EX-99.1 2 a12-9222_1ex99d1.htm EX-99.1

Exhibit 99.1

 

TECHNICAL REPORT ON THE UPDATE OF MINERAL RESOURCE

ESTIMATE FOR THE GOLD RIVER PROPERTY,

THORNELOE TOWNSHIP,

TIMMINS, ONTARIO,

CANADA

 

NTS: 42-A-06, 06

Longitude: 81.53° West, Latitude: 48.35° North

UTM (NAD 83, Zone17): 460,912m East, 5,355,469m North

 

PREPARED FOR:

 

LAKE SHORE GOLD CORP.

181 University Ave, Suite 2000

Toronto, Ontario, Canada, M5H 3M7

 

And

 

WEST TIMMINS MINING INC.

181 University Ave, Suite 2000

Toronto, Ontario, Canada, M5H 3M7

 

Prepared by:

Jacques Samson, P.Geo.

Robert Kusins, P.Geo.

David Powers, P.Geo.

 

Effective Date: January 17, 2012

 

Report Date: April 05, 2012

 



 

Table of Contents

 

 

 

Page

1.0:

SUMMARY

01

 

 

 

2.0:

INTRODUCTION

05

 

2.1.0: Units and Currency

06

 

2.2.0: List of Abbreviations

06

 

2.3.0: Definitions

08

 

2.3.1: Mineral Resource

09

 

 

2.3.2: Inferred Mineral Resource

09

 

 

2.3.3: Indicated Mineral Resource

09

 

 

2.3.4: Measured Mineral Resource

09

 

 

2.3.5: Mineral Reserve

10

 

 

2.3.6: Probable Mineral Reserve

10

 

 

2.3.7: Proven Mineral Reserve

10

 

2.4.0: Glossary

10

 

 

2.4.1: General Glossary

10

 

 

2.4.2: Lake Shore Gold Corp. Mine Site Terminology

12

 

 

 

3.0:

RELIANCE ON OTHER EXPERTS

14

 

 

 

4.0:

PROPERTY DESCRIPTION AND LOCATION

16

 

4.1.0: Property Description

16

 

4.2.0: Recent Ownership and Underlying Agreements

19

 

4.3.0: Location

20

 

4.4.0: Past Mining Activity, Environmental Liabilities and Permitting

21

 

 

 

5.0:

ACCESSIBILITY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE AND PHYSIOGRAPHY

24

 

5.1.0: Accessibility

24

 

5.2.0: Climate

24

 

5.3.0: Local Resources and Infrastructure

24

 

5.4.0: Physiography

25

 

 

 

6.0:

HISTORY

27

 

6.1.0: Prior Ownership

27

 

6.2.0: General History

27

 

6.3.0: Historical Resource Estimates

31

 

 

 

7.0:

GEOLOGICAL SETTINGS AND MINERALIZATION

33

 

7.1.0: General Geological Setting

33

 

7.2.0: Regional Geology and Structure

36

 

7.3.0: Property Geology

41

 

 

7.3.1: Lithology

42

 

 

7.3.1.1: Porcupine Metasedimentary Rock Units

42

 

 

7.3.1.2: Metamorphosed Mafic Volcanic Rock Units

42

 

i



 

Table of Contents

 

 

 

 

Page

 

 

7.3.1.3: Polylithic Mafic Metaconglomerate Rock Unit

42

 

 

7.3.1.4: Pebbly or Mud Chip Metaconglomerate Rock Unit

43

 

 

7.3.1.5: Metamorphosed Quartz and Quartz-feldspar Porphyry Dykes or Sills

43

 

 

7.3.1.6: Potassium Feldspar Syenite Intrusive Rock Unit

43

 

 

7.3.1.7: Metamorphosed Mafic Dykes

44

 

 

7.3.1.8: Diabase Dykes

44

 

7.4.0: Structural Geology

49

 

7.5.0: Mineralization and Alteration

51

 

 

 

8.0:

DEPOSIT TYPES

55

 

8.1.0: General Overview

55

 

 

 

9.0:

EXPLORATION

57

 

9.1.0: General Overview

57

 

 

 

10.0:

DRILLING

62

 

10.1.0: General Overview

62

 

10.2.0: Diamond Drilling By West Timmins Mining Inc. (2006 to 2009)

63

 

10.3.0: Diamond Drilling By Lake Shore Gold Corp. (2010 to January 17, 2012)

64

 

 

 

11.0:

SAMPLING PREPARATION, ANALYSIS, AND SECRITY

66

 

11.1.0: Historical Diamond Drilling

66

 

 

11.1.1: Band-Ore Resources Sampling Method and Approach 1993-2006

66

 

 

11.1.2: Time Period 1995-1998

66

 

 

11.1.3: Time Period 2003

67

 

 

11.1.4: Time Period 2004

67

 

 

11.1.5: Time Period 2005

68

 

 

11.1.6: West Timmins Mining Inc. Period 2006-2009

68

 

11.2.0: Lake Shore Gold Corp. Sampling Method and Approach 2009 to Present

69

 

 

11.2.1: General Overview

69

 

 

11.2.2: Core Handling and Logging Protocols

70

 

 

11.2.3: Hole Collar and Downhole Attitude Surveys

70

 

 

11.2.4: Security

71

 

 

11.2.5: Surface Diamond Drill Core Sample Preparation, Analysis And Analytical Procedures

71

 

 

11.2.6: Data Management

73

 

 

11.2.7: Accuracy Analysis — Standards and Blanks

73

 

 

11.2.8: Precision Analysis — Duplicates

74

 

 

11.2.9: Reporting and Plotting

74

 

ii



 

Table of Contents

 

 

 

 

Page

11.3.0: Check Assay Program

74

 

 

11.3.1: General Description

74

 

 

11.3.2: Procedures

74

 

11.4.0: Discussion

75

 

 

11.4.1: General Overview

75

 

 

 

12.0:

DATA VERIFICATION

77

 

12.1.0: General Discussion

77

 

12.2.0: Historical Treatment

77

 

12.3.0: Lake Shore Gold Corp. Data

79

 

12.4.0: Electronic Database Verification

80

 

12.5.0: Recommendations

81

 

 

 

13.0:

MINERAL PROCESSING AND METALLURGICAL TESTING

82

 

13.1.0: General Discussion

82

 

 

 

14.0

MINERAL RESOURCE ESTIMATES

83

 

14.1.0: Summary

83

 

14.2.0: Estimation Method

86

 

 

14.2.1: Estimation Method and Parameters

86

 

 

14.2.2: Database

90

 

 

14.2.3: Grade Capping

91

 

 

14.2.4: Block Model Assay Compositing

95

 

14.3.0: Specific Gravity

97

 

14.4.0: Variography

97

 

14.5.0: Block Model Mineral Resource Modeling

99

 

 

14.5.1: General

99

 

 

14.5.2: Block Model Parameters

99

 

 

14.5.3: Grade Interpolation

99

 

14.6.0: Block Model Validation

102

 

14.7.0: Mineral Resources and Classification

107

 

 

14.7.1: General

107

 

 

14.7.2: Mineral Resources

108

 

14.8.0: Additional Drill Hole Information Evaluation

116

 

14.9.0: Recommendations

117

 

 

 

15. 0:

MINERAL RESERVE ESTIMATES

118

 

 

 

16.0:

MINING METHOD

119

 

 

 

17.0:

RECOVERY METHODS

120

 

 

 

18.0:

PROJECT INFRASTRUCTURE

121

 

iii



 

Table of Contents

 

 

 

 

Page

19.0:

MARKET STUDIES AND CONTRACTS

122

 

 

 

20.0:

ENVIRONMENTAL STUDIES, PERMITTING AND SOCIAL OR COMMUNITY IMPACT

123

 

20.1.0: Permits

123

 

20.2.0: Studies

123

 

20.3.0: Consultation

124

 

 

 

21.0:

CAPITAL AND OPERATING COSTS

125

 

 

 

22.0:

ECONOMIC ANALYSIS

126

 

 

 

23.0:

ADJACENT PROPERTIES

127

 

23.1.0: General Statement About Adjacent Properties

127

 

23.2.0: Adventure Gold Inc. — Meunier 144 Gold Property, Bristol Township

127

 

23.3.0: Pelangio Exploration Inc. — Poirier Option, Bristol Township

129

 

23.4.0: Newcastle Minerals Limited — West Timmins Gold Project, Carscallen Township

129

 

23.5.0: Richmont Mines Inc. Cripple Creek Property, Denton Township

130

 

23.6.0: Explor Resources Inc. — Timmins Porcupine West Property, Bristol and Ogden Townships

130

 

 

 

24.0:

OTHER RELEVANT DATA AND INFORMATION

132

 

 

 

25.0:

INTERPRETATION AND CONCLUSIONS

133

 

 

 

26.0:

RECOMMENDATIONS

135

 

 

 

27.0:

REFERENCES

137

 

27.1.0: Reports and Schedules

137

 

27.2.0: Assessment Research Imaging Files (AFRI)

144

 

27.3.0: Press Releases

150

 

 

 

28.0:

DATE AND SIGNATURE PAGE

157

 

 

 

29.0:

CERTIFICATES OF QUALIFIED PERSONS

158

 

Jacques Samson, P.Geo.

158

 

Robert Kusins, P.Geo.

160

 

David Powers, P.Geo.

162

 

iv



 

Table of Contents

 

 

 

Page

30.0:

APPENDICES

164

 

Appendix 1: Diamond Drill Hole Collar Locations, Azimuth, Inclination, and Metres Drilled

164

 

Appendix 2: Diamond Drill Core Sampling Summary

179

 

Appendix 3: Diamond Drill Holes Not Used in The Block Model

191

 

Appendix 4: Gold River Solid Intersections

201

 

Appendix 5: Gold River QA/QC Graphs of Standards and Blanks

210

 

Appendix 6: Check-Assay Program by Lake Shore Gold Corp. of Pulps From Historical Diamond Drill Holes

221

 

Appendix 7: Photos

226

 

Appendix 8: Resource Modeling and Estimation of the Gold River Trend Deposits, M. Dagbert (2012), SGS Canada Inc. Geostat.

234

 

 

LIST OF TABLES

 

 

 

 

 

Table 1.1: Gold River Trend Deposits Mineral Resource Estimate,

03

 

Table 1.2: Proposed Program and Budget

04

 

Table 2.2.1: Abbreviations

06

 

Table 2.4.1: Glossary

10

 

Table 4.1.1: Claims List

17

 

Table 4.4.1: Species at Risk

21

 

Table 5.2.1: Average Temperature, Precipitation and Snow Fall Depths for the Timmins Area

24

 

Table 6.2.1: List of “AFRI” Reports for the Gold River Property And Surrounding Area

29

 

Table 6.2.2: Gold River Property Significant Historical Work

30

 

Table 7.2.1: Tectonic Assemblages

39

 

Table 8.1.1: Operations of Greater Than 100,000 Ounces of Gold Production in the Porcupine Gold Camp

56

 

Table 9.1.1: Summary of Exploration Activities (2006 to Effective Date, January 17, 2012)

58

 

Table 10.1.1: Diamond Drilling and Core Sampling Summary for the Gold River Property

62

 

Table 11.1.0: OREAS Standards Used by Lake Shore Gold Corp.

72

 

Table 11.4.1: Gold River QA/QC Diamond Drill Core Sampling Program

75

 

Table 14.1.1: Gold River Trend Deposits Mineral Resource Estimates

83

 

Table 14.1.2: Comparison of Historic and Current Zone Nomenclature

84

 

Table 14.2.2.1: Summary of GEMS SQL Drill Hole Database

91

 

Table 14.2.3.1: Basic Statistics of Raw Au Assays Resource Solids

92

 

Table 14.2.3.2: Samples Above Grade Cap By Zone

95

 

Table 14.2.4.1: Sample Composite Statistics

96

 

Table 14.5.2.1: Block Model Grid Parameters

99

 

Table 14.5.3.1: Search Ellipse Parameters

100

 

v



 

Table of Contents

 

 

 

Page

LIST OF TABLES

 

 

 

 

Table 14.6.1: Comparison of ID2 and Nearest Neighbour Interpolation, Blocks above 0.0 gpt Au Unclassified

106

 

Table 14.7.2.1: Gold River Trend Deposits Resources

107

 

Table 14.7.2.2: Gold River Trend Deposits Resources by Level

108

 

Table 14.7.2.3: Gold River Trend Deposits Mineral Resource Estimates

113

 

Table 14.7.2.4: Gold River Deposits Sensitivities

114

 

Table 23.1.0: Distance from Center of Gold River Property to Significant Timmins Ares Mining Landmarks

126

 

Table 23.4.1: Summary of Work New Castle Minerals Limited

128

 

Table 25.1: Mineral Resources Estimate — January 2012

133

 

Table 26.0.1: Proposed Program and Budget

135

 

 

LIST OF FIGURES

 

 

 

 

 

Figure 4.1.1: Claim Sketch Map

22

 

Figure 4.3.1: Location Map

23

 

Figure 5.4.1: Physiography Map

26

 

Figure 7.2.1: Tectonic Assemblages of the Abitibi Subprovince East Of the Kapuskasing Structural Zone

38

 

Figure 7.2.2: Regional Geology Map

40

 

Figure 7.3.1: Property Geology Map

45

 

Figure 7.3.2: East Deposit Geology Map

46

 

Figure 7.3.3: Generalized Cross-Section 460920 East, Looking West

47

 

Figure 7.3.4: 3D View of Resource Outline Looking to the Northeast

48

 

Figure 9.1.1: Measured Vertical Gradient with Line Contours and EM Anomaly Symbols

59

 

Figure 9.1.2: EM AeroTem Off-Time Profiles (Channels Z2-Z16) and EM Anomaly Symbols

60

 

Figure 9.1.3: Total Magnetic Intensity with Line Contours and EM Anomaly Symbols

61

 

Figure 10.1: Surface Diamond Drill Hole Collar Locations and Vertical Projection to Surface of the Outer Perimeter of the Resource Estimation

65

 

Figure 14.1.1: 3-D View of Told River Trend Deposits, Looking Northeast

85

 

Figure 14.2.1: 3-D View of East Deposit Resource Solids, Looking Northeast

88

 

Figure 14.2.2: 3-D View of West Deposit Resource Solids, Looking Northeast

89

 

Figure 14.2.3.1: Cumulative Frequency East Deposit (Excluding Kapika Zone)

93

 

Figure 14.2.3.2: Log Cumulative Frequency East Deposit (Excluding Kapika Zone)

93

 

Figure 14.2.3.3: Cumulative Frequency Kapika Zone

94

 

Figure 14.2.3.4: Log Cumulative Frequency Kapika Zone

94

 

Figure 14.4.1: Variograms

98

 

Figure 14.6.1: Section 459560 Looking West — Resource Model

103

 

vi



 

Table of Contents

 

 

 

 

 

 

Page

LIST OF FIGURES

 

 

 

 

 

Figure 14.6.2: Section 461460 Looking West — Resource Model

104

 

Figure 14.6.3: Block and Drill Hole Grades -160m Level

105

 

Figure 14.7.2.1: 3-D View of East Deposit Block Model Looking to the Northeast

109

 

Figure 14.7.2.2: 3-D View of East Deposit Block Model Looking to the Northeast

110

 

Figure 14.7.2.3: Resource Classification 4800 Zone, Longitudinal View Looking North

112

 

Figure 14.7.2.4: Grade-Tonnage Graph, Unclassified

115

 

Figure 23.1: Location of Adjacent Properties

127

 

 

Appendix 7

LIST OF PLATES

 

 

 

 

 

Plate 1: Typical sandstone in the Porcupine sediments, north of the GRSZ

226

 

Plate 2: Highly strained turbidites within the GRSZ, nearing the mafic unit

226

 

Plate 3: Mafic unit central to the Gold River Shear Zone (GRSZ)

227

 

Plate 4: Folded high strain zone in the mafic unit — Kapika Zone

227

 

Plate 5: Typical grey alteration and mineralization zone, south of the mafic unit

228

 

Plate 6: Grey arsenopyrite-rich envelopes to quartz veinlets

228

 

Plate 7: Mineralized grey quartz veinlets cross-cut by late quartz veins

229

 

Plate 8: Visible gold in grey quartz veins

229

 

Plate 9: Pyrite-arsenopyrite mineralization

230

 

Plate 10: Mafic conglomerate south of the mafic unit

230

 

Plate 11: Pebbly conglomerate in the Porcupine sediments

231

 

Plate 12: Quartz-feldspar porphyry dykes and sills

231

 

Plate 13: Syenitic dykelets — Kapika Zone

232

 

Plate 14: Mafic intrusions in the turbidite sequence

232

 

vii



 

1.0: SUMMARY

 

This Technical Report is co-authored by: Jacques Samson, P.Geo.; Robert Kusins, P.Geo.; and David Powers P.Geo. on behalf of Lake Shore Gold Corp. (“Lake Shore Gold”, “Lake Shore”, “LSG”) and West Timmins Mining Inc. (“WTM”) for the Gold River property (the “Property”).  The report contains an update of exploration programs since the last report, submitted to SEDAR on March 30, 2006 by Band-Ore Resources Ltd., titled “Summary Geological Report on the Thorne Property, Bristol, Carscallen, Denton and Thorneloe townships, Porcupine Mining Division, Ontario” authored by G. Cavey, P.Geo.

 

The purpose of this technical report is to discuss the exploration results from 2006 up to and including results received by the effective date of January 17, 2012 and provide documentation to support the updated disclosure of Mineral Resources for the Gold River property.

 

Using exploration data carried out by Lake Shore Gold Corp. and West Timmins Mining Inc. from surface diamond drilling completed between the years 2006 and 2012 the Mineral Resource Estimate is prepared in accordance with National Instrument 43-101, Standards and Disclosure for Mineral Projects.

 

The Gold River property (the “Property”) consists of ninety-five (95) unpatented mineral claims, one hundred twenty-five (125) claim units, located within Thorneloe township (G-3229), Porcupine Mining Division, Ontario.  The claims are registered 100% to West Timmins Mining Inc., and are subject to underlying Net Smelter Royalty (“NSR”) agreements.  West Timmins Mining Inc. acquired this property and other mineral rights through the amalgamation of Sydney Resources Corporation and Band-Ore Resources Limited (“Band-Ore”).  Lake Shore Gold Corp. acquired the Gold River property as a result of the terms of the business combination agreement with West Timmins Mining Inc. that was announced completed on November 06, 2009.  On February 14, 2012 a Notice of Amalgamation was received that amalgamates the West Timmins Mining Inc. (403671) under /into Lake Shore Gold Corp. (401004).

 

The Property is situated approximately twenty (20) kilometres southwest of Timmins city centre, and approximately 550 line kilometres north-north-west of the City of Toronto.  The Project centre is located at Universal Transverse Mercator (“UTM”) co-ordinates North American Datum (“NAD”) 83, Zone 17: 460,912 metres east, and 5,355,469 metres north.  Easy, all weather road access to the property is provided by provincial Highways 101 and 144, with bush roads, and diamond drill trails north and south of the Tatachikapika River.

 

The Property is situated in the western portion of the Archean, Abitibi Greenstone Belt and is predominately underlain by metasedimentary rocks belonging to the Porcupine assemblage.  This metasedimentary basin is bound to the north and west by metavolcanic rocks of the Tisdale assemblage.  The Archean rock units are variably metamorphosed from greenschist to amphibolites facies.  To the east is the northward trending Mattagami Fault.  Major structures on the property include the east-west trending Porcupine-Destor Fault Zone (“DPFZ”) which crosses near the south boundary and the Gold River Trend, an intensely altered gold bearing deformation which is located two (2) kilometers to the north.  The Gold River Trend has been traced for approximately five (5) kilometers across the Property and is the key host for gold mineralization identified at the property to date.  Both the DPFZ and the Gold River Trend have been cross cut by the major north-south trending Mattagami River Fault. Displacement along the Mattagami River Fault has not been confirmed but current interpretations suggest rock units west of the fault and underlying the Lake Shore property have been moved

 

1



 

downwards and to the south relative to those on the east which extend in to the main part of the historic Timmins mining camp.

 

The bulk of significant gold mineralization at the property is contained within two main deposits referred to as the Gold River East Deposit and the Gold River West Deposit, which are located on a three (3.3) km strike length of the Gold River Trend, which straddles the Tatachikapika River.  Gold mineralization within the deposits generally occurs as stacked sets of steeply dipping irregular lenses which can vary from less than one metre up to about five (5) metres in width,  from one hundred (100) to over four hundred (400) metres in vertical height and from (fifty ( 50 ) to six hundred (600) metres in strike length.  Most mineralization identified to date occurs between surface and five hundred ( 500) metres below but has been traced with a few broadly spaced holes to as deep as 1,050  metres below surface, with several of the zones remaining open.

 

Gold mineralization within the zones is associated with areas of broad disseminated and quartz vein-related arsenopyrite and pyrite mineralization, which varies from less than one percent to greater than twenty (20) percent, locally.  Traces of pyrrhotite, tetrahedrite, stibnite, sphalerite, berthierite, boulangerite, zinkenite as well as native gold and native antimony have also been reported (Payne1996; Miller 2011).

