We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
Sekisui Diagnostics UK Ltd.

Download Mobile App





New Insight into Structural Mechanism of Coronavirus Receptor Binding to Aid Development of COVID-19 Treatments and Vaccines

By HospiMedica International staff writers
Posted on 18 Sep 2020
Print article
Image: New Insight into Structural Mechanism of Coronavirus Receptor Binding to Aid Development of COVID-19 Treatments and Vaccines (Photo courtesy of Francis Crick Institute)
Image: New Insight into Structural Mechanism of Coronavirus Receptor Binding to Aid Development of COVID-19 Treatments and Vaccines (Photo courtesy of Francis Crick Institute)
New insight into the mechanism of infection of the SARS-CoV-2 coronavirus could equip research groups with the understanding needed to inform studies into COVID-19 vaccines and treatments.

The surface of SARS-CoV-2, the virus that causes COVID-19, is covered in proteins called spikes, which enable the virus to infect human cells. The infection begins when a spike protein binds with ACE2 cell surface receptors and, at later stages, catalyses the release of the virus genome into the cell. However, the exact nature of the ACE2 binding to the SARS-CoV-2 spike remains unknown. Researchers from the Francis Crick Institute (London, UK) have now found that the spike protein on the surface of the SARS-CoV-2 coronavirus can adopt at least 10 distinct structural states, when in contact with the human virus receptor ACE2.

In the first study to examine the binding mechanism between ACE2 and the spike protein in its entirety, the researchers have characterized 10 distinct structures that are associated with different stages of receptor binding and infection. The team incubated a mixture of spike protein and ACE2 before trapping different forms of the protein by rapid freezing in liquid ethane. They examined these samples using cryo-electron microscopy, obtaining tens of thousands of high-resolution images of the different binding stages. They observed that the spike protein exists as a mixture of closed and open structures., Following ACE2 binding at a single open site, the spike protein becomes more open, leading to a series of favorable conformational changes, priming it for additional binding. Once the spike is bound to ACE2 at all three of its binding sites, its central core becomes exposed, which may help the virus to fuse to the cell membrane, permitting infection. The researchers hope that the more they can uncover about how SARS-CoV-2 differs from other coronaviruses, the more targeted they can be with the development of new treatments and vaccines. The team continues to examine the structures of spikes of SARS-CoV-2 and related coronaviruses in other species to better understand the mechanisms of viral infection and evolution.

“As we unravel the mechanism of the earliest stages of infection, we could expose new targets for treatments or understand which currently available anti-viral treatments are more likely to work,” said Antoni Wrobel, co-lead author and postdoctoral training fellow in the Structural Biology of Disease Processes Laboratory at the Crick.

“There’s so much we still don’t know about SARS-CoV-2, but its basic biology contains the clues to managing this pandemic,” said Steve Gamblin, group leader of the Structural Biology of Disease Processes Laboratory at the Crick. “By understanding what makes this virus distinctive, researchers could expose weaknesses to exploit.”

Related Links:
Francis Crick Institute

Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
Gold Member
Disposable Protective Suit For Medical Use
Disposable Protective Suit For Medical Use
Silver Member
Wireless Mobile ECG Recorder
NR-1207-3/NR-1207-E
New
Hysteroscopic Fluid Management System
HysteroFlow/HysteroBalance II

Print article

Channels

Surgical Techniques

view channel
Image: LUMISIGHT and Lumicell DVS offer 84% diagnostic accuracy in detecting residual cancer (Photo courtesy of Lumicell)

Cutting-Edge Imaging Platform Detects Residual Breast Cancer Missed During Lumpectomy Surgery

Breast cancer is becoming increasingly common, with statistics indicating that 1 in 8 women will develop the disease in their lifetime. Lumpectomy remains the predominant surgical intervention for treating... Read more

Patient Care

view channel
Image: The newly-launched solution can transform operating room scheduling and boost utilization rates (Photo courtesy of Fujitsu)

Surgical Capacity Optimization Solution Helps Hospitals Boost OR Utilization

An innovative solution has the capability to transform surgical capacity utilization by targeting the root cause of surgical block time inefficiencies. Fujitsu Limited’s (Tokyo, Japan) Surgical Capacity... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The Quantra Hemostasis System has received US FDA special 510(k) clearance for use with its Quantra QStat Cartridge (Photo courtesy of HemoSonics)

Critical Bleeding Management System to Help Hospitals Further Standardize Viscoelastic Testing

Surgical procedures are often accompanied by significant blood loss and the subsequent high likelihood of the need for allogeneic blood transfusions. These transfusions, while critical, are linked to various... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.