges through a harmonized, nested spatial grid system enabling geo-data science at scale. At
the same time, the geospatial platform minimizes the need of users to aggregate domain knowledge
in order to operate [17, 18]. PAIRS has been demonstrated to process and to analyze all multimodal
data presented in this work. It is tightly coupled to an AI engine for generation of training data
required for tree delineation, tree species detection, and local climate zone classification. In Figure 1
we highlight the flow of data for processing by machine learning models.

2.2 Spatial Areas of Study
For tree distribution we analyze a combination of orthoimagery, LiDAR three-dimensional point
clouds, and a Landsat 8 thermal band for Long Island, NY—including New York City, (NYC)—
and for Dallas, TX. Our main objective is dedicated to identification of individual trees, calculate
corresponding carbon sequestration, and to quantify the impact of tree density on urban heat
islands.

2.3 Geospatial Data
High resolution aerial orthoimagery. The U.S. Department of Agriculture (USDA) provides 0.5m–

resolution orthoimagery through the National Agriculture Imagery Program (NAIP) [19] every
other year. Images get acquired during growing season—ideally suited to detect agricultural land
and forestry. The imagery ships in 4 spectral bands: standard Red-Green-Blue (RGB) channels,
and a Near InfraRed (NIR) band. All images are atmospherically corrected and do get adjusted for
illumination.

Thermal imagery. The Landsat 8 satellite currently captures global thermal images at 100m spatial
resolution. Thermal images measure surface reflectance expressed in units of Kelvin. Such may get
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Fig. 3. Variation in surface temperature (a), and overlay of delineated trees (b) for an area on Long Island, NY.
100m-by-100m grid cells serve to assess tree impact on surface temperatures.

utilized to estimate local surface temperature. As common to all optical satellites, Landsat 8 data
suffer disturbance by cloud cover obscuring direct observation of land surface.
Point cloud data. LiDAR data assembled in 2017 with a point density of about 10 points per

𝑚2 enable high resolution, three-dimensional mapping. A simple, yet efficient point cloud data
rasterization technique is implemented. It derives statistical features of the three-dimensional LiDAR
point cloud that receives further processing through a rule-based classification algorithm. The
reclassification serves as generator of noisy labels. Those proof appropriate to separate urban trees
and buildings from other land cover classes [20]. Further, we utilize the LiDAR data as calibration
reference for tree height estimates from orthoimagery.
Tree species survey. Tree species data was collected with the aid of crowdsourcing where tree

location, tree species, tree health, and tree dimension values were measured or estimated based
on visual inspections. This survey features more than 600,000 trees made available to the public
domain including identification of more than 250 tree species [21]. New York City hosts more than
3 million trees in parks, as well as on public and private lands—but tree census captured a fraction
of those, only. In geo-locations where there exists no tree species information, the trees delineated
by a model fed with NAIP imagery get reclassified into dominant tree species [9].

2.4 Remote Sensing Analytics
To identify land cover, the Normalized Difference Vegetation Index (NDVI) is calculated from the
Near Infrared (NIR) and Red bands of the NAIP imagery,𝑁𝐷𝑉 𝐼 = (𝑁𝐼𝑅−𝑅𝑒𝑑)/(𝑁𝐼𝑅+𝑅𝑒𝑑). In order
to separate trees from other lands, the source for training data either renders manual annotations
or it stems from automated, noisy labels based on airborne LiDAR surveys. A Random Forest (RF)
classifier is trained on NAIP data in accordance with image texture information. In consequence, the
trained classifier will separate area covered by trees vs. other land surface types. Once trained, the
RF has capacity to infer tree-covered areas from NAIP imagery. The NAIP-based NDVI value serves
to segment the images into individual tree crowns using a Watershed Segmentation Algorithm
[22]. Random seeding and area-growing computer vision methods applied to the NDVI-masked
area delineate tree crowns. Image pixel grouping is based on pixel similarity. For tree species
delineation, training data is created around the location of trees by cropping a 32-by-32 pixels
field [18]. Training a ResNet43–classifier, the model accuracy reaches 80% for the 4 tree species
considered [9]. All trees delineated from the NAIP imagery are classified in one of the 4 species data
and carbon sequestered is calculated based on tree density and form factor of the tree’s geometric
dimensions.
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3 RESULTS & DISCUSSIONS
3.1 Carbon Sequestration in Urban Forests
Carbon sequestered in trees can be estimated based on allometric equations [13, 23]. Tree height,
canopy diameter and tree species information get aggregated to determine above/below ground
biomass (A/BGB) [9]. Biomass can be considered the sum of AGB and BGB. The ABG is the biomass
stored in tree trunks, leaves, tree branches, etc. In contrast BGB is the biomass stored in roots and
decaying leaves buried in soil. The AGB and BGB depend on the physical dimensions of the tree,
tree mass density, and tree’s shape form factor. The tree shape factor characterizes the tree crown
relative to other tree dimensions [24]. Many studies were carries out to model and to measure tree
shape factors.