 

Lake Shore Gold has prepared an updated Mineral Resource Estimate for the Gold River property based on historical diamond drilling and drilling completed by LSG between February 2010 and January 17th 2012. All drilling was completed from surface with drill spacing locally down to 20 to 25 metres on strike and down-dip and up to 100m spacing at depth. A total of seven hundred fifty-two (752) holes were completed on the Gold River property of which Lake Shore Gold completed one hundred forty (140) holes for a total of fifty-five thousand eight hundred seven (55,807) metres. Most of drilling completed by Lake Shore targeted the East Deposit area above the six hundred (600) metre depth.

 

The Resource models are comprised of fifteen zones which have been grouped into two deposits called the East and West Deposits. The Deposits extend for 3.3 kilometres along the Gold River Trend and are roughly centered on 461480E section and extend from surface to the 9200m elevation (0 to 800m below surface).  The bulk of the resources are located above the 400m Level with 83% of the tonnes and 73% of the ounces located above this elevation.

 

The Gold River Resource totals 0.69Mt at 5.29 g/t Au, amounting to 117,400 ounces of gold in the Indicated category and 5.27Mt at 6.06 g/t Au, amounting to 1,027,800 ounces of gold in the Inferred category as shown in Table 1.1. The effective date of this resource is January 17, 2012.

 

The Resources were estimated using Inverse Distance to the power 2 (ID2) interpolation method with all gold assays capped to 50 gram metres or 25 gram metres depending on the zone, and an assumed long-term gold price of $1,200 (US) per ounce.  The base case estimate assumes a cut-off grade of 2.0 g/t Au.

 

A nearest neighbor interpolation of the block model using the same parameters and search ellipse as the ID² interpolation was completed and compared. Results showed a slight increase in tonnes grade and ounces using the nearest neighbor interpolation method with no significant differences between the two interpolation methods.

 

Michel Dagbert, Eng., senior geostatistician, SGS Geostat reviewed the Gold River block model and employed an alternative grade interpolation technique to cross check Lakeshore’s own block model.

 

2



 

Michel employed the traditional approach for estimating narrow sheet like structures by projecting hole mineralized intersections to a vertical section plane and using polygons of influence about the intercepts. The polygonal approach produced a total ounce estimate of 1.05Moz versus 1.27Moz at no cut-off for the block model, within acceptable limits given the mostly inferred categorization of the estimated resource.

 

TABLE 1.1: GOLD RIVER TREND DEPOSITS MINERAL RESOURCE ESTIMATES

(Prepared by Lake Shore — January, 2012)

 

Resource

 

 

 

 

 

Capped
Grade

 

Contained Gold

 

Classification

 

Deposit

 

Tonnes

 

g/t Au

 

(ounces)

 

Indicated Resources

 

East

 

597,000

 

5.42

 

104,100

 

 

 

West

 

93,000

 

4.44

 

13,300

 

 

 

 

 

 

 

 

 

 

 

 

 

Total Indicated

 

690,000

 

5.29

 

117,400

 

 

 

 

 

 

 

 

 

 

 

Inferred Resources

 

East

 

4,317,000

 

6.39

 

887,300

 

 

 

West

 

955,000

 

4.57

 

140,500

 

 

 

 

 

 

 

 

 

 

 

 

 

Total Inferred

 

5,273,000

 

6.06

 

1,027,800

 

 

Notes:

 

1.                    CIM definitions were followed for classification of Mineral Resources.

2.                    Mineral Resources are estimated at a cut-off grade of 2.0 g/t Au.

3.                    Mineral Resources are estimated using an average long-term gold price of US$1,200 per ounce and a US$/C$ exchange rate of 0.93.

4.                    A minimum mining width of two metres was used.

5.                    Capped gold grades are used in estimating the Mineral Resource average grade.

6.                    Sums may not add due to rounding.

7.                    There are no Mineral Reserves estimated for the Gold River Property.

8.                    Metallurgical recoveries are assumed to average 85%.

9.                    Mining costs are assumed to average $82.00/tonne.

10.              Mr. Robert Kusins, B.Sc., P.Geo. is the Qualified Person for this Resource Estimate.

 

There are no Mineral Reserves present on the property as of the date of this Technical Report.

 

The following items are recommended for further study and evaluation:

1)              Evaluate the replacing of the ID2 interpolation method by ordinary kriging.

2)              Continue monitoring of specific gravity and grade capping, as addition drill hole information is added to the database, to insure appropriate values are being used.

3)              Additional drilling, particularly zone 4800_S3D which currently accounts for about one third of Inferred Resource ounces, to better delineate the extent of the Resource and increase its confidence level.

4)              Evaluate isolated intersections to determine areas which may be brought into Resources with additional drilling.

 

3



 

5)              To attempt to better identify and record discrete lithologic units as the mafic unit, conglomerates with an emphasis on “grey alteration and mineralization zones”, grey quartz veinlets and areas of high strain.

6)              Construct a lithological model of the deposits that would include a sectional and plan view interpretation.

7)              Continue to filter the available geophysical surveys, to assist in the interpretation of alteration, lithology and high strain zones.

8)              Continue to keep tracking and improving diamond drill log quality and completeness.

9)              Complete metallurgical testing on all of the mineralized zones, comparing similarities and differences.

 

Proposed is an $8,228,000, two stage exploration program based upon the above recommendations.  Expenditures proposed for Phase 2 will be based upon results received in Phase 1, and should be adjusted accordingly.  The Phase 1 program should be directed to expand the existing Inferred Resources by focusing on extending the higher grade mineralized zones along strike and at depth, especially 4800_SD3. The Phase 2 program would involve continued resource expansion, limit infill drilling to upgrade a portion of the Inferred to Indicated and exploration drilling further east and west of the Gold River Deposits to follow up on favorable drill hole intersections. Table 26.0.1: lists the proposed exploration categories and proposed expenditures.

 

TABLE 1.2:  PROPOSED PROGRAM AND BUDGET

 

PHASE

 

SURVEY/WORK TYPE

 

BUDGET ($)

 

 

 

 

 

 

 

Phase 1

 

Diamond Drilling (17,100m)

 

2,138,000

 

 

 

Analytical/Samples (18,900 samples)

 

444,000

 

 

 

Contractor, core storage

 

30,000

 

 

 

Structural Geological Consultant

 

35,000

 

 

 

Geophysical Consultant

 

25,000

 

 

 

Metallurgical Work

 

28,000

 

 

 

Geological Compilation/Core re-logging

 

20,000

 

 

 

Share of Office Administration

 

140,000

 

 

 

Subtotal

 

2,860,000

 

 

 

 

 

 

 

Phase 2

 

Diamond Drilling (25,000m) fill-in resource

 

3,125,000

 

 

 

Exploration Diamond Drilling (10,000m)

 

1,250,000

 

 

 

Analytical/Samples (32,450 samples)

 

763,000

 

 

 

Geological Consultant

 

20,000

 

 

 

Metallurgical Work

 

50,000

 

 

 

Share of Office Administration

 

160,000

 

 

 

Subtotal

 

5,368,000

 

 

 

 

 

 

 

 

 

Grand Total

 

8,228,000

 

 

4



 

2.0: INTRODUCTION

 

This Gold River property Technical Report is co-authored by Jacques Samson, P.Geo.; Robert Kusins, P.Geo.; and David Powers, P.Geo. on behalf of Lake Shore Gold Corp (“Lake Shore Gold”, “Lake Shore”, “LSG”) and West Timmins Mining Inc. (“WTM”) and conforms to NI 43-101 Standards of Disclosure for Mineral Projects.

 

Lake Shore Gold Corp. (“Lake Shore Gold”, “LSG”) is a publicly traded company listed on the Toronto Stock Exchange and trading under the symbol LSG.  Lake Shore Gold was founded in 2002 to explore for precious and base metals hosted within the portions of the Canadian Shield situated in Quebec and Ontario.  On November 06, 2009 Lake Shore Gold and West Timmins Mining Inc. (“WTM”) signed a complete business combination agreement resulting in WTM becoming a wholly owned subsidiary of LSG.  West Timmins Mining Inc. started trading September 18, 2006 after the amalgamation of Sydney Resource Corporation, and Band-Ore Resources Ltd.

 

The authors have prepared this report using a combination of public available and confidential information.  This report is sourced from an amalgamation of several reports listed it the Section 27 labeled References.

 

Contributions to geology by outside consultants include: petrography, ore microscopy and scanning electron microscope investigations by Dr. Miller of Miller and Associates, of Ottawa; mineralization and structural studies comparing Thunder Creek, Timmins Mine and the Gold River property by Mr. David Rhys, of Panterra Geoservices Inc., petrology studies of the Timmins Mine and Thunder Creek area by Katherina Ross, Panterra Geoservices.

 

This technical report describes exploration results for an area of 95 mineral claims, a smaller area than was previously reported and filed on SEDAR by Band-Ore Resources Ltd. in 2002, 2004, and 2006.

 

Robert (Bob) Kusins (P. Geo.) and Chief Resource Geologist for Lake Shore Gold Corp. is responsible for Items: 1, 14, 15, 16, 17, 24, 25, 26, and 27 contained in this report and is the principal QP responsible for this report.

 

Jacques Samson (P. Geo.) and Senior Project Geologist for Lake Shore Gold, is responsible for Items: 1, 7, 12, 13, 19, 21, 22, 24, 25, 26 and 27 contained in this report.

 

David Powers (P.Geo.) of David Powers Geological Services is responsible for Items 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 18, 20, 23, 24, 25, and 27 of this report.

 

All three authors were on site December 06, 2011 observing core storage, recent diamond drilling and diamond drill collar preservation.

 

Historical work in the Gold River Gold Zones area was reviewed by referencing assessment reports filed at the Ministry of Northern Development and Mines’ (“MNDM”) office at the Ontario Government Complex, Highway 101 East, Timmins (Porcupine), Ontario; and Assessment File Research Imaging (“AFRI”) at: www.geologyontario.mndm.gov.on.ca/.  Option and legal agreements were reviewed at the Lake Shore Gold Exploration Office.

 

5



 

2.1.0: UNITS AND CURRENCY

 

Metric and Imperial units are used throughout this report.  Canadian dollars (“C$”, “$”) is the currency used unless otherwise noted.  On April 01, 2012 the exchange rate was approximately $1.00 C dollar to 1.006 US$.

 

Common conversions used included converting one ounce of gold to grams gold with a factor of 31.104 grams per troy ounce; and one ounce gold per ton with a conversion factor of 34.29 grams gold per tonne.

 

2.2.0: LIST OF ABBREVIATIONS

 

Table 2.2.1 lists the common abbreviations that may be used in the report.

 

TABLE 2.2.1: ABBREVIATIONS

 

Unit or Term

 

Abbreviation or Symbol

Above mean sea level

 

 

amsl, ASL

Advanced Exploration Project

 

 

AEP

Atomic Absorption

 

 

AA

Arsenic

 

 

As

Arsenopyrite

 

 

aspy

Azimuth

 

 

AZ

Billion years ago

 

 

Ga

British thermal unit

 

 

Btu

Carbon in leach

 

 

CIL

Carbon in pulp

 

 

CIP

Centimetre

 

 

cm

Copper

 

 

Cu

Cubic centimetre

 

 

cm³

Cubic feet per second

 

 

ft³/s, cfs

Cubic foot

 

 

ft³

Cubic inch

 

 

in³

Cubic metre

 

 

Cubic yard

 

 

yd³

Day

 

 

d

Days per week

 

 

d/wk

Days per year (annum)

 

 

d/a

Dead weight tonnes

 

 

DWT

Degree

 

 

°

Degree Celsius

 

 

°C

Degrees Fahrenheit

 

 

°F

Diamond bore hole

 

 

ddh, DDH

Diamond drill hole

 

 

ddh, DDH

Dollars Canadian

 

 

$C

Dry metric ton

 

 

dmt

 

6



 

Foot

 

 

ft

Gallon

 

 

gal

Gallon per minute

 

 

gpm

Gold

 

 

Au

Gold equivalent grade

 

 

AuEq

Gram

 

 

g

Gram metres

 

 

m.g/t

Grams per litre

 

 

g/l

Grams per tonne

 

 

g/t, gpt

Greater than

 

 

> 

Hectare (10,000m²)

 

 

ha

Hour

 

 

h (not hr)

Inch

 

 

in, “

Kilo (1,000)

 

 

k

Kilogram

 

 

kg

Kilograms per cubic metre

 

 

kg/m³

Kilograms per hour

 

 

kg/h

Kilograms per square metre

 

 

kg/m²

Kilometre

 

 

km

Kilometres per hour

 

 

km/h

Less than

 

 

< 

Lead

 

 

Pb

Life of mine

 

 

LoM

Litre

 

 

L

Litres per minute

 

 

L/m

Metre

 

 

m

Metres above sea level

 

 

masl

Metres per minute

 

 

m/min

Metres per second

 

 

m/s

Metric ton (tonne) (2,000 kg) (2,204.6 pounds)

 

 

t

Micrometre (micron)

 

 

µm

Miles per hour

 

 

mph

Milligram

 

 

mg

Milligrams per litre

 

 

mg/L

Milliliter

 

 

mL

Millimetre

 

 

mm

Million

 

 

M

Million grams

 

 

M g

Million tonnes

 

 

Mt

Million Troy ounces

 

 

M oz

Million Years

 

 

Ma

Minute (plane angle)

 

 

min, ‘

Minute (time)

 

 

min

Month

 

 

mo

National Instrument 43-101 (Canadian)

 

 

NI 43-101

No Personal Liability

 

 

N.P.L.

Ounces

 

 

oz

Page

 

 

p, pg

 

7



 

Parts per billion

 

 

ppb

Parts per million

 

 

ppm

Percent

 

 

%

Percent moisture (relative humidity)

 

 

% RH

Potassium

 

 

K

Pound(s)

 

 

lb

Pounds per square inch

 

 

psi

Preliminary Economic Assessment

 

 

PEA

Pyrite

 

 

py

Pyrrhotite

 

 

po

Quality Assurance/Quality Control

 

 

QA/QC

Quart

 

 

qt

Revolutions per minute

 

 

rpm

Rock Quality Description

 

 

RQD

Second (plane angle)

 

 

sec, “

Second (time)

 

 

s

Short ton (2,000 lb)

 

 

st

Short ton (US)

 

 

t (US)

Short tons per day (US)

 

 

tpd (US)

Short tons per hour (US)

 

 

tph (US)

Short tons per year (US)

 

 

tpy (US)

Silver

 

 

Ag

Sodium

 

 

Na

Specific gravity

 

 

SG

Square centimetre

 

 

cm²

Square foot

 

 

ft²

Square inch

 

 

in²

Square kilometre

 

 

km²

Square metre

 

 

Thousand tonnes

 

 

kt

Tonne (1,000 kg)

 

 

t

Tonnes per day

 

 

t/d, tpd

Tonnes per hour

 

 

t/h

Tonnes per year

 

 

t/a

Volt

 

 

V

Week

 

 

wk

Weight/weight

 

 

w/w

Wet metric ton

 

 

wmt

Yard

 

 

yd

Year (annum)

 

 

a

Year (US)

 

 

yr

 

2.3.0: DEFINITIONS

 

The following definitions of Mineral Resources and Mineral Reserved have been prepared by the CIM Standing Committee on Reserve Definitions and Adopted by the CIM Council on November 27, 2010.

 

8



 

2.3.1: MINERAL RESOURCE

 

Mineral Resources are sub-divided, in order of increasing geological confidence, into Inferred, Indicated and Measured categories.  An Inferred Mineral Resource has a lower level of confidence that that applied to an Indicated Mineral Resource but has a lower level of confidence that a Measured Mineral Resource.

 

A “Mineral Resource” is a concentration or occurrence of diamonds, natural solid inorganic material, or natural solid fossilized organic material including base and precious metals, coal, and industrial minerals in or on the Earth’s crust in such form and quantity and of such a grade or quality that it has a reasonable prospect for economic extraction.  The location, quantity, grade, geological characteristics and continuity of a Mineral Resource are known, estimated or interpreted from specific geological evidence and knowledge.

 

2.3.2: INFERRED MINERAL RESOURCE

 

An “Inferred Mineral Resource” is that part of a Mineral Resource for which quantity and grade or quality can be estimated on the basis of geological evidence and limited sampling and reasonably assumed, but not verified geological and grade continuity.  The estimate is based on limited information and sampling gathering through appropriate techniques from locations such as outcrops, trenches, pits, workings, and drill holes.

 

2.3.3: INDICATED MINERAL RESOURCE

 

An “Indicated Mineral Resource” is the part of the Mineral Resource for which quantity, grade or quality, densities, shape and physical characteristics, can be estimated with a level of confidence sufficient to allow the appropriate application of technical and economic parameters, to support mine planning and evaluation of the economic viability of the deposit.  The estimate is based on detailed and reliable exploration and testing information gathered through appropriate techniques from locations such as outcrops, trenches, pits, workings, and drill holes that are spaced closely enough for geological and grade continuity to be reasonably assumed.

 

2.3.4: MEASURED MINERAL RESOURCE

 

A “Measured Mineral Resource” is the part of the Mineral Resource for which quantity, grade or quality, densities, shape and physical characteristics are so well established that they can be estimated with confidence sufficient to allow the appropriate applications of technical and economic parameters, to support production planning and evaluation for the economic viability of the deposit.  The estimate is based on detailed and reliable exploration, sampling and testing information gathered through appropriate techniques from locations such as outcrops, trenches, pits workings and drill holes that are spaced closely enough to confirm both geological and grade continuity.

 

9



 

2.3.5: MINERAL RESERVE

 

Mineral Reserves are sub-divided in order of increasing confidence into Probable Mineral Reserves and Proven Mineral Reserves.  A Probable Mineral Reserve has a lower level of confidence than a Proven Mineral Reserve.

 

A Mineral Reserve is the economically mineable part of the Measured or Indicated Mineral Resource demonstrated by at least a Preliminary Feasibility Study.  This Study must include adequate information on mining, processing, metallurgical, economic and other relevant factors that demonstrate, at the time of reporting, that economic extraction can be justified.  A Mineral Reserve includes diluting minerals and allowances for losses that may occur when the material is mined.

 

2.3.6: PROBABLE MINERAL RESERVE

 

A “Probable Mineral Reserve” is the economically mineable part of an Indicated and, in some circumstances, a Measured Mineral Resource demonstrated by at least a Preliminary Feasibility Study.  This Study must include adequate information on mining, processing metallurgical, economic and other relevant factors that demonstrate, at the time of reporting that economic extraction can be justified.

 

2.3.7: PROVEN MINERAL RESERVE

 

A “Proven Mineral Reserve” is the economically mineable part of a Measured Mineral Resource demonstrated by at least a Preliminary Feasibility Study.  This Study must include adequate information on mining, processing, metallurgical, economic and other relevant factors that demonstrate, at the time of reporting, the economic extraction is justified.

 

2.4.0: GLOSSARY

 

2.4.1: GENERAL GLOSSARY

 

Table 2.4.1 is a summary table of common technical words accompanies by a simple explanation of the term or word as the term pertains to this report.

 

TABLE 2.4.1: GLOSSARY

 

TERM

 

EXPLANATION

 

 

 

Assay:

 

The chemical analysis of mineral samples to determine the metal content.

 

 

 

Capital Expenditure:

 

All other expenditures not classified as operating costs.

 

 

 

Composite:

 

Combining more than one sample result to give an average result over a larger distance.

 

10



 

Concentrate:

 

A metal-rich product resulting from a mineral enrichment process such as gravity concentration or floatation, in which most of the desired mineral has been separated from waste material in the ore.

 

 

 

Crushing:

 

Initial process of reducing ore particle size to render it more amenable for further processing.

 

 

 

Cut-off Grade (CoG):

 

The grade of mineralized rock, which determines as to whether or not it is economic to recover its gold content by further concentration.

 

 

 

Dilution:

 

Unwanted waste, which is mined with ore.

 

 

 

Dip:

 

Angle of inclination of a geological feature / rock from the horizontal.

 

 

 

Fault:

 

The surface of a fracture along which movement has occurred.

 

 

 

Footwall:

 

The underlying side of an orebody or stope.

 

 

 

Gangue:

 

Non-valuable components of the ore.

 

 

 

Grade:

 

The measure of concentration of “gold” within mineralized rock.

 

 

 

Hangingwall:

 

The overlying side of an orebody or stope.

 

 

 

Haulage:

 

A horizontal underground excavation which is used to transport mined material.

 

 

 

Igneous:

 

Primary crystalline rock formed by the solidification of magma.

 

 

 

Level:

 

Horizontal tunnel with the primary purpose to transport personnel and materials.

 

 

 

Lithological:

 

Geological description pertaining to different rock types.

 

 

 

LoM Plans

 

Life of mine plans.

 

 

 

Material Properties:

 

Mining properties.

 

 

 

Metamorphism:

 

Process by which consolidated rock is altered in composition, texture, or internal structure by conditions and forces of heat and pressure.

 

 

 

Milling:

 

A general term used to describe the process in which the ore is crushed, ground and subjected to physical or chemical treatment to extract the valuable metals to a concentrate or finished product.

 

 

 

Mineral/Mining Lease:

 

A lease area for which mineral rights are held.

 

 

 

Mining Asset:

 

Material Properties and Significant Exploration Properties.