A standard tree biomass allometric equation reads:

𝐴𝐺𝐵 = 𝐹 · 𝜌 · 𝐻 ·𝑉 = 𝐹 · 𝜌 · 𝐻 · 𝜋𝐷
2

4 (1)

where the tree height H is extracted from LiDAR data and the canopy diameter 𝐷 is estimated by
orthoimagery segmentation models. 𝐹 denotes the tree form factor and 𝜌 encodes density with both
specific to tree species. BGB is based on a fractional contribution of AGB, namely 𝐵𝐺𝐵 = 𝑓 ∗𝐴𝐺𝐵
where the fraction, 𝑓 , depends on upper soil depth, i.e. on how deep and how far roots extend in
the horizontal direction. 𝑓 also depends on tree species, the tree age, and tree health. Commonly
used fraction 𝑓 values are tabulated in the literature [25]. The total biomass is the simple sum
𝑇𝐵 = 𝐴𝐺𝐵+𝐵𝐺𝐵. Sequestered carbon is calculated as a fraction of the total biomass, with a standard
discount factor of 40% off the total biomass [26].

Given the strategy outlined in section 2.4, we mapped more than 36 million trees for Long Island,
NY based on NAIP imagery. All trees are classified into any of the four species: Oak, Honey Locust,
Callary Pear, and Planetree [9]—those denote the most dominant trees for New York City [21]. It is
assumed that the NYC tree census data is representative for Long Island, too. As part of the image
segmentation process, tree canopy diameter 𝐷 and tree height 𝐻 get extracted for individual trees.
Subsequently, the carbon sequestered is determined based on eq. (1), and 𝑇𝐵 = .4𝐴𝐺𝐵 · (1 + 𝑓 ).
Summing the carbon sequestered in individual trees does result in 5.1 · 106 tonne of carbon stored in
Long Island’s forests. Figure 2 (right) provides a snapshot of the trees as detected around Brookhaven
National Laboratory’s Relativistic Heavy Ion Collide. Iterating the procedure for Dallas, TX, the
overall carbon sequestered in vegetation equates to 780, 000 tonne—a value at the same scale as
reported by others, e.g. [27].

3.2 Cooling Potential of Tree-Populated Spaces
Trees enable ambient cooling by changing the surface temperature. As sample reference, Figure 3
provides a snapshot from Long Island, NY with surface temperature distribution as recorded by the
Landsat 8 satellite (left) with corresponding tree distribution (right). Areas of larger tree coverage
reveal lower surface temperature values when compared to areas less populated by trees. To
quantify the benefit of urban forests on local temperature, a (virtual) 100m-by-100m grid defines
cells to aggregate individual trees into densities, cf. Figure 3 (b). At the same time, a Landsat 8
data-derived mean temperature gets associated with each grid cell.

A snapshot of surface temperature distributions for New York City, Dallas, TX and Long Island,
NY presents Figure 4 (top row) alongside with temperature response to tree density within 100m-
by-100m squares (bottom row). All three geo-locations indicate that there exist urban heat islands
mixed with lower temperature regions. Cooling potential is most prominent for Long Island, NY
where the eastern part of the island is much cooler than the west side where NYC boroughs is
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Fig. 4. Variation in surface temperature for New York City, Dallas, TX, and Long Island, NY (top row).
Corresponding average mean temperature vs. tree density value plots provides the bottom row.

located. For all three sample areas, we identified a noticeable cooling of up to 2 Kelvin for areas
densely covered in trees.

While urban spaces likes New York City, NY and Dallas, TX do exhibit a single linear scaling of
temperature vs. tree density, for Long Island, NY we observe a double-linear dependence. It traces
back to the hybrid nature of Long Island’s land cover where densely populated areas are mixed
with agricultural and wetlands. The wetland tends to stay cooler due to surrounding waters such
that the impact of trees is less pronounced. Applying linear regression to the change in surface
temperature as function of tree density, the slope of temperature change for tree count is 0.03 K/tree
for New York City, 0.072 K/tree for Dallas, and 0.125 K/tree and/or 0.04 K/tree for Long Island.

3.3 Urban Planning for Heat Island Mitigation
Based on airborne LiDAR surveys it has been demonstrated that rule-based processing is able
to extract (noisy) semantic segmentation maps for buildings and vegetation [20]. Those may get
utilized in order to train deep neural networks for change detection models as rapid response to
identification of damage to vegetation after an event of natural hazard such as flooding triggered
by hurricanes [8]. Here, we exploit the rule-based identification in order to correlate the fraction of
buildings in patches of about 200m-by-200m with the average surface temperature as recorded by
the Landsat 8 satellite mission. In addition, we fuse in survey information characterizing elements
of urban planning in terms of Local Climate Zones (LCZ), [28]. In particular, we classify blocks
of buildings in 200m-by-200m sample patches from the NYC boroughs Manhattan, Queens, and
Brooklyn into ensembles of compactly (LCZ 1 to 3) and openly (LCZ 4 to 6) arranged blocks; details
in Table 2 of [29], p. 1885.
All data fusion is managed by the Big Geospatial Data analytics platform PAIRS that allows to

auto-generate co-registered raster statistics on ingestion of raw LiDAR point clouds. Those 0.5m
resolution rasters serve as basis to derive the rule-based semantic segmentation maps as referenced
above. Figure 5 summarizes our findings: While Figure 4 demonstrates the cooling capacity of
urban forests, we notice that cooling trends critically depend on the density and composition of
buildings. As expected, urban planning with open design (LCZ 4-6; gray ◦ in Figure 5) allows for
systematically lower local average temperatures when compared to compact architectures (LCZ
1-3; red +, green ×, and blue • in Figure 5).

Further drilling into the sub-classes of compact building arrangements reveals a striking insight,
i.e. the data uncover orthogonal trends for increasing urbanization when the fraction of buildings
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Fig. 5. Local temperature dependency on building density in New York City for selected local climate zones.

inflates: In a range where 10% to 30% of the local area is developed by low-rise architectures (×)
such as e.g. characteristic for suburbs where tree crowns typically exceed building heights, cooling
effects may persist (green, dashed linear trend down). However, in high-rising, compact settings a
clear increase in local temperatures (red, solid linear trend up) on the ground results from intensified
land use by building construction (+). Indeed, while the locally averaged ratio of tree-to-building
heights equates to ∼ 1.2 for compact lowrise (LCZ 3), it approximately reads 1 for compact highrise
(LCZ 1). Moreover, LCZ 1 scenes for the NYC patches analyzed yield a ratio of tree cover vs. building
population of about 1/2, while LCZ 3 equates to a ratio of 6/9 such that the natural cooling effect
of trees remains prominent.

4 CONCLUSIONS & PERSPECTIVES
In this work, by means of large-scale remote sensing analytics, we presented the relevance of trees
for urban planning from the perspective of climate change, namely: a/ trees provide a local sink to
sequester carbon, b/ urban forests serve to reduce local land surface temperature, and c/ proper
utilization of tree arrangements in accordance with building infrastructure in densely populated
areas allows to preserve the cooling capacity of vegetation in order to mitigate heat island. Urban
forest management provides a straightforward strategy in order to simultaneously mitigate urban
heat islands and increase carbon sequestration in cities.
Technically, our work bases on multimodal data analytics where satellite imagery, airborne-

collected 3D point clouds, and city surveys got fused to draw the conclusions summarized above.
Besides our results on the relevance of urban forests, we did allude on the correlation of urban-
planning defined Local Climate Zones and climate proxies such as mean surface temperature. The
right combination of trees and building in urban areas has potential to overcome urban heat island
formation.
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