 

 

 

Ongoing Capital:

 

Capital estimates of a routine nature, which is necessary for sustaining

 

11



 

 

 

operations.

 

 

 

Ore Reserve:

 

See Mineral Reserve

 

 

 

RoM

 

Run of Mine.

 

 

 

Sedimentary:

 

Pertaining to rocks formed by the accumulation of sediments, formed by the erosion of other rocks.

 

 

 

Shaft:

 

An opening cut downwards from the surface for transporting personnel, equipment, supplies, ore and waste.

 

 

 

Smelting:

 

A high temperature pyrometallurgical operation conducted in a furnace, in which the valuable metal is collected to a molten matte or doré phase and separated from gangue components that accumulate in a less dense molten slag phase.

 

 

 

Stope:

 

Underground void created by mining.

 

 

 

Stratigraphy:

 

The study of stratified rocks in terms of time and space.

 

 

 

Strike:

 

Direction of line formed by the intersection of strata surfaces with the horizontal plane, always perpendicular to the dip direction.

 

 

 

Sulphide:

 

A sulphur bearing mineral.

 

 

 

Tailings:

 

Finely ground waste rock form which valuable minerals or metals have been extracted.

 

 

 

Thickening:

 

The process of concentrating solid particles in suspension.

 

 

 

Total Expenditure:

 

All expenditures including those of an operation and capital nature.

 

2.4.2: LAKE SHORE GOLD MINE SITE TERMINOLOGY

 

Timmins West Complex:

 

The Company’s entire land package on the west side of the city, extending through Bristol, Thorneloe, Carscallen, Denton townships.

 

 

 

Timmins West Mine:

 

The combined areas that are currently being mined using the shared Infrastructure, namely the Timmins Deposit and the Thunder Creek Deposit.

 

 

 

Timmins Deposit:

 

The Deposits formerly known as the Timmins Mine (now one of two Deposits comprising the Timmins West Mine.

 

 

 

Thunder Creek Deposit:

 

A second deposit being mined in the Timmins West Mine.

 

12



 

Gold River Trend Deposits:

 

The combined East and West Deposits located on the Gold River property.

 

 

 

East Deposit:

 

The eastern deposit currently comprised of eleven mineralized zones including the Kapika Zone located on the Gold River property.

 

 

 

West Deposit:

 

The western deposit currently comprised of four mineralized zones located on the Gold River property.

 

13



 

3.0: RELIANCE ON OTHER EXPERTS

 

The authors have sourced the information for this report from an amalgamation of several reports listed it the Section 27 labeled References. These references include government geological reports, press releases, company annual reports, assessment reports filed with the Ministry of Northern Development and Mines’ (“MNDM”), previously SEDAR filed NI 43-101 reports and reports both public and confidential provided by Lake Shore Gold Corp.

 

Jacques Samson, P.Geo., is an employee of Lake Shore Gold Corp. in the capacity of Senior Project Geologist and has been the Qualified Person (“QP”) responsible for overseeing and reporting the exploration programs at the Gold River Project, since Lake Shore Gold Corp. started to manage the exploration resulting from the November 06, 2009 Business Combination Agreement.   He is responsible for Items: 1, 7, 12, 13, 19, 21, 22, 24, 25, 26 and 27 contained in this report.

 

Robert (Bob) Kusins, P.Geo., is employed by Lake Shore as Chief Resource Geologist and is the QP responsible for the mineralization modeling, Resource Estimate and Items: 1, 14, 15, 16, 17, 24, 25, 26, and 27 contained in this report.  He is also the principal QP responsible for this report.

 

David Powers, P. Geo. is an independent geologist who is responsible for Items 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 18, 20, 23, 24, 25, and 27 of this report.

 

Technical Reports filed on SEDAR in 2002, 2004, and 2006 authored by Mr. George Cavey of OREQUEST, summarize the mineral exploration completed by Band-Ore Resources Limited from the time the property was acquired up to and including 2006.  During this period Mr. Robert Duess, P. Geo. was the Qualified Person overseeing the exploration.

 

Mr. Darin Wagner, former President of West Timmins Mining Inc. was the P. Geo. and Qualified Person directing exploration activities, responsible for QA/QC during the period September 18, 2006 to November 06, 2009, and responsible for the transfer of all technical data to Lake Shore Gold Corp.

 

Michel Dagbert, P. Eng. of SGS Geostat Limited of 10 boul. De la Seigneurie Est., Suite 203, Blainville, Quebec, provided the technical review of QA/QC data, review of the 3 D modeling and estimation parameters, capping limits of grades, and verification of the resource block model with additional recommendations for block resource estimation.

 

Contributions to geology by outside consultants include: petrography, ore microscopy and scanning electron microscope investigations by Dr. Miller of Miller and Associates, of Ottawa; mineralization and structural studies comparing Thunder Creek, Timmins Mine and the Gold River property by Mr. David Rhys, of Panterra Geoservices Inc., petrology studies of the Timmins Mine and Thunder Creek area by Katherina Ross, Panterra Geoservices.

 

The authors have relied on the professional integrity of the designated project Qualified Persons, to maintain and provide true and accurate reporting of the facts, throughout the project’s history.  Where possible the internal documents have been checked against public record filed for assessment purposes. The authors have reviewed reports, drill logs, and assay certificates issued during the exploration phases and have found them to be consistent and believe most of the data to be reliable within testable parameters.

 

14



 

Figures for this report have been prepared by Mr. Tom Savage, and others in the employ of Lake Shore Gold Corp. and modified by the authors.

 

15



 

4.0: PROPERTY DESCRIPTION AND LOCATION

 

4.1.0: PROPERTY DESCRIPTION

 

The Gold River property consists of ninety-five (95) unpatented mineral claims, one hundred twenty-five (125) claim units covering an area of approximately two thousand three hundred twenty (2,320) hectares located within Thorneloe township (G-3229), Porcupine Mining Division, Ontario.  The claims are registered 100% to West Timmins Mining Inc., a wholly owned subsidiary of Lake Shore Gold Corp. and are subject to underlying NSR agreements.  West Timmins Mining Inc. acquired this property and other mineral rights through the amalgamation of Sydney Resources Corporation and Band-Ore Resources Limited (“Band-Ore”) (September 2006).  On February 14, 2012 a Notice of Amalgamation was received that amalgamates the West Timmins Mining Inc . (403671) under /into Lake Shore Gold Corp. (401004).

 

The former Band-Ore, Thorne property ownership has been described by Mr. George Cavey, OREQUEST, in reports submitted by Band-Ore Resources Ltd. to SEDAR in 2002, 2004 and 2006.  This report discusses a smaller group of claims than was previously reported in 2006.

 

The ninety-five (95) claims require an annual assessment work requirement of four hundred ($400.00) dollars per unit to keep the claims in good standing. The annual required assessment work expenditures for the described property totals fifty thousand ($50,000.00) dollars.  Table 4.1.1 lists the claim units, their due date, work required and the associated underlying royalty agreement.

 

Active mining claim abstracts have been reviewed online at:

http://www.mci.mndm.gov.on.ca/claims/clm_mdva.cfm. The ownership on record is in the name of West Timmins Mining Inc., a wholly owned subsidiary of Lake Shore Gold Corp.

 

Figure 4.1.1 is a Claim Sketch Map illustrating the claim numbers and boundaries relative to local topographic and cultural features.

 

16



 

TABLE 4.1.1: CLAIMS LIST

 

Claim Number

 

Units

 

Due Date

 

Work
Required

 

Agreement

796731

 

1

 

2015-APR-02

 

$

400.00

 

Royal Gold and Torogold (3%)

796732

 

1

 

2015-APR-02

 

$

400.00

 

Royal Gold and Torogold (3%)

796733

 

1

 

2015-APR-02

 

$

400.00

 

Royal Gold and Torogold (3%)

796734

 

1

 

2015-APR-02

 

$

400.00

 

Royal Gold and Torogold (3%)

805191

 

1

 

2015-JUN-01

 

$

400.00

 

Royal Gold and Torogold (3%)

805192

 

1

 

2015-JUN-01

 

$

400.00

 

Royal Gold and Torogold (3%)

805193

 

1

 

2015-JUN-01

 

$

400.00

 

Royal Gold and Torogold (3%)

834158

 

1

 

2015-DEC-04

 

$

400.00

 

Royal Gold and Torogold (3%)

834159

 

1

 

2015-DEC-04

 

$

400.00

 

Royal Gold and Torogold (3%)

834367

 

1

 

2015-DEC-19

 

$

400.00

 

Royal Gold and Torogold (3%)

834368

 

1

 

2015-DEC-19

 

$

400.00

 

Royal Gold and Torogold (3%)

834369

 

1

 

2015-DEC-19

 

$

400.00

 

Royal Gold and Torogold (3%)

838437

 

1

 

2015-APR-09

 

$

400.00

 

Royal Gold and Torogold (3%)

838438

 

1

 

2015-APR-09

 

$

400.00

 

Royal Gold and Torogold (3%)

838439

 

1

 

2015-APR-09

 

$

400.00

 

Royal Gold and Torogold (3%)

838440

 

1

 

2015-APR-09

 

$

400.00

 

Royal Gold and Torogold (3%)

838441

 

1

 

2015-APR-09

 

$

400.00

 

Royal Gold and Torogold (3%)

838442

 

1

 

2015-APR-09

 

$

400.00

 

Royal Gold and Torogold (3%)

838443

 

1

 

2015-APR-09

 

$

400.00

 

Royal Gold and Torogold (3%)

838444

 

1

 

2015-APR-09

 

$

400.00

 

Royal Gold and Torogold (3%)

838445

 

1

 

2015-APR-09

 

$

400.00

 

Royal Gold and Torogold (3%)

838446

 

1

 

2015-APR-09

 

$

400.00

 

Royal Gold and Torogold (3%)

838447

 

1

 

2015-APR-09

 

$

400.00

 

Royal Gold and Torogold (3%)

838448

 

1

 

2015-APR-09

 

$

400.00

 

Royal Gold and Torogold (3%)

892792

 

1

 

2015-FEB-06

 

$

400.00

 

Royal Gold and Torogold (3%)

923601

 

1

 

2015-MAY-12

 

$

400.00

 

Royal Gold and Torogold (3%)

923602

 

1

 

2015-MAY-12

 

$

400.00

 

Royal Gold and Torogold (3%)

923603

 

1

 

2015-MAY-12

 

$

400.00

 

Royal Gold and Torogold (3%)

923604

 

1

 

2015-MAY-12

 

$

400.00

 

Royal Gold and Torogold (3%)

923605

 

1

 

2015-MAY-12

 

$

400.00

 

Royal Gold and Torogold (3%)

923606

 

1

 

2015-MAY-12

 

$

400.00

 

Royal Gold and Torogold (3%)

923607

 

1

 

2015-MAY-12

 

$

400.00

 

Royal Gold and Torogold (3%)

923608

 

1

 

2015-MAY-12

 

$

400.00

 

Royal Gold and Torogold (3%)

923609

 

1

 

2015-MAY-12

 

$

400.00

 

Royal Gold and Torogold (3%)

923610

 

1

 

2015-MAY-12

 

$

400.00

 

Royal Gold and Torogold (3%)

923611

 

1

 

2015-MAY-12

 

$

400.00

 

Royal Gold and Torogold (3%)

923612

 

1

 

2015-MAY-12

 

$

400.00

 

Royal Gold and Torogold (3%)

923613

 

1

 

2015-MAY-12

 

$

400.00

 

Royal Gold and Torogold (3%)

923614

 

1

 

2015-MAY-12

 

$

400.00

 

Royal Gold and Torogold (3%)

923615

 

1

 

2015-MAY-12

 

$

400.00

 

Royal Gold and Torogold (3%)

923616

 

1

 

2015-MAY-12

 

$

400.00

 

Royal Gold and Torogold (3%)

 

17



 

923617

 

1

 

2015-MAY-12

 

$

400.00

 

Royal Gold and Torogold (3%)

923618

 

1

 

2015-MAY-12

 

$

400.00

 

Royal Gold and Torogold (3%)

923646

 

1

 

2015-MAY-26

 

$

400.00

 

Royal Gold and Torogold (3%)

923647

 

1

 

2015-MAY-26

 

$

400.00

 

Royal Gold and Torogold (3%)

923648

 

1

 

2015-MAY-26

 

$

400.00

 

Royal Gold and Torogold (3%)

923650

 

1

 

2015-MAY-26

 

$

400.00

 

Royal Gold and Torogold (3%)

930782

 

1

 

2015-MAY-26

 

$

400.00

 

Royal Gold and Torogold (3%)

930783

 

1

 

2015-MAY-26

 

$

400.00

 

Royal Gold and Torogold (3%)

930784

 

1

 

2015-MAY-26

 

$

400.00

 

Royal Gold and Torogold (3%)

930785

 

1

 

2015-MAY-26

 

$

400.00

 

Royal Gold and Torogold (3%)

930786

 

1

 

2015-MAY-26

 

$

400.00

 

Royal Gold and Torogold (3%)

956076

 

1

 

2015-FEB-12

 

$

400.00

 

Royal Gold and Torogold (3%)

956077

 

1

 

2015-FEB-12

 

$

400.00

 

Royal Gold and Torogold (3%)

956078

 

1

 

2015-FEB-12

 

$

400.00

 

Royal Gold and Torogold (3%)

956079

 

1

 

2015-FEB-12

 

$

400.00

 

Royal Gold and Torogold (3%)

956080

 

1

 

2015-FEB-12

 

$

400.00

 

Royal Gold and Torogold (3%)

956081

 

1

 

2015-FEB-12

 

$

400.00

 

Royal Gold and Torogold (3%)

956082

 

1

 

2015-FEB-12

 

$

400.00

 

Royal Gold and Torogold (3%)

956083

 

1

 

2015-FEB-12

 

$

400.00

 

Royal Gold and Torogold (3%)

956092

 

1

 

2015-FEB-12

 

$

400.00

 

Royal Gold and Torogold (3%)

956093

 

1

 

2015-FEB-12

 

$

400.00

 

Royal Gold and Torogold (3%)

956094

 

1

 

2015-FEB-12

 

$

400.00

 

Royal Gold and Torogold (3%)

956095

 

1

 

2015-FEB-12

 

$

400.00

 

Royal Gold and Torogold (3%)

956096

 

1

 

2015-FEB-12

 

$

400.00

 

Royal Gold and Torogold (3%)

956097

 

1

 

2015-FEB-12

 

$

400.00

 

Royal Gold and Torogold (3%)

956098

 

1

 

2015-FEB-12

 

$

400.00

 

Royal Gold and Torogold (3%)

956099

 

1

 

2015-FEB-12

 

$

400.00

 

Royal Gold and Torogold (3%)

956100

 

1

 

2015-FEB-12

 

$

400.00

 

Royal Gold and Torogold (3%)

956201

 

1

 

2015-FEB-12

 

$

400.00

 

Royal Gold and Torogold (3%)

956202

 

1

 

2015-FEB-12

 

$

400.00

 

Royal Gold and Torogold (3%)

956206

 

1

 

2015-FEB-12

 

$

400.00

 

Royal Gold and Torogold (3%)

956207

 

1

 

2015-FEB-12

 

$

400.00

 

Royal Gold and Torogold (3%)

956208

 

1

 

2015-FEB-12

 

$

400.00

 

Royal Gold and Torogold (3%)

956209

 

1

 

2015-FEB-12

 

$

400.00

 

Royal Gold and Torogold (3%)

956216

 

1

 

2015-FEB-12

 

$

400.00

 

Royal Gold and Torogold (3%)

956217

 

1

 

2015-FEB-12

 

$

400.00

 

Royal Gold and Torogold (3%)

956218

 

1

 

2015-FEB-12

 

$

400.00

 

Royal Gold and Torogold (3%)

956219

 

1

 

2015-FEB-12

 

$

400.00

 

Royal Gold and Torogold (3%)

956226

 

1

 

2015-FEB-12

 

$

400.00

 

Royal Gold and Torogold (3%)

956227

 

1

 

2015-FEB-12

 

$

400.00

 

Royal Gold and Torogold (3%)

956228

 

1

 

2015-FEB-12

 

$

400.00

 

Royal Gold and Torogold (3%)

956229

 

1

 

2015-FEB-12

 

$

400.00

 

Royal Gold and Torogold (3%)

956230

 

1

 

2015-FEB-12

 

$

400.00

 

Royal Gold and Torogold (3%)

956231

 

1

 

2015-FEB-12

 

$

400.00

 

Royal Gold and Torogold (3%)

995645

 

1

 

2015-MAY-19

 

$

400.00

 

Royal Gold and Torogold (3%)

 

18



 

995646

 

1

 

2015-MAY-19

 

$

400.00

 

Royal Gold and Torogold (3%)

1159643

 

1

 

2015-FEB-13

 

$

400.00

 

Croxall et al. (1%)

1177817

 

8

 

2015-OCT-04

 

$

3,200.00

 

Croxall et al. (1%)

1189541

 

3

 

2015-JAN-13

 

$

1,200.00

 

RNC Gold Inc. (2%) Duess (3%)

1189542

 

4

 

2015-JAN-13

 

$

1,600.00

 

RNC Gold Inc. (2%) Duess (3%)

1189549

 

10

 

2015-JAN-08

 

$

4,000.00

 

RNC Gold Inc. (2%) Duess (3%)

1189552

 

2

 

2015-JAN-08

 

$

800.00

 

Durham et al. (3%)

1189553

 

1

 

2015-JAN-08

 

$

400.00

 

Durham et al. (3%)

1189554

 

9

 

2015-JAN-08

 

$

3,600.00

 

RNC Gold Inc. (2%) Duess (3%)

 

 

 

 

 

 

 

 

 

Total of 95 claims

 

125 claim units

 

 

 

$

50,000.00

 

 

 

4.2.0: RECENT OWNERSHIP HISTORY AND UNDERLYING AGREEMENTS

 

Lake Shore Gold Corp. acquired the Gold River property as a result of the terms of the business combination agreement with West Timmins Mining Inc. that was announced completed on November 06, 2009.  West Timmins Mining Inc. then became a wholly-owned subsidiary of Lake Shore Gold. (MD&A, SEDAR November 11, 2009). West Timmins Mining Inc. started trading September 18, 2006 after the amalgamation of Sydney Resource Corporation, and Band-Ore Resources Ltd.

 

Table 4.1.1 lists the claims and associated underlying royalty agreements that are included in this report.

 

A summary explanation of the royalties is described as follows:

 

a)              The Royal Gold Inc. and Torogold Resources Inc. have a combined 3% NSR that originates with the March 1, 1994, Denton and Thorneloe townships Property Sale and Purchase Agreement between Homestake Canada Inc. (“Homestake”), Torogold Resources Inc. (“Torogold”), and Band-Ore Resources Limited (“Band-Ore”). Under the terms of this agreement both Homestake, and Torogold each have a 1.5 % net smelter return (NSR).  West Timmins Mines Ltd., the purchaser, has the right to purchase from each Homestake and Torogold two thirds of each royalty, prior to the public announcement that it is placing the property into production of a mine. There by entitling each Homestake and Torogold following such exercise to receive 0.5% of the Net Smelter Return by paying each of Homestake and Torogold the sum of $1 million (the agreement pg. 3, 1994).  In 2001 Barrick Gold Corporation (“Barrick”) and Homestake merged transferring the property royalty to Barrick.  Royal Gold Inc. completed an acquisition on October 1, 2008 of a portfolio of royalties from Barrick which includes the Homestake-Torogold royalties for this property.

 

b)             Agreements, between Band-Ore Resources Limited and Mr. Jim Croxall (January 05, 1993); and Band-Ore, Mr. J. Croxall and Mr. Miller (November 12, 2003), are attached to mineral claims: 1159643 and 1177817. Croxall and Miller retain a 2% NSR of which 1% can be purchased for one million dollars indexed to the consumer price index (C.P.I.) as of January 1, 1993.  A pre-production royalty commenced January 1, 1999, and continues until the NSR is payable.  Annual disbursements for the amount of $5000 are indexed to the C.P.I.  An

 

19



 

agreement between Lake Shore Gold Corp. and Mr. J. Croxall and Mr. Miller dated November 16, 2011 completed the purchase of 1 % NSR in exchange for an approximate 1,500,000 $C equivalent in Lake Shore Gold Corp. stock.

 

c)              Agreement dated July 26, 1994 between Band-Ore Resources Ltd. and South Africa Minerals Corporation (“SAMC”) includes four mineral claims 1189549, 1189554, 1189541 and 1189542, which are subject to this report.  SAMC have a 2% NSR on these claims, of which 1% may be purchased for $500,000.  South Africa Minerals Corporation changed its name and began trading on the Toronto Stock Exchange (TSE) as Tango Mineral Resources Inc. (Tango).  On May 12, 2003 Tango’s board of director’s press released a letter of intent to merge with RNC Gold Inc. (“RNC”).  RNC began trading on the TSE on December 10, 2003 and retain the royalties 2% NSR on the claims.

 

d)             Mineral claims 1189549, 1189554, 1189541 and 1189542 described above are also subject to underlying agreements.  A letter of agreement dated January 04, 1993 between Mr. R. Duess, Mr. B. Durham, Mr. H. Hutteri and Mr. K. Krug assign a 25% ownership between each of them for 43 mineral claim units in Denton and Thorneloe townships.  On behalf of the group an agreement dated January 04, 1993 between Mr. R. Duess and Kingswood Resources Inc. (“Kingswood”) assigns 100% ownership interest to Kingswood for a cash payment and a retained 3% NSR.  A letter dated January 18, 1993, between Mr. Duess and Kingswood describes the exchange of common shares in lieu of cash payments. Between 1993 and 1994 Kingswood Resources becomes South Africa Mineral Corp.  A document dated December 05, 1994 between South Africa Mineral Corp. and Mr. Duess, Mr. Durham, Mr. Hutteri, and Mr. Krug allow SAMC to purchase 2/3 of the 3% NSR for one million dollars.

 

e)              From the agreement dated December 05, 1993 between Bruce Durham, Henry Hutteri and Band-Ore Resources Ltd., two claims are subject of this report, (1189552 and 1189553).  The agreement outlines a payment of shares and retains a 3% NSR to the favour of the vendors. An underlying agreement dated December 28, 1992 describes the 25% each partnership of M. Durham, Mr. Duess, Mr. Hutteri and Mr. Krug for the same claims.

 

An Impact and Benefits Agreement (“IBA”) with the Mattagami and Flying Post First Nations have been negotiated and signed (February 17, 2011).  The IBA outlines how Lake Shore Gold Corp. and the First Nations communities will work together in the following areas: education and training of First Nation community members, employment, business and contracting opportunities, financial considerations and environmental provisions.

 

4.3.0: LOCATION

 

The Gold River property is situated approximately 20 kilometres southwest of Timmins city centre, and approximately 550 line kilometres north-north-west of the City of Toronto.  The Project centre is located within Thorneloe township, and national topography series map reference (“NTS”) 42-A-05 and 42-A-06; at longitude 81.53° west and 48.35° north latitude.  Universal Transverse Mercator (“UTM”) co-ordinates for the project centre, utilizing projection North American Datum (“NAD”) 83, Zone 17 are: 460,912 metres east, and 5,355,469 metres north.  All weather road access to the property is provided by provincial Highways 101 and 144, with bush roads, and diamond drill trails north and south of the Tatachikapika River. The junction of Highways 101 and 144 is situated five (5) kilometres north-west of

 

20



 

the property centre. Figure 4.3.1, Location Map, illustrates the Project area relative to the highways, City of Timmins and the City of Toronto.

 

4.4: PAST MINING ACTIVITY, ENVIRONMENTAL LIABILITIES AND PERMITTING

 

To the best of the authors’ knowledge there has been no past mining activity in the form of blasting, excavating, and processing bulk material from the Gold River property.

 

To the best of the authors’ knowledge there are no environmental issues or liabilities resulting for the exploration activities or timber harvesting within the boundaries of the Gold River property.

 

To date no permitting has been required to explore the Property.

 

From the Ministry of Natural Resources’ Species at Risk in Ontario (“SARO”) list, the following species could range within the Project area.

(http://www.mnr.gov.on.ca/en/Business/Species/2ColumnSubPage/246809.html)

 

TABLE 4.4.1: SPECIES AT RISK

 

COMMON NAME

 

SCIENTIFIC NAME

 

OMNR STATUS

 

 

 

 

 

Lake Sturgeon

 

Acipenser fluvescens

 

special concern

Golden Eagle

 

Aquila chrysaetos

 

endangered

Short-eared Owl

 

Asio flammeus

 

special concern

Eastern Wolf

 

Canis lupus lycaon

 

special concern

Black Tern

 

Chlidonias niger

 

special concern

Yellow Rail

 

Coturnicops noveboracensis

 

special concern

Monarch Butterfly

 

Danaus plexippus

 

special concern

Bald Eagle

 

Haliaeetus leucocephalus

 

special concern

Peregrine Falcon

 

Falco peregrinus

 

threatened

Eastern Cougar

 

Puma concolor

 

endangered

 

The author is not aware of any of these species being present within the area of the Gold River property.

 

21



 

FIGURE 4.1.1: CLAIMS LOCATION SKETCH MAP

 

GRAPHIC

 

22



 

Figure 4.3.1: LOCATION MAP

 

GRAPHIC

 

23



 

5.0: ACCESSIBILITY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE AND PHYSIOGRAPHY

 

5.1.0: ACCESSIBILITY

 

The Property is easily accessible with motor vehicle via Provincial Highways 101, west of the City of Timmins and Highway 144 south.  Timber access bush roads and diamond drill trails east of Highway 144, north and south of the Tatachikapika River provide bush vehicle access to most of the Property. The centre of the claim group is situated at approximately 460,912 metres east, 5,355,469 metres north (NAD 83, Zone 17).  The junction of Highways 101 and 144 is located five (5) kilometres north-west of the Property centre.  Figure 4.3.1 Location Sketch, illustrates the Project area relative to the highways, City of Timmins and the City of Toronto.

 

5.2.0: CLIMATE

 

The Gold River property and the City of Timmins experience a continental climate with an average mean temperature range of -17.5°C (January) to +17.4° (July) and an annual precipitation of about 831mm.  The following table (Table 5.2.1) summaries the average temperatures and precipitation values for the 15 year period taken from the Timmins Airport between 1971 and 2000.

(http://www.climate.weatheroffice.ec.gc.ca/climate_normals/index_e.html)

 

TABLE 5.2.1: AVERAGE TEMPERATURES, PRECIPITATION AND SNOW FALL DEPTHS FOR THE TIMMINS AREA.

 

 

 

Jan

 

Feb

 

Mar

 

Apr

 

May

 

Jun

 

Jul

 

Aug

 

Sep

 

Oct

 

Nov

 

Dec

 

Year

 

Temperature

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Daily Average (°C)

 

-17.5

 

-14.4

 

-7.7

 

1.2

 

9.6

 

14.7

 

17.4

 

15.7

 

10.3

 

4.2

 

-4

 

-13.2

 

1.3

 

Daily Maximum (°C)

 

-11

 

-7.5

 

-0.9

 

7.6

 

16.6

 

21.7

 

24.2

 

22.3

 

16.1

 

8.9

 

0.1

 

-7.8

 

7.5

 

Daily Minimum (°C)

 

-23.9

 

-21.3

 

-14.5

 

-5.2

 

2.5

 

7.5

 

10.5

 

9.1

 

4.4

 

-0.6

 

-8.1

 

-18.7

 

-4.9

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Precipiation

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Rainfall (mm)

 

2.9

 

1.6

 

14.7

 

26.6

 

62.7

 

89.1

 

91.5

 

82

 

86.7

 

64

 

29.5

 

7

 

558.1

 

Snowfall (cm)

 

61.7

 

40.6

 

49.9

 

27.5

 

6.7

 

0.4

 

0

 

0

 

1.6

 

14

 

45.7

 

65.4

 

313.4

 

Precipitation (mm)

 

53.9

 

36.6

 

59.4

 

52.8

 

69.2

 

89.4

 

91.5

 

82

 

88.3

 

76.8

 

69.6

 

61.9

 

831.3

 

Average Snow Depth (cm)

 

58

 

66

 

58

 

25

 

1

 

0

 

0

 

0

 

0

 

0

 

7

 

29

 

20

 

 

Local lakes will start to freeze over approximately mid November, and breakup will take place in early to mid May.  Work can be carried out on the Property twelve months a year.

 

5.3.0: LOCAL RESOURCES AND INFRASTRUCTURE

 

The City of Timmins with an area of 3,210 square kilometres and a population of 42,455 (2006 Census) has and economic base dominated by the mining and logging industries. The area is serviced from

 

24



 

Toronto via Highways 400, 69 to Sudbury; and Highway 144 to Timmins; or Highway 11 from Barrie to Matheson and 101 westward to Timmins.  The Victor M. Power Airport has scheduled service provided by Air Canada Jazz, Bearskin Airlines and Air Creebec.  Porter Airways provide air service between Timmins and Toronto Island airport.  The Timmins District Hospital is a major referral health care centre for northeastern Ontario.

 

The Property is situated south of Highways 101 and East of Highway 144 and is in close proximity to the main hydro grid transmission line.  An experienced mining labour pool is accessible in the Timmins area.  The property is of sufficient geographic size, aggregate availability and water supply to support the building of local mining infrastructure.

 

Lake Shore Gold Corp.’s Timmins Mine infrastructure is situated approximately four (4) kilometres to the northward of the centre of the Gold River property. To the best of the authors’ knowledge, there are sufficient surface rights, a willing labour pool, and readily available infrastructure to carry on a mining operation.

 

5.4.0: PHYSIOGRAPHY

 

The Property generally exhibits low to moderate relief between 276 metres and 334 metres above mean sea level (“AMSL”).  A base elevation at the junction of Highways 144 and 101 is approximately 312 metres AMSL.  Two peak elevations situated near UTM co-ordinates 461,655m east / 5,354,975m north, and 458,940m east / 5,356,800m north both rising to an elevation of 334 metres above mean sea level.  The elevation of the Tatachikapika River (historically known as the Lost or Redsucker River) ranges from 305 at the south property boundary to 297 m AMSL on the north property boundary. The elevation of the northerly flowing Mattagami River along the eastern most portion of the property is 276m AMSL.  Outcrop exposure is less than one (1) percent.  Figure 5.4.1 illustrates the claim boundary of the Gold River property, the boundary of Thorneloe and Bristol townships, draped over a landsat panchromatic image of the area.

 

The continental climate and the location on the Canadian Shield give rise to a plant hardiness zone 2a which supports the following boreal forest tree species and a timber, pulp and paper industry.  In no particular order of significance local trees species include: American Mountain-Ash (Sorbus Americana), Balsam Fir (Abies Balsamea), Black Spruce (Pincea Mariana), Eastern White Cedar (Thuja Occidentalis), Eastern White Pine (Pinus Strobus), Jack Pine (Pinus Banksiana), Pin Cherry (Prunus Pensylvanica), Red Pine (Pinus Resinosa), Tamarack (Larix Laricina), Trembling Aspen (Populus Tremuloides), White Birch (Betula Papyrifera) and White Spruce (Pincea Glauca).

(http://www.mnr.gov.on.ca/en/Business/ClimateChange/2ColumnSubPage/268124.html)

 

Hawley, J.E., (1926) points out that a large part of Ogden, Bristol and Carscallen townships were swept by several forest fires dating back to 1911.

 

25



 

FIGURE 5.4.1: PHYSIOGRAPHY MAP

 

GRAPHIC

 

26



 

6.0: HISTORY

 

6.1.0: PRIOR OWNERSHIP

 

Between the years 1992 and 2002 Band-Ore Resources Limited was able to attain ownership of one hundred ninety (190) claims, three hundred eighty (380) claim units for six thousand eighty (6,080) hectares within Bristol, Thorneloe, Carscallen and Denton townships. The detail of underlying agreements and royalties are described in the portion of Item 4, “Property Description and Location, titled Recent Ownership History and Underlying Agreements”.  During the mid 1980’s Esso Minerals Canada/Esso Resources Canada Limited (“Esso”) and partners completed a successful exploration program of geology, geophysics overburden and diamond drilling. Discovered were new gold occurrences, the most significant to the Gold River property was the Kapika Zone.  Band-Ore’s exploration programs continued to outline and define gold mineralization in the areas of previous Esso’s diamond drilling as well as in areas of geophysical anomaly target testing.  Field, line cut grids covered the property, ground magnetometer and Induced Polarization surveys were completed across the property.  A total of three airborne geophysical surveys were completed.  The results of the Band-Ore’s exploration programs are well described by Mr. G. Cavey’s reports filed on SEDAR (2002, 2004, 2006).  In September of 2006 Band-Ore Resources Limited and Sydney Resources Corporation amalgamated and formed West Timmins Mining Inc.  As the result of the terms of a business combination agreement between West Timmins Mining Inc. and Lake Shore Gold Corp., West Timmins Mining Inc. became a wholly owned subsidiary of Lake Shore Gold Corp.

 

The Property discussed in this report is a portion of the former Band-Ore’s “Thorne” property.  This report includes ninety-five (95) unpatented mineral claims, one hundred forty-five (145) claim units covering an approximate area of two thousand three hundred twenty (2,320) hectares located within Thorneloe township.

 

6.2.0: GENERAL HISTORY

 

The discovery of gold in Bristol township on the McAuley-Brydge property (currently Lake Shore’s Timmins Mine property) occurred in 1911.  The 1912 geology map (ARM-21a) by A.G. Burrows and W.R. Rogers illustrated three claims (TC 612, TC613, TC614) at the McAuley-Brydge occurrence plus four claims west of the Rusk occurrence (HR 1187, HR1188, HR1189 and HR1191).  Map ARM-21a illustrates only one patented claim in the Gold River mineralized trend area. Claim HR 1257, straddles Tatachikapika River which divides the Gold River West from the Gold River East mineralized zones. At that time, a small cluster of claims surrounded the power dam at Wawaitin Falls flooding the Mattagami River and forming Kenogamissi Lake.  Access to the Tatachikapika River was via a couple of portages west from Kenogamissi Lake.

 

The 1911 fire storms swept large parts of Carscallen, Bristol and Ogden townships.  The surface plants at Hollinger, Dome, West Dome, Vipond, Standard, Preston, East Dome, North Dome, were entirely destroyed.  South Porcupine, parts of Pottsville and the North Part of Porcupine were also destroyed. (Burrows, A.G., 1915, Hawley, J.E., 1926).

 

27



 

Niven’s 1899 baseline forms the northern boundary of Bristol township with Godfrey township.  Access to the Thunder Creek and Gold River Project areas was limited in the early 1900’s to: a winter road from Mattagami Heights (Timmins) north and west of the Mattagami River; river access to Bristol Landing situated on township boundary of Bristol and Ogden; and a wagon road across Bristol township passing Lake Shore Gold Corp.’s Timmins West Mine. The Mattagami River provided access to Thorneloe township and the Wawaitin Falls area.  The river at Wawaitin Falls had a 35 metre (116 feet) descent and was dammed giving rise to Mattagami Lake and a hydro power generating facility to supply a portion of the Hollinger Mine power requirements.  The transmission line and tote road would provide access to Thorneloe and the south-eastern portion of Bristol townships.

 

Historical geological reports and mapping completed by the Ontario government geological agencies, and co-sponsored Federal initiatives for the Thorneloe — Bristol townships area include the following:

 

1926

 

J.E. Hawley, ARM35G, The townships of Carscallen, Bristol, Ogden, District of Cochrane, Ontario, Annual Report Map;

1927

 

J.E. Hawley, ARM35-06.001, Geology of Ogden, Bristol, and Carscallen townships, Cochrane District, Annual Report Volume;

1957

 

S.A. Ferguson, M1957-07, Bristol township, District of Cochrane, Map 1900 Series;

1959

 

S.A. Ferguson, ARV66-07, Geology of Bristol township, Annual Report Volume;

1959

 

S.A. Ferguson, W.D. Harding, P0029, Thorneloe township, Map P Series;

1980

 

C.M Tucker, D. Sharpe, P2360, Geological Series, Quaternary geology of the Timmins Area, District of Cochrane, Map P Series;

1982

 

D.R. Pyke, M2455, Timmins, Precambrian Geology, Map, 2000 Series;

1982

 

A.G. Choudhry, P2502, Geological Series, Precambrian geology of Thorneloe township, District of Cochrane, Map P Series;

1989

 

A.G. Choudhry, OFR5699, The Geology of Keefer, Denton and Thorneloe townships, District of Cochrane, Open File Report;

1992

 

T.C. Barrie, OFR5829, Geology of the Kamiskotia Area, Open File Report;

2000

 

T.C. Barrie, P3396, Geology of the Kamiskotia Area, Map P Series;

2000

 

T.C. Barrie, S059, Geology of the Kamiskotia Area, Study, Geological Circular;

2001

 

C.M Tucker, J.A. Richard, Geological Series, Quaternary Geology of the Dana Lake Area, Cochrane, Timiskaming area, Map P Series;

2001

 

C.M Tucker, J.A. Richard, M2660, Quaternary Geology of Dana Lake Area, Map, 2000 Series;

2001

 

C.M Tucker, J.A. Richard, M2662 Quaternary Geology of Timmins Area, Map, 2000 Series;

2001

 

C. Vaillancourt, C.L. Pickett, E.R. Dinel, P3436, Precambrian Geology, Timmins West, Bristol and Ogden townships, Map P Series;

2002

 

P.H. Thompson, OFR6101, Toward a New Metamorphic Framework for Gold Exploration in the Timmins Area, Central Abitibi Greenstone Belt, Open File Report;

2005

 

B. Hathway, G. Hudak, M.A. Hamilton, OFR6155, Geological Setting of Volcanogenic Massive Sulphide Mineralization in the Kamiskotia Area, Discovery Abitibi Initiative;

2005

 

J. Ayer et al., OFR6154, Overview of Results from the Greenstone Architecture Project, Discover Abitibi Initiative;

2005

 

Mrd186, Integrated GIS Compilation of Geospatial Data for the Abitibi Greenstone Belt, North-eastern Ontario, Discovery Abitibi Initiative.

 

28



 

Historical “T-Files” assessment reports have been reviewed at the Ministry of Northern Development and Mines’ (“MNDM”) office at the Ontario Government Complex, Highway 101 East, Timmins (Porcupine), Ontario. From the internet OGS Earth (Google Earth link) and Assessment File Research Imaging (“AFRI”) at: www.geologyontario.mndm.gov.on.ca have also been reviewed.  Table 6.2.1 list the AFRI report files that contribute to the geological knowledge and interpretation of the Gold River property, and surrounding area. Recently submitted assessment files for this area have not been scanned into the AFRI system.

 

TABLE 6.2.1:  LIST OF “AFRI” REPORTS FOR THE GOLD RIVER PROPERTY AND SURROUNDING AREA.

 

YEAR

 

AFRI NUMBER

 

COMPANY

 

WORK TYPE/SURVEYS

 

 

 

 

 

 

 

 

 

1947

 

42A05SE0098

 

Gertie Gold Syndicate

 

Magnetometer

 

1951

 

42A05SE0091

 

Dominion Gulf Company

 

Diamond Drilling

 

1951

 

42A05SE0097

 

Dominion Gulf Company

 

Magnetometer

 

1961

 

42A05SE0094

 

Hollinger Con. Gold Mines Ltd.

 

Diamond Drilling

 

1961

 

42A05SE0096

 

Hollinger Con. Gold Mines Ltd.

 

Magnetometer & EM

 

1962

 

42A05SE0092

 

Hollinger Con. Gold Mines Ltd.

 

Diamond Drilling

 

1962

 

42A05SE0093

 

Hollinger Con. Gold Mines Ltd.

 

Diamond Drilling

 

1962

 

42A06SW0081

 

W. Rainboth

 

Diamond Drilling

 

1966

 

42A05SE0083

 

Acme Gas & Oil Co. Ltd.

 

Airborne EM Survey

 

1974

 

42A06SW0106

 

Jacomo Mines Ltd.

 

Interpretation, Geophysics

 

1974

 

42A06SW0108

 

Jacomo Mines Ltd.

 

Magnetometer & EM

 

1975

 

42A05SE0089

 

Jacomo Mines Ltd.

 

Diamond Drilling

 

1975

 

42A06SW0107

 

Jacomo Mines Ltd.

 

Other

 

1980

 

42A06SW8596

 

Dale Pyke

 

Magnetometer & EM

 

1981

 

42A05SE0077

 

Preussag Canada Ltd.

 

Diamond Drilling

 

1981

 

42A06SW0108

 

Dale Pyke

 

Overburden Drilling

 

1983

 

42A06SW0100

 

Kerr Addison Mines Ltd.

 

Magnetometer, VLF, Drilling

 

1983

 

42A06SW0105

 

Kerr Addison Mines Ltd.

 

Diamond Drilling

 

1984

 

42A05SE0010

 

Noranda Exploration Co. Ltd. (NPL)

 

Overburden Drilling, Geochem.

 

1984

 

42A05SE0072

 

Esso Minerals Canada

 

Overburden Drilling, Geochem.

 

1984

 

42A05SE0074

 

Esso Minerals Canada

 

Geology

 

1984

 

42A05SE0075

 

Esso Minerals Canada

 

Magnetometer & EM

 

1984

 

42A06SW0098

 

Comstate Resources Ltd.

 

Geology, Interpretation

 

1985

 

42A05SE0023

 

Esso Resources Canada Ltd.

 

Diamond Drilling

 

1985

 

42A05SE0065

 

Esso Resources Canada Ltd.

 

Diamond Drilling

 

1985

 

42A05SE0067

 

Esso Minerals Canada

 

Geology

 

1985

 

42A05SE0070

 

Esso Minerals Canada

 

Geochemical

 

1986

 

42A05SE0068

 

Falconbridge Ltd.

 

Diamond Drilling

 

1986

 

42A05SE2181

 

Esso Resources Canada Ltd.

 

Diamond Drilling

 

1986

 

42A05SE0064

 

Falconbridge Ltd.

 

Diamond Drilling

 

1986

 

42A06SW0094

 

Falconbridge Mines Ltd.

 

Induced Polarization

 

1986-7

 

42A05SE0057

 

Esso Minerals/Torogold Resources Inc.

 

Geology, Interpretation

 

1987

 

42A05SE0061

 

Esso Minerals Canada

 

Diamond Drilling

 

1987

 

42A05SE0062

 

Esso Resources Canada Ltd

 

Diamond Drilling

 

1987

 

42A06SW0093

 

Comstate Resources Ltd.

 

Geochemical

 

 

29



 

1987-8

 

42A05SE0056

 

Esso Minerals Canada

 

Diamond Drilling

 

1987-8

 

42A06SW0092

 

Esso Resources Canada Ltd

 

Diamond Drilling

 

1988

 

42A05SE0056

 

Esso Minerals Canada

 

Diamond Drilling

 

1988

 

42A06NW0317

 

Esso Minerals Canada

 

Magnetometer

 

1988

 

42A06SW0091

 

Esso Resources Canada Ltd

 

Diamond Drilling

 

1989

 

42A05SE0058

 

J. Croxall

 

Diamond Drilling

 

1993

 

42A05SE8651

 

Band-Ore Resources Ltd.

 

Diamond Drilling

 

1993

 

42A06SW2005

 

Black Pearl Minerals Inc.

 

Diamond Drilling

 

1994

 

42A05NE0081

 

Noranda Exploration Co. Ltd. (NPL)

 

Gridding, Magnetometer

 

1994

 

42A05NE0083

 

Noranda Exploration Co. Ltd. (NPL)

 

Gridding, Induced Polarization

 

1995

 

42A05SE0005

 

Band-Ore Resources Ltd.

 

Diamond Drilling

 

1995

 

42A05SE0006

 

Band-Ore Resources Ltd.

 

Diamond Drilling

 

1995

 

42A05SE0009

 

Band-Ore Resources Ltd.

 

Drill Core Submission

 

1995

 

42A05SE0014

 

Band-Ore Resources Ltd.

 

Gridding, Induced Polarization

 

1995

 

42A05SE0015

 

Band-Ore Resources Ltd.

 

Diamond Drilling, Interpretation

 

1996

 

42A05SE0038

 

Band-Ore Resources Ltd.

 

Diamond Drilling

 

1996

 

42A06NW0042

 

Band-Ore Res./Sedex Mining Corp.

 

Diamond Drilling

 

1996-7

 

42A06SW0025

 

Band-Ore Resources Ltd.

 

Gridding, Magnetometer, I P

 

1997

 

42A05SE0039

 

Black Pearl Minerals Inc.

 

Diamond Drilling

 

1998

 

42A06SW2006

 

Band-Ore Resources Ltd.

 

Diamond Drilling

 

2001

 

42A06SW2013

 

Jean-Claude Bonhomme

 

Diamond Drilling

 

2003

 

42A05SE2022

 

Band-Ore Resources Ltd.

 

Diamond Drilling

 

2003

 

42A05SE2026

 

Band-Ore Resources Ltd.

 

Diamond Drilling

 

2003

 

42A06NW2039

 

Porcupine Joint Venture

 

Airborne Magnetometer

 

 

From the AFRI report significant highlights that pertain to the property discussed in this report are tabulated in Table 6.2.2.

 

TABLE 6.2.2: GOLD RIVER PROPERTY SIGNIFICANT HISTORICAL WORK

 

YEAR

 

COMPANY

 

EXPLORATION ACTIVITY

 

 

 

 

 

 

 

1947

 

Gertie Gold Syndicate

 

geological mapping, 3 diamond drill holes (361m)

 

1958-1967

 

Hollinger Gold Mines

 

geophysical surveys (magnetic, VLF-EM), diamond drilling of 19 drill holes (2766m) in Thorneloe township

 

1981

 

Preussag Camada Limited

 

geophysical surveys (magnetic, VLF-EM, HLEM) geological mapping, and diamond drilling 11 holes (723m)

 

1984-1985

 

J. Croxall, Noranda Exploration Company Limited NPL

 

linecutting, Induced Polarization, magnetic surveys, 16 reverse circulation holes

 

1985-1988

 

Esso Minerals Canada

 

geophysical surveys (magnetic, Induced Polarization HLEM), 7 reverse circulation holes, 54 diamond drill holes (11,879m), and a non compliant 43-101 resource estimate containing 292,228 tons grading 0.072 ounces per ton gold (2.45 g/tonne gold)

 

1987

 

J. Croxall, Highwood Resources Ltd.

 

4 diamond drill holes (400m)

 

1989

 

J. Croxall, Mintek Resources

 

surface stripping, geophysical surveys (magnetic,

 

 

30



 

 

 

 

 

VLF-EM), 1 diamond drill hole (300m)

 

1992

 

Band-Ore Resources Ltd.

 

option of single claim from J. Croxall

 

1993

 

Band-Ore Resources Ltd

 

additional ground acquisition 1 diamond drill hole (TC-93-1)(155m)

 

1994

 

Band-Ore Resources Ltd.

 

additional ground acquisition, geophysical survey (magnetics)

 

1995

 

Band-Ore Resources Ltd.

 

line cutting and Induced Polarization geophysical survey

 

1996

 

Band-Ore Resources Ltd.

 

Golden River Zone Discovery Drill Hole (TH-96-9) Returned 4.18 g/tonne Au over 6.5m

 

2002

 

Band-Ore Resource Ltd.

 

linecutting, ground magnetic and IP geophysical surveys

 

2003

 

Band-Ore Resources Ltd.

 

Terra Quest Airborne Magnetic Survey, 1378 line Km

 

 

Between the years 1992 and 2006 Band-Ore Resources Limited completed the drilling of 445 diamond drill holes for a total of 126,969 metres.  As diamond drilling continues the interpretation of geology evolves and the nomenclature for zone designation changes.

 

6.3.0: HISTORICAL RESOURCE ESTIMATES

 

Two historical tonnes and grade estimations have been made for mineral occurrences located on the property.  Reported in 1988 (AFRI file 42A05SE0052) Esso completed a preliminary non compliant NI 43-101 estimate using drill intercepts from 14 holes (T 11-15, 28, 29, 35-50).  The Estimate calculated the Main Discovery Zone (Kapika Zone) to contain 292,228 tons grading 0.072 ounces per ton (2.45 grams per tonne) gold to a depth of 200 metres.  This Estimate is presented as an historical description of a new discovery (1988).  Given the significance of all diamond drilling and gold assay results to the present date, the Esso Estimate is no longer valid.

 

Approximately ten years later Band-Ore commissioned Mr. Joe Spiteri and Spiteri Geological and Mining Consultants Inc. (“SGM”) to review all drilling to date, and to generate a mineral resource of the “Golden River Zones”.  The following is quoted from Mr. Cavey’s March 30, 2006 technical report.

 

“Summary Geological Report On The Thorne Property, Bristol, Carscallen, Denton and Thorneloe townships, Porcupine Mining Division, Ontario, for Band-Ore Resources Limited.”  “The following are the “Methodology, Criteria and Assumptions” from the July 3rd, 1997 SGM report that were used by Spiteri for his mineral resource estimations.  Band-Ore has not completed an additional drilling in the area of the resource so this report (Cavey, 2006) will not change the Spiteri estimation discussed in the June 30, 2002 OreQuest report.  The following disclosure is a summary of the Spiteri work as described in the June 2002 report.

 

The Inferred Mineral Resource Estimate on the Golden River Zones was estimated by Joe Spiteri, in July 1997 based on the extensive Band-Ore drilling.

 

The current Resource Estimate stands at 4,154,096 tonnes grading 3.33 g/t for a total of 13,824,385 grams gold (444,471 troy ounces) and was estimated in detail for internal purposes only. Mr. Spiteri has supplied the company with a letter dated June 28, 2002 where he has stated:  “In summary, the inferred resources estimated in 1997-98 on the Thorne Property totaling approximately 4 million tonnes of 3 g/t for about 400,000

 

31



 

contained gold ounces qualifies as a “Inferred Resource” under the Guidelines of NI 43-101”

 

Mr. Spiteri has stated for reporting purposes, he recommends using the rounded figure of approximately 4 million tonnes of 3 g/t for about 400,000 contained gold ounces as the Inferred Resource for the Thorne mineralization to reflect the normal uncertainties in an Inferred Resource.

 

The Spiteri resource estimation was derived from a total of 13 separate zones all located with the Golden River Deformation Zone (GRDZ). A detailed tonnage and grade estimation of each zone, is contained in the June 30, 2002 OreQuest report (Cavey 2002) and will not be repeated in this report. The area with the inferred resources was not drill tested in the 2004 drilling program.” (Cavey, 2006)

 

Mr. Spiteri’s 1997 estimate of the mineralization and zones is currently dated due to the increased number of diamond drill holes completed on the property and in the area SGM’s mineralization area blocks since 1997.

 

No gold production has taken place from this property.

 

32



 

7.0: GEOLOGICAL SETTING AND MINERALIZATION

 

7.1.0: GENERAL GEOLOGICAL SETTING

 

The earliest reports of the geology for the Timmins area are from Ontario government geologists: Burrows (1910, 1911, 1912), Hawley (1926), Rose (1924), Berry (1941), Ferguson (1957, 1968) and Pyke (1982), supplemented by contributions from Brisbin (1997), Grey, (1994), Melnik-Proud (1992) and van Hees (2000) for their Doctor of Philosophy degrees.  Described in these documents are the contributions made by government and mine geologists which detail the evolution of the stratigraphic understanding for the Porcupine Gold Camp.  Highlighted herein is a sequential summary of significant observations and interpretations.

 

1896

Burwash assigned Precambrian volcanic and sedimentary rocks of the Timmins area to Huronian defined by Logan in 1847.

 

1911, 1912, 1915, 1925

Geological mapping by Burrows, produces the first geological map of the Porcupine Camp and he makes his stratigraphic nomenclature consistent with relationships observed by Lawson (1913) for Lake of the Woods, as well as Miller and Knight (1915) in the Lake Timiskaming area.

 

1925

Burrows established that younger Timiskaming Series of metasedimentary rocks unconformably overly the Keewatin Series volcanic rocks.  He identified porphyry dykes and stocks and granitoid plutons in the surrounding area as being Algoman, and post Timiskaming.  The observation that Keweenawan olivine diabase dykes crosscut Matachewan quartz diabase was made at this time.

 

1933,

Graton et al., proposed a subdivision for Keewatin volcanic rocks in Tisdale township.  The subdivision included, from oldest to youngest, the Northern, McIntyre, Central, Vipond, and Gold Centre Series. The name “99 Flow” was applied to a massive flow at the base of the Vipond Series.

 

1936, 1939

Hurst noted metasedimentary rocks in the Timmins area occur both overlying and underlying an angular unconformity.  He places the rocks above the unconformity into the Timiskaming Series and assigns the metasedimentary rocks below the unconformity to the Keewatin Series. Porphyries are interpreted to be subvolcanic stocks emplaced into volcanic vents from which the felsic volcaniclastics were erupted.

 

1944

Holmes interpreted the porphyries to post date Keewatin volcanic rocks and Timiskaming metasedimentary rocks.

 

33



 

1948

Jones, while working at the Hollinger Mine, presented a more detailed classification modified after Graton (1933).  Jones introduced the alphanumeric names to the lithological units (e.g. V8E); gave formation status to the Northern, Central, and Vipond Series; and renamed the “McIntyre Series” the “95”, assigning the flows to the base of the Central Formation.

 

1948

Buffam adapts Jones’ Hollinger Mine terminology at the Moneta Mine and adds the term Krist Fragmental and describes the unconformity at the base of the Krist that separates it from the Tisdale Group mafic volcanic flows.

 

1948

Dunbar distinguishes two groups of Keewatin volcanic rocks in the Timmins area and names them Deloro Group and Tisdale Group.  He discriminates the Krist Formation from the underlying Tisdale Group and places it into the Hoyle Series.

 

1954

Moore included the Krist Formation with the Timiskaming Group and placed the unconformity between Keewatin and Timiskaming rocks at the base of the Krist. Burrows (1911) was first to presented this interpretation.

 

1954

Fuse applied Jones’ (1948) terminology of the Tisdale Group to rocks exposed at the McIntyre Mine.

 

1960

Griffis, at the McIntyre Mine, establishes the most detailed subdivision of the Tisdale Group.

 

1968

Ferguson et al., attempt to correlate the stratigraphy of the Timmins Camp.  They assign the Krist Fragmental to the uppermost formation in the Tisdale.

 

1974

Pyke subdivided the Deloro and Tisdale Groups, based upon major oxide geochemical classification of volcanic rocks as per Jensen’s cation plot (Jensen, 1976) His nomenclature divided the two groups into six formations. Numbers I through III are within the Deloro Group and numbers IV through VI are within the Tisdale Group.  The Deloro is largely a calc-alkaline sequence approximately 14760 to 16400 feet (4,500 to 5,000 metres) thick and is comprised mainly of flows of andesite and basalt in the lower part, and dacitic flows and rhyolitic pyroclastic rocks toward the top.  Iron formation is common at or near the top of the group.  Most of the Deloro Group is confined to a large domal structure in the east central part of the area.  A major change in volcanism marks the beginning of the Tisdale Group.  The base formation consists largely of ultramafic volcanic rocks and basaltic komatiites.  This in turn is overlain by a thick sequence of tholeiitic basalt.  The uppermost formation is largely

 

34



 

volcaniclastic and has a calc-alkaline dacite composition.  The total thickness of the Tisdale Group is about 13,120 feet (4,000 metres), (Pyke, 1974).

 

1975

Lorsong subdivided the Porcupine Group into Whitney, Beatty, Dome and Three Nations Formations.

 

1976

Pyke renamed the six formations from youngest as Donut Lake, Redstone, Boomerang, Goose Lake, Schumacher and Krist.  He assigns all metasedimentary rocks to Formation VII, the sole unit of the Porcupine Group, which he considers to be a time equivalent, or the upper Deloro and the entire Tisdale Groups.

 

1978

Pyke renamed the Tisdale and Deloro Groups the Upper and Lower subgroups and raised formations I through VI to group status.  This terminology did not receive acceptance with subsequent workers (Brisbin, 1997)

 

1986

(Frarey and Krough), 1987 (Mortensen), 1989 (Corfu et al) post U-Pb zircon age dates for intrusives and selected volcanics in the Timmins area.

 

1988

Mason et al., suggested that the highly fractured centers that hydrothermal fluids and gold mineralization subsequently accessed where prepared at the time of porphyry emplacement.  Fracturing and brittle faulting generated prior to porphyry intrusion during one or more magmatic tumescence.  The eruption of Krist Formation pyroclastic rocks and Keewatin folding and faulting, may have initiated ground preparation and localized magmatic and hydrothermal activity.

 

1991

Jackson and Fyon defined a lithostratigraphic association of rock units in the Western Abitibi Subprovince within the boundaries of 55 tectonic assemblages. An assemblage is defined as stratified volcanic and/or sedimentary rock units built during a discrete interval of time in a common depositional or volcanic setting.  They suggest a four stage evolutionary model for the southern Abitibi greenstone belt. 1) Formation of submarine oceanic assemblages in regional complex micro-plate interactions perhaps caught between two larger converging plates located north and south of the micro-plate region.  2) Termination of submarine volcanism by collision of a large continental mass to the south at ~2700 Ma.  The collision may have been oblique, involving the 2800 to 3000 million year old Minnesota River Valley gneiss terrane.  3) Tectonic thickening during collision led to emergent sediment source area(s) for post ~2700 Ma turbidite deposits, including both local deposits and a massive sedimentary accretionary wedge.  As collision continued, previously formed volcanic and turbidite deposits, including the Pontiac Subprovince were deformed.  Terminal subduction, possibly involving complex plate interactions at 2685 to 2675 Ma, generated alkalic volcanic rocks and alluvial—fluvial sediments in proximity to crustal—scale shear zones (Jackson and Fyon, 1991).

 

35



 

1992

Melnik-Proud interprets the gold bearing quartz-carbonate-albite veins to not only be spatially, but temporally and genetically associated with albite dykes in the Hollinger —McIntyre complex.

 

1997

Brisbin defines the Krist as a formation within the Hoyle Group.  He proposes and assigns a new lithostratigraphic unit termed the Hersey Lake Formation.  This unit is composed of intercalated ultramafic and mafic flows that comprise the base of the Tisdale Group in the core of the North Tisdale Anticline.  Correlative flows are exposed in the south, on the Delnite, Aunor, and Buffalo Ankerite mine properties.  The upper contact of the Hersey Lake Formation is defined as the upper contact of the highest ultramafic flow in the Tisdale Group (Brisbin, 1997).

 

1999

Pressacco, R., OFR5985, is published Ontario Geological Survey special Project: Timmins Ore Deposits Descriptions.

 

2000

Ayer et al., with the aid of additional re-mapping and geochronological data proposed a reinterpretation of the Tectonic Assemblages, reducing the 55 assemblages to 7 volcanic assemblages and 2 metasedimentary assemblages. Presently the assemblages are interpreted as autochthonous not allochthonous.  Geochemistry of the volcanic units indicates an interaction between plume and subduction zone melts.  The Porcupine assemblage is interpreted to be the result of submarine turbidite fans which are coeval with batholith emplacement, regional folding and collision with the Opatica Subprovince.  The Timiskaming assemblage is believed to be the result of subaerial alluvial fan-fluvial sedimentation associated with continental arc magmatism.

 

2002

The Discover Abitibi Initiative, Ayer et al., from 2002 to the 2005 has brought the talents of individuals, geologists, prospectors, the mining industry, the Ontario Geological Survey, and the Geological Survey of Canada to the Timmins - Kirkland Lake Gold Camps to assess the fundamental architecture and processes which were responsible for the gold and base metal endowment.  The products of this initiative have not been fully realized as the refined, higher resolution airborne geophysical electromagnetic and magnetic surveys, seismic survey, gravity survey, lithogeochemistry and additional age dating is providing tools that will modify historical interpretations.

 

7.2.0: REGIONAL GEOLOGY AND STRUCTURE

 

Supracrustal rocks in the Timmins region are assigned as members of nine (9) tectonic assemblages within the Western Abitibi Subprovince, of the Superior Province.  The seven volcanic and two sedimentary assemblages are of Archean age. Intrusions were emplaced during Archean and Proterozoic

 

36



 

times.  Tectonic Assemblages of the Abitibi Subprovince, east of the Kapuskasing Structural Zone, are illustrated in Figure 7.2.1 after Ayer J.A., Dubé, B., and Trowell, N.F. (2009).  Table 7.2.1, is modified after Ayer (1999, 2000, 2003, 2005) and summarizes the characteristics of the assemblages, from youngest to oldest.

 

There is 80 Ma years time span between the volcanic eruption of the lower Pacaud assemblage (2750 Ma) to the sedimentation and volcanism of the upper Timiskaming assemblage (2670 Ma).  Each of the assemblages demonstrates a melt evolution from komatiitic or tholeiitic basalt, to felsic or calc-alkaline volcanics. In the Gold River area only the Deloro (2730 - 2724 Ma (6 Ma)), Kidd-Munro (2719 - 2711 Ma (8 Ma)), Tisdale (2710 - 2704 Ma (6 Ma)), Porcupine (2690 - 2685 Ma (5 Ma)), and Timiskaming assemblages (2676 - 2670 Ma (6 Ma)) are present. Revised age dates for the Porcupine assemblage indicate that the felsic volcanism of the Krist Formation is coeval with emplacement of calc-alkalic felsic porphyries in Timmins (2692+/-3 to 2688+/-2 Ma).

 

Figure 7.2.2: The Regional Geology Map, locates the Property relative to the regional geology.

 

Rhys (2010, 2011) has modified the regional structural history interpretation by adding an additional deformation period (D2) to the earlier folding preceding the Timiskaming assemblage. The interpretation demonstrates that there are at least two pre-Timiskaming fold events (D1 and D2), followed by two dominant syn-metamorphic, post-Timiskaming foliation forming events (D3 and D4) and two later crenulations cleavage (D5 and D6) (Rhys, 2010, 2011).

 

Regionally, deformation in the Timmins area is characterized by a sequence from early, pre metamorphic folds lacking axial planar cleavage (D1 and D2) to a series of syn-metamorphic, fabric —forming events, which overprint the earlier folds (D3 and D4 events).  The multi-phase Destor-Porcupine fault system passes across the southern portion of the property.  The fault system is a composite corridor of shear zones and faults that records at least two main stages of displacement: a) syn- Timiskaming (2680-2677 Ma) brittle faulting associated with truncation of early D1 and D2 folds, apparent sinistral displacement, and formation of half grabens that are locally filled with Timiskaming clastic sedimentary rocks; and b) syn-metamorphic D3-D4 formation of high strain zones over a broad corridor generally several hundred metres wide generally corresponding with, or developed south of, the trace of the older faults.  These shear zones record variable kinematic increments but are regionally dominated by sinistral with north side up displacements (Rhys, 2010).

 

37



 

 

FIGURE 7.2.1: TECTONIC ASSEMBLAGES OF THE ABITIBI SUBPROVINCE EAST OF THE KAPUSKASING STRUCTURAL ZONE (after Ayer, J.A., Dubé, B., Trowell, N.F.; NE Ontario Mines and Minerals Symposium, April 16, 2009)

 

GRAPHIC

 

38



 

TABLE 7.2.1: TECTONIC ASSEMBLAGES

 

Timiskaming Assemblage

·Unconformably deposited from 2676- 2670 Ma        (6 Ma)

·Conglomerate, sandstone, and alkalic volcanics

·Coeval Gold mineralization occurs near regional fault zones (PDF & CLLF)

Two end member types

1) Quartz veins (Timmins & Val d’Or)

2) Sulphide rich Stockworks (Holloway Twp., Kirkland Lake, Matachewan)

·Alkali Intrusive Complex (Thunder Creek) 2687+/-3 Ma (Barrie, 1992)

 

Porcupine Assemblage

·Age of 2690 - 2685 Ma        (5 Ma)

·Turbidites with minor conglomerates & iron formation locally

·Krist Formation is coeval with calc-alkalic felsic porphyries 2691+/-3 to 2688+/-2 Ma

 

Blake River Assemblage

Upper and Lower Units

·Age of 2703 - 2696 Ma        (7 Ma)

·Tholeiitic & Calc-alkaline mafic to felsic volcanics

·VMS deposits associated with F3 felsic volcanics at Noranda

·Syngenetic gold & base metals (Horne, Thompson Bousquet)

 

Tisdale Assemblage

·Age of 2710 - 2704 Ma        (6 Ma)

·Tholeiitic to komatiite suite

·Calc-alkaline suite

·VMS Deposit: Kamiskotia — tholeiitic volcanics, gabbros & F3 felsics

Val d’Or — calc-alkaline volcanics & F2 felsics

Sheraton township area — intermediate-felsic calc-alkaline volcanics

·Ni-Cu-PGE: Shaw Dome, Texmont, Bannockburn

 

Kidd-Munro Assemblage

·Age of 2719 - 2711 Ma        (8 Ma)

·Tholeiitic to komatiitic

·Calc-alkaline suite

·VMS deposit: F3 felsic volcanics & komatiites (Kidd Creek)

Tholeiitic-Komatiitic volcanism (Potter)

·Ni-Cu-PGE (Alexo)

 

Stoughton-Roquemaure Assemblage

·Age of about 2723 - 2720 Ma        (3 Ma)

·Magnesium and iron rich tholeiitic basalts

·Localized komatiites and felsic volcanics

·PGE mineralization in mafic-ultramafic intrusions and komatiites

(Mann & Boston townships)

 

Deloro Assemblage

·Age of about 2730 - 2724 Ma        (6 Ma)

·Mafic to felsic calc-alkaline volcanics

·Commonly capped by regionally extensive chemical sediments

·Two different types of VMS deposits

1) F2 felsic volcanics and synvolcanic intrusion (Normetal)

2) Localized sulfide-rich facies in regional oxide facies iron formations (Shunsby)

 

Pacaud Assemblage

·Age of 2750 — 2735 Ma        (15 Ma)

·Magnesium and iron rich tholeiitic basalt

·Localized komatiites and felsic volcanics

 

39



 

FIGURE 7.2.2: REGIONAL GEOLOGY MAP

 

GRAPHIC

 

40



 

7.3.0: PROPERTY GEOLOGY

 

Situated within the western portion of the Archean, Abitibi Greenstone Belt, regional geological maps show the Gold River property to be predominantly underlain by metamorphosed sedimentary rocks of the Porcupine assemblage.  The turbidite sequence consists predominantly of coarse to fine-grained sandstones, locally interbedded with siltstones, mudstones, and dark grey to black graphitic argillites.  Bedding generally strikes west-northwest, and is steeply dipping to the north.  The metasedimentary rock basin is bound to the north and west, by metavolcanic rocks of the Tisdale assemblage, and is bound to the east by the Mattagami fault.  The Destor-Porcupine Fault Zone (“DPFZ”), a major structural break, can be traced from the Quebec border, across the Porcupine Camp, and west to the Mattagami Fault, where an interpretation of aeromagnetic maps indicate a six-kilometre offset to the south.  The DPFZ can be extrapolated across the southern limits of the Property, in association with a narrow belt of metavolcanic rocks, intrusive rocks and metamorphosed iron formation.

 

Interpreted magnetic data in conjunction with diamond drilling has identified a subparallel structure referred to as the Gold River Shear Zone (“GRSZ”) approximately two (2) kilometres north of the DPFZ.  This gold-bearing structure is a deformation corridor defined by an intense zone of alteration that can be traced west-northwesterly for at least five (5) kilometres across the property, and is accompanied by numerous narrow metamorphosed felsic dykes, mafic to ultramafic volcanic rocks and intrusive rock units.  The gold mineralization along this shear zone is arbitrarily divided into the Gold River East and Gold River West Zones by the Tatachikapika River which runs essentially north-south across the middle of the property.  All Archean rock units are variably metamorphosed from greenschist to lower amphibolite facies.

 

Late diabase dykes of the Matachewan and Sudbury swarms cross-cut all geological units.  There high magnetic susceptibility allows them to be interpreted and traced using total field and fist vertical derivative results from airborne magnetic surveys.

 

Overburden in the area generally consists of about twenty-five (25) metres of sand, gravel and clay, and bedrock exposure is limited to a few outcrops exposed along the Tatachikapika River banks, and near the property boundary to the southeast, nearing Kenogamissi Lake and Wawaitin Falls.  The Property geology has been almost exclusively interpreted from diamond drill logs provided by Esso Minerals Canada (MacPherson, 1987), Band-Ore Resources (Cavey, 2002, 2003, 2004 and 2006) West Timmins Mining and Lake Shore Gold.  A meticulous lithologic and structural examination by David Rhys (Panterra Geoservices Inc.) of drill core from 32 holes completed by Lake Shore Gold Corp. targeting the east side of the GRSZ and examination of outcrops along the Tatachikapika River has provided an understanding on the geological setting and controls on gold mineralization.  Information has also been provided from an independent petrography and SEM microscopy study completed on 16 selected core samples (Miller, 2011). A detailed geology map of the property utilizing this new information, surface outcrops, and all structural and diamond drilling data still needs to be completed.

 

Figures 7.3.1: Property Geology, Figure 7.3.2 East Deposit Geology Map, Figure 7.3.3 Generalized Cross —Section 4602920 East, and Figure 7.3.4: 3D View of the Resource Outline Looking to the Northeast illustrates the current interpreted, generalized geology, structure and mineralization trends.

 

41



 

7.3.1: LITHOLOGY

 

The following overview of the property geology along the Gold River East Trend is provided from excerpts summarizing observations and notations made by David Rhys, of Panterra Geoservices Inc.  Appendix 7 includes a series of photos to accompany this section, courtesy of Mr. Rhys.  Historical drill core from the west side of the property has not been reviewed, but drill logs examined by Lake Shore Gold Corp geologists suggest that the geological setting is reasonably similar.

 

17.3.1.1: PORCUPINE METASEDIMENTARY ROCK UNITS

 

The Porcupine metasedimentary rocks located north of the Gold River Shear Zone (“GRSZ”) consist dominantly of medium to coarse-grained greywacke or arkosic sandstones.  Graded bedding suggests that this portion of the sequence is northerly facing.  Low core axis angles of bedding in drill holes suggests that the sequence here has a southerly dip, and may be discordant to and truncated by the generally steeply dipping to vertical Gold River Shear Zone (where not affected by late folding) (Rhys, 2011b).

 

17.3.1.2: METAMORPHOSED MAFIC VOLCANIC ROCKS UNIT

 

The GRSZ forms a 300 to 400 metres wide zone of elevated strain and alteration (Rhys, 2011a).  Highest strain domains, forming the central axis of the Gold River Shear Zone, occur along the margins of, and are coincident with the position of a mafic unit which trends overall east-west and dips sub-vertically, parallel to the shear zone.  The mafic unit is typically 50 to 90m thick (true thickness) in the drill holes which were examined.  Where least strained and freshest (least altered) in its central core, the mafic unit varies in texture from gabbroic, to fine grained and aphanitic, the latter potentially of flow origin.  Locally the unit may be talcose, and could therefore include an ultramafic component.  The mafic unit was logged previously as “mafic tuff” in Band-Ore drill logs, and has not been recognized in many recent drill holes.  While present in most areas examined, locally the mafic unit is significantly tectonically thinned and may be cut out by the Gold River Shear Zone leaving a Fe-carbonate altered band in the core of the shear zone in its structural position.  The textural variation in the mafic unit and its position in the Porcupine Assemblage suggest it may represent a thrust sliver of Tisdale Assemblage mafic volcanic rocks that was emplaced during thin-skinned D2 thrust imbrication and folding in the area.  Such patterns are commonly seen in the eastern Porcupine camp, where slivers of Tisdale mafic volcanic rocks are tectonically interleaved with south facing wedges of Porcupine turbiditic sediments (e.g. Vogel-Owl Creek — Hoyle Pond area).  These slivers in the eastern camp area form fingers of mafic-ultramafic volcanic rocks that extend into the sedimentary sequence, along which shear zones and associated gold mineralization are locally developed (Rhys, 2011b).  The mafic unit, which is roughly coincident with the GRSZ, locally has an elevated magnetic signature and can be traced across the eastern half of the property at least up to the Tatachikapika River, west of the Kapika Zone.

 

7.3.1.3: POLYLITHIC MAFIC METACONGLOMERATE ROCK UNIT

 

South of the mafic unit, a polylithic mafic metaconglomerate is sometimes recognized.  This fragmental

 

42



 

unit is 1 to 20 metres thick and comprises 0.5 to 10 centimetres sub-angular to rounded fragments of clast-supported fine-grained mafic volcanic rocks and fine-grained felsic (quartz-plagioclase phyric to porphyritic) intrusive or volcanic fragments set in a chloritic matrix.  The abundance of mafic fragments and probable mafic derived chloritic matrix suggest in-situ formation derived from the mafic volcanic sequence, possibly as an unconformity conglomerate or breccia at the base of the Porcupine Assemblage.  Felsic metavolcanic rock fragments in the unit are consistent with this relationship since these could be derived from Krist-related felsic volcanic rocks. Krist volcanism marks the onset of Porcupine Assemblage sedimentation in the region and commonly forms a basal felsic volcanic component to lowermost portions of the Porcupine Assemblage in western parts of the Porcupine Camp (Rhys, 2011b).  Samples collected by Lake Shore Gold Corp. from other lithologies and examined by Miller (2011) were also potentially assigned to the Krist Formation.

 

7.3.1.4: PEBBLY OR MUD CHIP METACONGLOMERATE ROCK UNIT

 

Further south of the GRSZ, the Porcupine turbidites become progressively more sandy, trend west-northwest and dip steeply, with dominating facing directions to the north (Rhys, 2011a).  One or more “pebbly or mud chip metaconglomerate” horizons are also present.  These units form steeply dipping, 2 to 15 metres wide marker horizons where present, forming a matrix supported coarse sand to fine pebble conglomerate that contains common mudstone, sandstone and felsic (?) volcanic clasts.  The conglomerate horizons are associated with, either containing or occurring adjacent to, arsenopyrite-bearing mineralized zones which locally follows parallel to them (Rhys, 2011b).

 

7.3.1.5: METAMORPHOSED QUARTZ AND QUARTZ-FELDSPAR PORPHYRY DYKES OR SILLS

 

Several narrow intrusions are present in the sedimentary sequence, and are predominantly emplaced south of the “mafic unit” which lies at the core of the GRSZ.  All of these intrusive types are pre-mineralization in timing as they are affected by alteration, high strains, and often overprinted by sulphide mineralization and quartz veins (Rhys, 2011b).

 

The most common intrusions consist of quartz and quartz-feldspar porphyry dykes or sills, generally 1 to 2 metres wide, up to 10-15 metres across.  These intrusions are generally emplaced 100 to 200 metres south of the mafic unit which lies at the core the GRSZ.  They are generally not as altered and deformed as some of the surrounding sediments, and may be mineralized by pyrite, but they generally do not carry any gold.  The quartz and plagioclase phenocrysts and glomeroporphyritic aggregates are set within a fine-grained and light grey quartzofeldspathic groundmass; the quartz textures being displayed (scalloped grain edges and inclusions) are indicative of quartz resorption which suggests high-level to subvolcanic mode of emplacement (Miller, 2011).  Based on their textures and mineralogy, they are probably part of the Pearl Lake (Krist) felsic igneous suite, and close in age with the turbidites sequence (Rhys, 2011b).

 

7.3.1.6: POTASSIUM FELDSPAR SYENITE INTRUSIVE ROCK UNIT

 

Minor reddish megacrystic K-feldspar syenites, sometimes logged as “trachyte” by Lake Shore Gold Corp., display sharp contacts, and occurs as narrow sills or dykes within the mafic unit.  The syenite

 

43



 

dykes are probably syn-Timiskaming aged intrusions (2670-2675 Ma) that may be coeval with syenites present in the alkalic intrusive complex in the Timmins Mine area, which they closely resemble (Rhys, 2011b).  Other “syenitic intrusions” have commonly been reported in drill logs, particularly in the vicinity of the Kapika Zone, and further north in the Red Porphyry Zone.  Those units are generally described as peculiar “red magnetite-bearing porphyries”, light to medium orange-red in colour, variably deformed, sericitized and hematized, with very little remnants feldspar phenocrysts.  In many instances, these units are probably an altered equivalent of the quartz and/or quartz-feldspar porphyries (MacPherson, 1987), or appear to be misinterpreted lithologies, as a result of pinkish red hematization and possible albite alteration (Rhys, 2011a).

 

7.3.1.7: METAMORPHOSED MAFIC DYKES

 

Mafic dykes, and at least one irregular mafic intrusion up to tens of metres thick was identified by Rhys (2011a, b), within the east side of the GRSZ.  The intrusions are described as generally highly altered and strained, and display elongate, chlorite to fuchsite altered relict phenocrysts.  The dykes themselves are generally non-mineralized, but may have help in localizing the mineralization, as the enclosing turbidites are often better mineralized (Rhys, 2011a).

 

7.3.1.8: DIABASE DYKES

 

Proterozoic, north-trending diabase dykes of the Matachewan dyke swarm cross-cut all lithologies, and are clearly visible on the regional magnetic maps.  Another dyke trending northwesterly across the northeast corner of the property is believed to belong to the Sudbury dyke swarm.

 

44



 

FIGURE 7.3.1: PROPERTY GEOLOGY MAP

 

GRAPHIC

 

45



 

FIGURE 7.3.2: EAST DEPOSIT GEOLOGY MAP, MODIFIED AFTER RHYS 2011

 

GRAPHIC

 

46



 

Figure 7.3.3:  GENERALIZED CROSS-SECTION 460920 EAST LOOKING WEST, MODIFIED AFTER RHYS 2011

 

GRAPHIC

 

47



 

Figure 7.3.4: 3D VIEW OF RESOURCE OUTLINE LOOKING TO THE NORTHEAST

 

GRAPHIC

 

48



 

7.4.0: STRUCTURAL GEOLOGY

 

The structural history of the property is complex and problematic. The structures have not been adequately described, studied or placed in the context of the tectonics of the Porcupine Camp as recently described by Rhys or Bateman.  The approximate 9,112 hectares metasedimentary basin that host the Gold River mineralized zones is fault bound and structurally overprinted by several tectonic events. To the north of the Property is the Bristol Fault Deformation Zone trending east-west to southwest-northeast; in the east is the Mattagami River Fault, trending north-south; south of the mineralized zones is the westward extension of the Destor-Porcupine Deformation Zone, trending east-west; and in the west is the Thunder Creek Deformation Zone trending north northeast- south-southwest.

 

In January of 2007, West Timmins Mining Inc. commissioned Caracle Creek International Consulting Inc., to prepare a Summary Structural Report of the Thorne Golden Property.  Stephen Wetherup, P.Geo. visited the site and collected geological and structural data from drill core and known outcrops within the gold mineralized zones of Golden River West, No. 14, Kapika, and Golden River East.  Sixteen core samples selected by Lake Shore in 2010 were also sent to Dr. Alan Miller for a petrographic study, and structural interpretation.  David Rhys, of Panterra Geoservices Inc. examined of 2 drill holes in 2010, and 30 drill holes from four cross-sections located on the Gold River East Zones in 2011, followed by a brief examination of 2 outcrops located on the west banks of Tatachikapika River.  His observations and insights are documented in memos and presentations to Lake Shore Gold Corp (Rhys, 2010b, 2011a, 2011b).

 

The following excerpts (Rhys, 2011b) and paraphrased statements summarize the structural observations and interpretations believed by Lake Shore geologists, and the authors to be the recent and reasonable interpretation currently available:

 

·                  Core axis angles of bedding, tracing of lithologic markers and stratigraphy, and bedding orientations in two outcrop exposures suggest that stratigraphy along the Gold River trend strikes dominantly west-northwest to east-west with steep dips.

 

·                  The mafic unit (at the core of the Gold River Shear Zone — GRSZ) and associated chlorite-matrix conglomerate are intensely strained on the margins of the mafic unit, defining well banded intense phyllonitic to mylonitic high strain zones forming tectonites which are variably Fe-carbonate-sericite-chlorite altered.  Overall, the most intense areas of high strain in the mafic volcanic unit and immediate adjacent Porcupine sediments define a zone of high strain that is 30 to 100 metres in true thickness.  This ductile shear zone in turn may be localized along and exploit an older, more brittle thrust horizon which emplaced the mafic unit.

 

·                  Increases in strain are apparent in association with gold mineralization.  Collectively, these areas of high strain and alteration that include the intense high strained areas surrounding the mafic unit and broader areas of elevated strain to the north and south in the Porcupine turbidite sequence define an altered corridor of elevated strain that defines the Gold River alteration and shear zone which is 400 to 500 metres wide.

 

·                  The areas of high strain that define the Gold River Shear Zone are composed of intense areas of probable S3 and S4 foliation development, as is seen in other parts of the Porcupine camp.  The two fabrics are coplanar generally in areas of intense strain, and S4 is transposed into S3,

 

49



 

although locally the two steeply dipping foliations are apparent.  The close association of the two fabrics suggests that the Gold River Shear Zone was active through D3 and D4 deformation.

 

·                  A steeply plunging stretching lineation is apparent defined by elongate mineral aggregates, elongation of clasts in fragmental units, and stretched altered mafic phenocrysts in mafic units on composite S3-S4 foliation surfaces.  Core re-orientation assuming a vertical foliation and bedding in areas not affected by later folding suggest that the lineation plunges steeply — vertically or west-southwesterly, and is likely both parallel to, and responsible for the overall steep plunge of deeper mineralization in the Gold River Shear Zone.  Mineralization shoot plunges near surface, particularly in the Fold Nose Area, are shallow to the west, but are likely overprinted by the abundant later folding there and may have originally plunged steeply.  The overall steep plunge of the stretching lineation and likely mineralization are consistent with the steep plunges of stretching lineations and mineralized zones in the Timmins Mine and Thunder Creek deposits.

 

·                  Stratigraphy, mineralization and bedding subparallel foliation in the Gold River Shear Zone are overprinted by a series of late, post-mineralization folds which cause local repetition of the sequence, and locally result in drill holes that are drilled southerly from north to south (the dominant drilling direction) to pass parallel to stratigraphy in folded areas.  Modeling and interpretation of these folds has been important in assessing the economics of the zone, and has posed a challenge to interpreting the overall geology of the local area since its initial discovery.  These late folds are well exposed in two large areas of outcrop that occur along the west bank of the Tatachikapika River are generally tight and often have chevron forms.  Fold axes plunge shallowly to the northwest at the intersection at the intersection of the crenulation cleavage with S0 and S3/S4, forming a crenulation lineation.  The fold orientation, style and degree of strain are consistent with the late, post-mineralization S5 shallow dipping crenulation cleavage that is present throughout the Timmins area, including the Timmins Mine and Thunder Creek zones.

 

·                  In plan view, these areas of folding will likely form a series of asymmetric, southeast vergent and right stepping folds which have westerly plunges, and may be responsible for the overall right step of to the south of mineralization that is apparent in the Fold Nose area.

 

·                  In addition to the fabrics discussed above, a late set of northwest trending kink bands and associated weakly developed north trending, steeply dipping crenulation cleavage is developed in the Tatachikapika outcrop exposures.  They are low strain and probably have little effect on the distribution of mineralization in the area.  They are assigned by Rhys (2010a) and here to D6.

 

·                  Minor post-mineralization clay gouge filled faults and diffuse, weak zones of faulting defined by broken core with minor gouge were observed in several drill holes.  Larger brittle faults with more significant displacement could be present, however, outside of the cross-sections that were examined, and may be responsible for north and south steps in the overall trend of the Gold River Zone.

 

·                  A previous, brief structural study by Wetherup (2007) also documents folding patterns in the Gold River zones of the Thorne property.  For correlation purposes, the foliation denoted as S2 in Wetherup (2007) and Miller (2011) corresponds with the S5 crenulation foliation here that is associated with the folding of mineralization in the Fold Nose area and of surface outcrops. 

 

50



 

Orientations and fold patterns in Wetherup (2007) and Miller (2011) are consistent with those discussed here.  Earlier, bedding subparallel S1 foliation of Wetherup (2007) and Miller (2011) is the composite S3-S4 fabric observed here; the numbering differs in that the 2007 report does not accommodate for the pre-foliation early folding events that are indicated by the presence of older folds truncated at the Timiskaming and Porcupine Assemblage unconformities in the main Porcupine Camp area.  The S3 foliation referred to by Wetherup (2007) may refer to the late kink bands (D6) noted here, since no significant northwest trending fabric was recognized in the outcrop exposures or drill holes otherwise.

 

7.5: MINERALIZATION AND ALTERATION

 

The understanding of the gold mineralization styles and habits on the property continues to evolve and be refined.  Exploration work carried-out by Esso Minerals (1985-1988) targeting magnetic anomalies led to the discovery of the Kapika Zone.  The mineralization was described as being hosted by red to light orange porphyries, emplaced within sheared, sericitized and silicified sediments, accompanied by quartz-ankerite-pyrite-hematite and magnetite (MacPherson, 1987).

 

Work completed by Band Ore (1992-2005), led to the discovery of several other zones along a predominant east-west trending structure, now referred-to as the Gold River Shear Zone (“GRSZ”).  These new zones were described as being hosted within arsenopyrite-pyrite-ankerite-quartz veins and appeared to be strongest proximal to porphyry contacts although some mineralization occurs within sericitic and carbonate altered pyritic porphyries (Cavey, 2003, 2006):

 

One of the most economically important features on the property are steeply dipping, altered quartz feldspar porphyry intrusives within strongly deformed shear zones. Many of the old drill holes intersected the favourable auriferous shear zone. The mineralized porphyries vary in composition from a quartz feldspar porphyry, to a pyritic porphyry, to a red magnetite bearing pyritic porphyry.  The porphyries have been subjected to intense shearing characterized by sericitization, silicification and hematitic alteration.  Gold is associated with secondary pyrite or can also be associated to a lesser degree with arsenopyrite. Quartz veining is evident but is not generally auriferous. There is one main shear, with at least two identifiable subsidiary shear zones parallel to the main shear. (Cavey, 2003, 2006)

 

More recently, drilling completed by Lake Shore Gold Corp. and a petrological examination by Dr. A. Miller followed by a structural study by David Rhys (Panterra Geoservices Inc) has led to great advancements in recognizing and understanding the controls on the mineralization on the east side of the Gold River Trend.  Little work has been carried-out by Lake Shore Gold on the West Deposit, but the setting is believed to be very similar.  A summary of those observations is provided below, and photos of the mineralization are included in Appendix 6:

 

Gold mineralization is mostly confined within the Gold River Shear Zone (GRSZ), although additional weaker mineralization has been reported to the north and south of the main structure (i.e. Red Porphyry Zone, and the Thilbeault Horizon (Cavey, 2006).  As previously noted in Item 7.4, the GRSZ is defined by a high-strain deformation and alteration zone, up to 300 to 500 metres thick, which can be traced for at least 5 kilometres across the property.  It is predominantly hosted by metasedimentary

 

51



 

rock units, but is centered on a newly recognized mafic metavolcanic unit (Rhys 2011a, 2011b) which can be traced from the east property boundary up to the Tatachikapika River, and probably extends discontinuously(?) further west and along the Gold River West Zones.  The presence of this mafic unit within the metasediments suggests that the mineralization is coincident with an early thrust fault that introduces possible Tisdale aged metavolcanic rocks in the Porcupine Basin, and represents a similar setting to other major deposits in the camp (i.e. Hoyle Pond).  Alteration generally consists of several recurring zones of dark chlorite +/-sericite and pinkish zones of sericite-magnetite-hematite +/-albite (?) north of the mafic unit, followed by variable chlorite-carbonate alteration within the mafic unit, to pale grey sericite-carbonate alteration within the sediments located further south.  Gold mineralization along the Gold River East Trend is mainly developed in the pale grey sediments located south of the mafic unit, although mineralization in the Kapika Zone appears mostly hosted by the mafic unit (Rhys 2011a, 2011b).  Unlike other areas of the Porcupine Camp, the narrow quartz porphyries common throughout the GRSZ generally do not carry significant gold, although they may be mineralized by pyrite.

 

A total of fifteen (15) gold zones have so far been defined within the GRSZ.  It includes four (4) zones on the west side of the Tatachikapika River ((W1A, W1A1, W1B, W1B1), and eleven (11) gold zones on the east side (4800, 4800_N1, 4800_N2, 4800_N4, 4800_S1, 4800_S2, 4800_S1A, 4800_S1D, the deep 4800_S3D, and the shallow 4800_N5A and 4800_N5B zones in the Kapika Zone).  Collectively, the gold zones are contained over a 3 kilometres strike length which straddles the Tatachikapika River, and are commonly referred to as the East and West Deposits.  They generally occur as a stack of steeply dipping irregular lenses of mineralization, less than one metre up to about five (5) metres across, extending up to six hundred (600) metres along strike, and one hundred (100) to over four hundred (400) metres vertically.  Mineralization occurs near surface, and has been traced as far as eight hundred (800) metres below surface, with several of the zones remaining open.

 

Gold mineralization within the zones is associated with areas of broad disseminated and quartz vein-related arsenopyrite and pyrite mineralization, which varies from less than one percent up to greater than twenty percent, locally.  Traces of pyrrhotite, tetrahedrite, stibnite, sphalerite, berthierite, boulangerite, zinkenite as well as native gold and native antimony have also been reported (Payne, 1996; Miller, 2011).

 

The gold appears to be contemporaneous with the arsenopyrite-pyrite mineralization. Petrographic work by Miller (2011) describes it as highly variable in size, ranging from coarse to as little as <1 micron, where it may occur in the core of arsenian pyrite, within the outer rims of pyrite, and is also noted as ultra fine inclusions in and adjacent to compositionally zoned arsenopyrite.  Stibnite has occasionally been observed within some of the higher grade veins, along with visible gold.  Visible gold is not very common, but has been observed more frequently by LSG, particularly in the east half of the Gold River East Zone, within shallow veins near the 4500-4800 Zones, and has been noted in some of the wider and better grade intercepts in the Deep North Porphyry Zones (Zone 4800-S3D).

 

Arsenopyrite occurs mostly as very fine-grained acicular disseminations, to discrete fine dark grey “laminations” within and along the margins to dark grey stringers, and/or apparently replacing some of the thin mudstone bed (“arsenopyrite muds”); coarse stubby arsenopyrite, probably recrystallized is also locally observed.

 

Pyrite mineralization has also been noted, as disseminations, bands and veinlets, with little or no arsenopyrite present, particularly in the Kapika Zone.  In some cases, the pyrite mineralization appears

 

52



 

to define a lower grade outer shell to the arsenopyrite zones, and can occur as overgrowths on arsenopyrite (Rhys, 2011a).

 

In the general sense, the arsenopyrite and pyrite mineralization is locally rimming the veins, displaying a transition outward from grey quartz-carbonate with sericitized envelopes, to arsenopyrite dominant bands, to pyrite on the periphery.  In areas of highest strain, the veins and its associated mineralization has been boudinaged and transposed parallel to bedding.  The resulting “sulphide pseudolaminations” were sampled by LSG and were sent for petrographic analysis.  Provided without geological context and without the benefit of being able to review the core, these areas of mineralization were initially interpreted by Miller (2011) to imply that mineralization is exhalative in origin.  Subsequently, a detailed review of the core by Dave Rhys concluded that “the presence of:

 

a) common quartz-carbonate-arsenopyrite veins in mineralized zones;

b) the occurrence of acicular, main stage arsenopyrite with sericite as envelopes to many veinlets;

c) the clear overprinting of clasts and matrix is some conglomerate units by mineralization;

d) occurrence of mineralization often in high strain zones with elevated concentrations of grey quartz-carbonate veining;

e) presence of highest Au grades within quartz veinlets and veins,

f) the overprinting of mineralization onto earlier magnetite-alteration in the Kapika zone and other parts of the mafic unit; and

g) the occurrence within the core of and coincidence of the mineralized corridor with a broad zone of alteration that affects a broad zone of stratigraphy collectively together imply a secondary, epigenetic origin to mineralization” (Rhys, 2011b).

 

The association between gold mineralization and broad areas of disseminated and vein-related arsenopyrite and pyrite mineralization has long been recognized on the property, but a direct correlation with gold grade had not been established until recently.  It now appears that the abundance of dark grey and generally very discrete quartz-carbonate (ankerite?) stringers and veinlets, typically less than 1 cm wide and rarely exceeding 20 cm in width, are indicators of better grades, as oppose to the late and wider white quartz-carbonate (dolomite?) veins, which are more easily noted by the core loggers (Rhys, 2011b):

 

More closely spaced veinlets generally occur in areas of more intense arsenopyrite mineralization, while in lower grade areas the arsenopyrite may occur in spatial association with the veinlets only.  The quartz veinlets are often boudinaged and folded or transposed into the bedding parallel S3-S4 foliation.  Some spaced veinlets are 1 to 5 mm wide envelopes of abundant disseminated acicular arsenopyrite; local inner envelopes of pale tan-green sericite may also be present.  Where veinlets are abundant and closely spaced, coalescing arsenopyrite-rich veinlet envelopes collectively form wider bands of grey arsenopyrite-bearing alteration.  Some areas which superficially look to comprise dominantly pervasively disseminated bands of abundant arsenopyrite on close inspection have a grey-quartz carbonate matrix suggesting that they too may be veins, or replacement veins.  Grey quartz veins locally exceed 20 cm in thickness, particularly in higher grade areas. Tracking of densities of these early grey quartz veins may aid in tracking and modeling mineralized zones; they are distinct from, and earlier than later, white quartz-carbonate veins that are likely post-mineralization in timing.

 

53



 

Overall, the best zones of mineralization are developed within domains of elevated to high strain, and are in part controlled by narrow shear zones that generally dip moderately to steeply to the north, trending west-northwesterly.  These zones of arsenopyrite-pyrite mineralization and their associated grey quartz veinlets are variably transposed into the bedding (affected by local syn S3-S4 stretching lineation), defining broad zones of anomalous As-geochemistry which come close to be subparallel to stratigraphy.  The recognition of the mafic unit and other stratigraphic markers (i.e. conglomerates) and their positioning with respect to the mineralization on drill sections is generally consistent with this interpretation; however if folding of the turbidite sequence occurred prior to mineralization and shear development, the mineralization may actually be discordant in plan view, although it is not possible to fully determined this based on the current sections examined (Rhys, 2011b).

 

At depth, on the North Porphyry area, located in the central part of the Gold River East Zones, there are several steeply plunging domains of mineralization, which are parallel to the overall plunge of the stretching lineation.  Some of the controls on the mineralization may relate to the lateral changes of the thickness of the nearby mafic unit, around which strain may be accommodated, or may relate to the presence of more favourable stratigraphic horizons.

 

In other areas, mineralization and bedding are tightly folded and may dip more gently.  In the Fold Nose area for example, the plunge of the mineralization is more shallow, and may have been affected by a later folding event (F5).  In addition, the complicated and thicker nature of mineralization may be related to the interaction of mineralized structures with the small mafic intrusion that is present in the turbidite sequence here (Rhys, 2011b).

 

In the Kapika area, the mineralization is different than most of the other gold zones, as this one is mostly dominated by pyrite, with little or no arsenopyrite, and is associated with quartz+/-tourmaline veins.  The mineralization was previously reported to be predominantly hosted by the red magnetite-bearing dykes (MacPherson).  Although narrow “trachytic” syenite dykelets have been observed, the mineralization appears to be primarily hosted by a highly deformed and altered mafic unit, possibly the same one which sits above the mineralization further to the east.  The mineralization overprints the pink albite (?)-magnetite-hematite alteration which is so predominant there and further north of the mafic unit along the Gold River East Zone.

 

54



 

8.0: DEPOSIT TYPES

 

8.1: GENERAL OVERVIEW

 

The Porcupine area is well known for hosting two mineral deposit types: 1) Xstrata’s Kidd Creek mine, which is a volcanogenic massive sulphide deposit; and 2) several mesothermal Archean shear-hosted gold deposits.  Gold production to the end of 2006, from some 50 operational sites is reported to be 2,028,140 kilograms of gold (65,206,222 ounces of gold).  Table 8.1.1 highlights the twenty-one locations that exceeded production of 3,110 kilograms of gold (100,000 ounces of gold).

 

The deposit types that Thunder Creek, Gold River occurrence, and Timmins Mine are being compared to have been characterized by the mesothermal Archean shear-hosted gold deposits typical of the Timmins and Kirkland Lake gold camps. There are detailed differences with each deposit with respect to individual: structural controls, vein density, gold tenor, gold — silver ratio, and size with deposit sited in Table 8.1, but they do have a commonality.  In his 1997 PhD thesis titled “Geological Setting of Gold Deposits in the Porcupine Gold Camp, Timmins, Ontario”, Brisbin, generalizes the ore bodies are typified by single or multiple quartz-carbonate veins with or without albite, tourmaline, sericite, pyrite, and other sulphides, and native gold hosted in carbonatized, sericitized, albitized and pyritized wallrock.  Gold occurs both in the veins and the wallrock.  The most significant gold deposits are spatially associated with quartz-feldspar porphyry stocks and dykes, and with albitite dykes both of which intrude the folded Archean supracrustal rocks.  The supracrustal rocks, porphyry intrusions, albatite dykes and gold mineralization were affected by metamorphism, and penetrative deformation during the Kenoran Orogeny (Brisbin, 1997).  He further compares the gold productivity at the time of his research with lithology.  Over seventy-five (75) percent of the gold production in the Porcupine Camp (1997) was mined from ore bodies in the Tisdale Group rocks which are thus the most important rocks in the camp.  Approximately fifteen (15) percent of the gold in the Porcupine Camp has been hosted by Timiskaming Group rocks making them the second most important host.  Porphyritic intrusions, hetrolithic breccia bodies and albitite dykes host nearly ten (10) percent of the gold produced in the camp.  There is little change in the proportional production distribution of gold today.

 

55



 

TABLE 8.1.1 OPERATIONS OF GREATER THAN 100,000 OUNCES OF GOLD PRODUCTION THE PORCUPINE GOLD CAMP

 

 

 

KILOGRAMS GOLD

 

OUNCES GOLD

 

MINE

 

PRODUCED

 

PRODUCED

 

 

 

 

 

 

 

Hollinger

 

601,158

 

19,327,691

 

Dome

 

487,558

 

15,675,367

 

McIntyre Pamour Schumacher

 

334,423

 

10,751,941

 

Pamour # 1 (pits 3, 4, 7,Hoyle)

 

131,393

 

4,224,377

 

Aunor Pamour (#3)

 

77,828

 

2,502,214

 

Hoyle Pond

 

72,046

 

2,316,346

 

Hallnor (Pamour #2)

 

52,582

 

1,690,560

 

Preston

 

47,879

 

1,539,355

 

Paymaster

 

37,082

 

1,192,206

 

Coniarum/Carium

 

34,512

 

1,109,574

 

Buffalo Ankerite

 

29,775

 

957,292

 

Delnite (open pit)

 

28,740

 

924,006

 

Pamour (other sources)

 

21,046

 

676,645

 

Broulan Reef Mine

 

15,519

 

498,932

 

Broulan Porcupine

 

7,485

 

240,660

 

Owl Creek

 

7,368

 

236,880

 

Hollinger Pamour Timmins

 

5,663

 

182,058

 

Nighthawk

 

5,468

 

175,803

 

Moneta

 

4,642

 

149,250

 

Crown

 

4,303

 

138,330

 

Bell Creek

 

3,507

 

112,739

 

 

 

 

 

 

 

21 site Totals

 

2,009,976

 

64,622,226

 

 

 

 

 

 

 

The Porcupine Camp Total (50 sites)

 

2,028,140

 

65,206,222

 

 

(source: http://www.mndm.gov.on.ca/mines/ogs/resgeol/office)

 

56



 

9.0: EXPLORATION

 

9.1.0: GENERAL OVERVIEW

 

Exploration activities by Lake Shore Gold Corp. and West Timmins Mining within the Gold River property have focused on the diamond drill definition of gold mineralization, the interpretation, and an effort to establish continuity of the gold mineralization.  As part of their regional exploration program West Timmins Mining Inc. in December of 2006 contracted Aeroquest Limited to completed a 3,398 kilometres helicopter-borne magnetic and Aeroquest AeroTEM II time domain towed bird EM system geophysical survey. The survey covered an area of approximately 146 square kilometres center on the UTM co-ordinate 1458,192.5 metres east and 5,357,130.8 metres north (NAD 83, Zone 17).  Approximately 19 square kilometres or 13 percent of the survey overflew the 95 mineral claims of the Gold River property.

 

Jonathan Rudd, P. Eng. (2007) of Aeroquest Limited describes the results of the survey as follows: “ The magnetic data provide a high resolution map of the distribution of the magnetic mineral contend of the survey area.  This data can be used to interpret the location of geological contacts and other structural features such as faults and zones of magnetic alteration.  The sources for anomalous magnetic responses are generally thought to be predominantly magnetite because of the relative abundance and strength of the response (high magnetic susceptibility) of magnetite over other magnetic minerals such as pyrrhotite.  The survey area is dominated by an east-west trending magnetic high which extends across the southern portion of the survey area.  Features with such strong magnetic response normally reflect magnetite iron formation.  A series of NNW trending linear highs are readily interpreted as dykes of the Matachewan swarm.  The general east-west trending geologic strike is evident throughout the area, but other trends can be seen in western portion of the block.

 

The EM anomalies on the maps are classified by conductance and also by thickness of the source.  A thin, vertically oriented source produces a double peak anomaly and the z-component response and positive to negative in the x-component response.  For a vertically oriented thick source (say, greater than 10m) the response is a single peak in the z-component and a negative to positive crossover in the x-component response.  Because of these differing responses, the AeroTEM system provides discrimination of thin and thick sources and this distinction is indicated on the EM anomaly symbols (N=thin, and K=thick).  Where multiple, closely spaced conductive sources occur, or where the source has a shallow dip, it can be difficult to uniquely determine the type (thick vs. thin) of the source.  In these cases both possible source types may be indicated by picking both thick and thin response styles.  For shallow dipping conductors the ‘thin’ pick will be located over the edge of the source where as the ‘thick’ will fall over the down dip ‘heart’ of the anomaly.”

 

Consulting geophysicists Bob Lo and Laurie Reed have reviewed the survey data and endeavoured to filter the Matachewan dyke swarm in order to better define the lithological signature by the change of magnetic susceptibility.  The magnetic response of the dykes is overwhelming, and the interpretation of the subtle background magnetic response as well as the significance of the EM responses remains under investigation.

 

The following table summarized the work completed by West Timmins Mining Inc. and Lake Shore Gold Corp. to the effective date of January 17, 2012.

 

57



 

TABLE 9.1.1 SUMMARY OF EXPLORATION ACTIVITIES (2006 TO EFFECTIVE DATE, JANUARY 17, 2012)

 

DIAMOND DRILLING

 

Year

 

Number of Drill Holes

 

Total Metres Drilled

 

Number Sample Intervals

 

2006-2009

 

112 (WTM)

 

34,141

 

18,313

 

 

 

 

 

 

 

 

 

2010-Jan. 17, 2012

 

140 (LSG)

 

55,807

 

43,030

 

 

 

 

 

 

 

 

 

Subtotal

 

252 drill holes

 

89,948

 

61,343

 

 

DIAMOND DRILL CORE SAMPLING

 

 

 

WTM

 

LSG

 

Total

 

 

 

 

 

 

 

 

 

Number of Standards

 

674

 

2,516

 

3,190

 

 

 

 

 

 

 

 

 

Number of Blanks

 

806

 

2,503

 

3,309

 

 

 

 

 

 

 

 

 

Number of Duplicates

 

4

 

2,126

 

2,130

 

 

 

 

 

 

 

 

 

Number of Samples Re-assayed

 

not available

 

13

 

13

 

 

 

 

 

 

 

 

 

Number of Assays Pending

 

0

 

1,148

 

1,148

 

 

 

 

 

 

 

 

 

Total Samples Processed

 

19,797

 

50,175

 

69,972

 

 

OTHER SURVEYS

 

Aeroquest AeroTEM II (WTM)

 

3,398 kilometres

 

Note:

·   WTM totals are approximate based upon the data given to Lake Shore Gold Corp by WTM.

·   As of the Effective Date partial assays have been received from holes TH-11-124, 124A, 129, 130 and 131;  Logging of drill hole TH-11-131 is in progress at 545 metres.

·   WTM extended one drill hole completed by Band-Ore Resources by 111 metres.

 

58


 


 

FIGURE 9.1.1: MEASURED VERTICAL GRADIENT WITH LINE CONTOURS AND EM ANOMALY SYMBOLS

 

GRAPHIC

 

59



 

FIGURE 9.1.2: EM AEROTEM OFF-TIME PROFILES (CHANNELS Z2-Z16) AND EM ANOMALY SYMBOLS.

 

GRAPHIC

 

60



 

FIGURE 9.1.3: TOTAL MAGNETIC INTENSITY WITH LINE CONTOURS AND EM ANOMALY SYMBOLS

 

GRAPHIC

 

61



 

10.0: DRILLING

 

10.1.0: GENERAL OVERVIEW

 

Diamond drilling on the Gold River property has been carried-out by four main operators.  Esso Minerals Canada (“Esso”) completed 55 BQ-size holes between 1985 to 1988, for a total of 11,127 metres drilled (T-1 to T-55).  Esso were testing magnetic anomalies and various exploration targets, which eventually led to the discovery of the Kapika Zone and to the recognition of the Gold River Shear Zone;  little details are known regarding the core logging techniques and sampling methodologies, but it appears reasonable to assumed that work was carried-out according to industry best practices of the time, which did not include the insertion of standard and blanks in the sampling sequence.  Results are provided in MacPherson (1988), and are summarized here in Tables 10.1.1, Appendix 1 and Appendix 2.

 

Band-Ore Resources Ltd. followed-up with 445 holes (both BQ and NQ-size), under the QP supervision of Mr. Robert Duess, during the period from 1992 to September 2006. Included in the 126,969 metres drilled, Band-Ore extended 32 holes which are now identified with the letter “E” (i.e. TW-97-45E, and T-14E);  Some Esso holes were also re-sampled by Band-Ore, and those are identified with the letter “R” (i.e. T-09R).  The details of those drilling programs are well documented in technical 43-101 reports by Cavey (2002, 2004 and 2006), and sampling methodologies are summarized in Section 11.1 of the present report.

 

In 2006, West Timmins Mining (WTM) was formed as a result of an amalgamation between Band-Ore Resources and Sydney Resource Corp., and completed 112 holes for the period from September 2006 to November 2009.  Following a business agreement with WTM in November 2009, Lake Shore Gold Corp. completed an additional 140 diamond drill holes on the Gold River property.

 

Table 10.1.1 provides an overview of the number of diamond drill holes completed and the number of samples taken from the Gold River property.

 

TABLE 10.1.1: DIAMOND DRILLING AND CORE SAMPLING SUMMARY FOR THE GOLD RIVER PROPERTY

 

 

 

 

 

Number

 

Number

 

Number of

 

Company

 

Year

 

Holes

 

Metres

 

Sample Intervals

 

 

 

 

 

 

 

 

 

 

 

Esso Minerals Canada

 

1985-88

 

55

 

11,127

 

3.691

 

 

 

 

 

 

 

 

 

 

 

Band-Ore Resources Ltd.

 

1992-2006

 

445

 

126,969

 

56,893

 

 

 

 

 

 

 

 

 

 

 

West Timmins Mining

 

2006-2009

 

112

 

34,141

 

18,313

 

 

 

 

 

 

 

 

 

 

 

Lake Shore Gold Corp.

 

2010- January 17, 2012

 

140

 

55,807

 

43,030

 

 

 

 

 

 

 

 

 

 

 

Total

 

 

 

752

 

228,045

 

121,927

 

 

62



 

DIAMOND DRILL CORE SAMPLING

 

 

 

Esso

 

Band-Ore

 

WTM

 

LSG

 

Total

 

 

 

 

 

 

 

 

 

 

 

 

 

Number of Sample Intervals

 

3,691

 

56,893

 

18,313

 

43,030

 

121,927

 

 

 

 

 

 

 

 

 

 

 

 

 

Number of Standards

 

N/A

 

61

 

674

 

2,516

 

3,251

 

 

 

 

 

 

 

 

 

 

 

 

 

Number of Blanks

 

N/A

 

209

 

806

 

2,503

 

3,518

 

 

 

 

 

 

 

 

 

 

 

 

 

Number of Duplicates

 

N/A

 

45

 

4

 

2,126

 

2,175

 

 

 

 

 

 

 

 

 

 

 

 

 

Number of Samples Re-assayed

 

N/A

 

N/A

 

N/A

 

13

 

13

 

 

 

 

 

 

 

 

 

 

 

 

 

Number of Assays Pending

 

0

 

0

 

0

 

1,148

 

1,148

 

 

 

 

 

 

 

 

 

 

 

 

 

Total Samples Processed

 

3,691

 

57,208

 

19,797

 

50,175

 

69,972

 

 

Notes:

·                  N/A (not available)

·                  Total metres drilled include 28 Band-Ore holes extended by Band-Ore, 4 Esso holes extended by Band-Ore, and one Band-Ore hole extended by WTM.

·                  As of the Effective Dated partial assays have been received from holes TH-11-124, 124A, 129, 130 and 131; Logging of drill hole TH-11-131 is in progress at 545 metres,

 

10.2.0: DIAMOND DRILLING BY WEST TIMMINS MINING INC.  (2006 TO 2009)

 

All drilling completed by West Timmins Mining from September 2006 to November 2009 was completed under the responsibility of Mr. Darin Wagner, QP.  A total of 112 NQ-size diamond drill holes were completed, and 1 Band-Ore hole was extended by 111 m, for a total of 34,141 m completed.  The drilling was focused on the Gold River Shear Zone, and on various exploration targets to the north and south of the main structure.

 

The proposed drill hole locations were spotted in the field using a hand-held GPS, and were measured relative to existing nearby casings, where possible.  Most collar locations were subsequently surveyed by Talbot Services Ltd, of Timmins.  During the WTM period, the alphabetic letter placed at the end of the hole number, was meant to indicate holes which were abandoned (i.e. GW-07-01A).  All drill holes were completed by Norex Diamond Drilling Ltd, of Porcupine, Ontario.  As the holes were being drilled, the azimuth and inclination were recorded on 50 m intervals, using an EZ-shot Reflex instrument.  During the period 2006 to 2009 the only documented or written procedures made available to the authors, concerning the handling of diamond drill core, core logging, drill core sampling, splitting, cutting, bagging, assay QA/QC are those stated in Mr. Wagner’s press releases;  there were no summary reports written or submitted during that period.  In excess of 18,000 samples were taken and sent for gold analysis to Swastika Labs, ALS Chemex, and Accurassay (see Item 11.1.6 for details).

 

63



 

10.3: DIAMOND DRILLING BY LAKE SHORE GOLD CORP.  (2010 TO JANUARY 17, 2012)

 

All drilling completed by Lake Shore Gold Corp. since February of 2010, was carried-out under the supervision of Jacques Samson, P.Geo and QP for the project.  A total of 140 NQ-size diamond drill holes were completed, for a total of 55,807 m drilled; includes seven (7) wedged splays were completed, and thirteen (13) holes were abandoned due to excessive deviations or technical drilling difficulties. For LSG, the letter at the end of the hole number indicates a wedge cut (i.e. TH-11-124A).  Drilling was mostly focused on infilling and expanding on the known mineralization of the Gold River East Zones, including 4 holes on the Gold River West trend, and a few exploration holes to the far east along the main structure.  Depending on drill contracts and drill rig availability, the program was carried-out by Bradley Bros. Ltd. of Timmins, Orbit Garant of Val-d’Or, and by Norex Diamond Drilling Ltd of Porcupine, Ontario.

 

The proposed drill holes locations are spotted in the field using a hand-held GPS.  On a regular basis or as required the collars are then surveyed by L. Labelle Surveys of Timmins for a final collar location.  As the holes are drilled, changes in azimuth and inclination are monitored at 30 to 50 metre intervals using an EZ-shot Reflex instrument. Seven (7) holes were resurveyed using a north-seeking gyro by Halliburton/Sperry Drilling Services of North Bay, Ontario, in order to verify the accuracy of the Reflex instrument;  no significant discrepancies were noted.  A total of 43,030 core samples were collected and sent for gold and arsenic analyses (excluding QA/QC control samples).  Details on core handling and sampling protocols are reported in Item 11.

 

The drill hole database for the Gold River project was locked down on January 17th 2011.  At the time, all drill holes were completed, and assays for 1,148 core samples were still pending for hole TH-11-124, 124A, -129, -130 and -131;  core logging for TH-11-131 was still in progress at 545 metres.

 

The following diamond drilling related tables are located in the Appendices of this report: Appendix 1: Diamond Drill Hole Collar Locations, Azimuth, Inclination and Metres Drilled; Appendix 2: Diamond Drill Core Sampling Summary; Appendix 3: A List of Drill Holes Not Intersected or Used In The Block Model ; and Appendix 4: Block Model Solid Intersections, a summary of significant gold assay results used for the block model.

 

Figure 10.1 illustrates the drill collar locations relative to local topographic features.  The drill collar information is tabulated in Appendix 1.

 

64



 

FIGURE 10.1: SURFACE DIAMOND DRILL HOLE COLLAR LOCATIONS AND VERTICAL PROJECTION TO SURFACE OF THE OUTER PERIMETER OF THE RESOURCE ESTIMATION

 

GRAPHIC

 

65



 

11.0:  SAMPLING, PREPARATION, ANALYSIS AND SECURITY

 

11.1.0     HISTORICAL DIAMOND DRILLING

 

11.1.1     BAND-ORE RESOURCES SAMPLING METHOD AND APPROACH 1993-2006

 

For the general description of sampling methods and approach during the period of 1993 to 2006 Lakeshore Gold Corp relies on the descriptions documented by Mr. G. Cavey (2002, 2004, 2006).

 

11.1.2:   TIME PERIOD 1995-1998

 

For the period of 1995 to 1998 Mr. Cavey states the information was provided by Mr. R. Duess, the Band-Ore technical director, and V.P. Exploration.  “All of the Thorne drill core was logged by Band-Ore sub-contracted geologists, from 1995 to 1998 there were up to nine different geologists involved in logging the core at various times.  Core recovery was generally very good, usually in excess of 90%.  Drill core intervals that the geologist determined required sampling were laid out, marked and tagged. Samples intervals were rarely longer than 1.5m, and rarely shorter than 0.5m.  All intervals were split, either by hand splitters, hydraulic splitters, or by a motorized core cutting saw.  Half of the sample was bagged, tagged, and the sample bag was sealed with twist tags.  Samples that were sawn were then rinsed with water prior to bagging.  The remaining core was placed back in the core box in the same order. A duplicate sample tag was placed at the beginning of each sample interval in the core box for future reference purposes.  This ensures that each sample would be identifiable both by logged footage interval, and by location of sample tag.  Under no circumstances, was the entire core bagged and sent for assay during sampling procedures. There appeared to be no sampling biases and the results should be representative.

 

For both hand and hydraulic splitters, pieces of split core and fines were collected in pans, and at the end of each sample interval, the splitters were swept clean, and the collection trays emptied into sample bags, including the “fines”.  The immediate work top areas were swept clean after each sample interval was completed.

 

For sawn core, the core was cut in half by diamond cutting saw using water.  Each piece of core was rinsed prior to being bagged.  Sludge was collected in underlying pans, but was not collected for assaying purposes. Sludge and the core cutting area was cleaned regularly.

 

Sampling was supervised by the geologists, and all sampling was conducted at the core logging facility.  Samples were placed into larger bags, and or buckets, and were picked up regularly (almost daily) by the assay lab personnel, and were delivered to the lab.  Approximately 85% of the assaying was performed by Swastika Laboratories, Bondar Clegg performed some additional assaying. Most samples were run for both gold and arsenic, and the company had requested fire assay using a full assay ton, a 30 g sample.

 

No particular sample security measures were employed, i.e., the samples were not placed in tamper proof or tamper identifiable bags, were not shipped in tamper proof containers. Samples, when stored on site, were in a secured, locked, alarm controlled building. During the early days of the discovery, the facility was never left unattended by Band-Ore personnel. The company has retained all split core

 

66



 

samples in the core boxes with the exception of: certain core samples were collected independently by Mr. Joe Spiteri for his scatter plots, select pieces of core and intervals was taken by Band-Ore personnel for presentation purposes (which remain in the company’s offices). In addition, some intervals were removed and shipped to Lakefield for testing (Cavey, 2002).

 

Between 1998 and 2002 diamond drilling was not active on the property.

 

11.1.3: TIME PERIOD 2003

 

During 2003 all drill core logging, including the selection of sample intervals, is conducted by, or under the supervision of Professional Geologists, members of the Association of Professional Geologists of Ontario.  Core intervals that require sampling are marked off and tagged, with sample intervals rarely longer than 1.5 metres, and rarely shorter than 1.0 metres. Core splitting is conducted by using hydraulic splitters, and occasionally by core cutting saws using diamond blades. Approximately half of the sample is bagged for assay purposes, and the remaining half is placed back in the core box in the same order it occurs, and the core is retained for future reference purposes. A duplicate sample tag is placed at the beginning of each sample in the core box to ensure that each sample would be identifiable both by logged footage interval, and by the location of the sample tag. Under no circumstances is the entire core bagged and sent for assay during the sampling procedure.

 

For hydraulic splitting, pieces of core, including the “fines” are carefully collected and placed in plastic sample bags. At the end of each sample interval, the splitter and the immediate work top areas are swept clean to avoid cross contamination between samples. For sawn core, the core is cut in half by a diamond cutting saw using water. Each piece of core is rinsed prior to being bagged. Individual split core samples are placed in individual plastic bags, tagged, and immediately secured using nylon ties.  Individual samples are then placed in nylon shipping bags, secured with a security seal, and shipped to the laboratory for analysis. Samples which are awaiting shipment are stored in a secured building.

 

All gold assaying was performed by Swastika Laboratories, Swastika, Ontario, or ALS Chemex Chemitec, Val d’Or, Quebec, using a 30g standard fire assay with an AA finish. Both laboratories participate in the “Proficiency Testing Program for Mineral Analysis Laboratories”, a testing program which is conducted bi-annually by the Standards Council of Canada. Both laboratories have obtained a “Certificate of Laboratory Proficiency (Cavey, 2003).

 

11.1.4: TIME PERIOD 2004

 

The following is a general description of the sampling methods utilized, approach taken and security measures in place during the 2004 drill program. The information provided in this section was obtained from Mr. R. Duess P.Geo., the Band-Ore technical director, and V.P Exploration. The author was present to observe these procedures and confirm to their accuracy. All drill core logging, including the selection of sample intervals is conducted by, or under the supervision of Professional Geologists, members of the Association of Professional Geologists of Ontario.

 

Core intervals that require sampling are marked off and tagged, with sample intervals rarely longer than 1.5 metres, and rarely shorter than 1.0 metre. Core splitting is conducted by using hydraulic splitters, and occasionally by core cutting saws using diamond blades. Approximately half of the sample is bagged

 

67



 

for assay purposes, and the remaining half is placed back in the core box in the same order it occurs, and the core is retained for future reference purposes. A duplicate sample tag is placed at the beginning of each sample in the core box to ensure that each sample would be identifiable both by logged footage interval, and by the location of the sample tag. Under no circumstances is the entire core bagged and sent for assay during the sampling procedure.

 

For hydraulic splitting, pieces of core, including the “fines” are carefully collected and placed in plastic sample bags. At the end of each sample interval, the splitter and the immediate work top areas are swept and vacuumed clean to avoid cross contamination between samples. For sawn core, the core is cut in half by a diamond cutting saw using water. Each piece of core is rinsed prior to being bagged.  Individual split core samples are placed in individual plastic bags, tagged, and immediately secured using nylon ties. Individual samples are then placed in nylon shipping bags, secured with a security seal, and shipped to the laboratory for analysis. Samples which are awaiting shipment are stored in a secured building.

 

All gold assaying was performed by Swastika Laboratories, Swastika, Ontario, ALS Chemex Chemitec, Val d’Or, Quebec, or SGS Lakefield Research Limited, located in Rouyn — Noranda using a 30g standard fire assay with an AA finish. Swastika Labs, and ALS Chemex Chemitec participate in the “Proficiency Testing Program for Mineral Analysis Laboratories”; a testing program which is conducted biannually by the Standards Council of Canada. Both laboratories have obtained a “Certificate of Laboratory Proficiency.” SGS participates in CCRMP (PTP-MAL ) from CANMET Ottawa , GEOSTATS (Australia ) and SGS internal Round Robin (IRR) from all SGS geochem labs around the world.

 

As of the date (December 06, 2004), the three laboratories did not have ISO certification in place. However, all labs informed Mr. Duess that they were in the process of obtaining such certification. The author is unaware if ISO certification was in place for any of the laboratories which performed assaying during the 1995-1998 exploration programs. Cavey, 2004)

 

11.1.5: TIME PERIOD 2005

 

During the 2005 drill program, Swastika Laboratories processed its drill core samples. Gold assaying was, as reported to the author by Band-Ore personnel, by standard fire assay techniques with standard internal laboratory quality control typical of Canadian labs (Cavey, 2006).

 

11.1.6: WEST TIMMINS MINING INC. PERIOD 2006 TO 2009

 

In a press release dated February 07, 2007 Mr. Darin Wagner details the West Timmins Mining Inc.’s sample method and approach for the sampling of the Thorne property as the following. Geochemical results reported herein are from halved drill core samples collected from the Company’s West Timmins Gold project. Drill results reported were collected by the Company and are subject to the Company’s quality control program. Sampling of the drill core was conducted on site at the Company’s Timmins exploration office by trained personnel and sealed samples were transported to ALS-Chemex’s preparation facilities in either Timmins or Sudbury, Ontario. Samples were assayed for gold by standard fire assay-ICP finish with a 30 gram charge. Gold values in excess of 3 g/t were re-analyzed by fire assay with gravimetric finish for greater accuracy. The remaining half of the drill core is stored on-site at the Company’s Timmins exploration office. For quality control purposes blank, duplicate and analytical

 

68



 

control standards were inserted into the sample sequence at irregular intervals and no significant discrepancies are reported. Mr. Darin Wagner (M.Sc., P.Geo), the Company’s President, has acted as qualified person (Wagner, 2007).

 

In a press release dated March 28, 2007 Mr Wagner states: Geochemical results reported herein are from halved drill core samples collected from the Company’s West Timmins Gold project. Drill results reported were collected by the Company and are subject to the Company’s quality control program. For quality control purposes blank, duplicate and analytical control standards were inserted into the sample sequence at irregular intervals. The initial results from drill hole GS 07-18 failed to meet the Company’s stringent quality control standards and will be reported upon receipt and review of re-assay of samples from this hole. Sampling of the drill core was conducted on site at the Company’s Timmins exploration office by trained personnel and sealed samples were transported to the analytical facilities of Accurassay in Thunder Bay, Ontario. Samples were assayed for gold by standard fire assay-ICP finish with a 50 gram charge. Gold values in excess of 3 g/t have been re-submitted for fire assay with gravimetric finish as part of the Company’s quality control program. The remaining half of the drill core is stored on-site at the Company’s Timmins exploration office. Mr. Darin Wagner (M.Sc., P.Geo), the Company’s President, has acted as qualified person for this news release (Wagner, 2007).

 

During the period 2006 to 2009, the only documented or written procedures made available to the authors, concerning the handling of diamond drill core, core logging, drill core sampling, splitting, cutting, bagging, assay QA/QC are those stated in Mr. Wagner’s press releases.

 

11.2.0: LAKE SHORE GOLD CORP. SAMPLING METHOD AND APPROACH 2009 TO PRESENT

 

11.2.1: GENERAL OVERVIEW

 

The Qualified Person (“QP”) for Lake Shore Gold’s drill program at the Thorne Property is Jacques Samson, P.Geo., who as QP has prepared or supervised the preparation of the scientific or technical information for the property and verified the data disclosed by Lake Shore Gold Corp in this report. The QP for the Lake Shore’s Resource Estimates is Robert Kusins, P.Geo., the Chief Resource Geologist for the Company. Both Mr. Samson and Mr. Kusins are employees of Lake Shore Gold.

 

Lake Shore Gold has implemented a quality-control program to ensure best practice in the sampling and analysis of the drill core. Assays have been completed using a standard fire assay with a 30-gram aliquot. For samples that return a value greater than three grams per tonne gold (changed to greater than 10 grams per tonne gold on March 15th 2011), another aliquot from the same pulp is taken and fire assayed with a gravimetric finish. Select Zones with visible gold are tested by pulp metallic analysis. NQ size drill core is saw cut and half the drill core is sampled in standard intervals. The remaining half of the core is stored in a secure location. The drill core is transported in security-sealed bags for preparation at ALS Chemex Prep Lab located in Timmins, Ontario, and the pulps shipped to ALS Chemex Assay Laboratory in Vancouver, B.C. ALS Chemex is an ISO 9001-2000 registered laboratory preparing for ISO 17025 certification.

 

69



 

11.2.2: CORE HANDLING AND LOGGING PROTOCOLS

 

The diamond drill company employees secure the drill core boxes at the drill site for shipment from the field to the core logging facilities located at Lake Shore Gold’s exploration office complex at 1515 Government Road South, Timmins, Ontario and a second facility at 216 Jaguar Drive Timmins Ontario. The drill core is delivered to the core shacks by the foremen of the diamond drill contractors (Bradley Bros. Ltd., Orbit Grant, and Norex Diamond Drilling Limited (“Norex”).  Under the direct supervision of qualified person Mr. Jacques Samson, P.Geo., Lake Shore personnel open the boxes; check the metre markers for accuracy; label the boxes for hole number, box number and footage; prepare a quick log; and take rock quality designation (“RQD”) measurements.  Geological logging, sample number and location are entered directly into a computer using GEMCOM GEMS custom Drill Logger software.  Diamond drill logs are then printed, reviewed and edited where required.  The logs are detailed, and describing geology, structure, alteration, mineralization and do address lithological transition problem areas where naming nomenclature presents difficulties.  After geological logging is complete, the zones of interest are photographed, specific gravity readings are taken, and the core is given to a trained and supervised core sawing technician.  The technician saws the core in half along the designated lines and sample intervals prescribed by the Lake Shore geologist. The core sample length is determined by the geologist based upon lithology, alteration, percent sulphides, the presence of visible gold, and geological contacts. Core to be sent for analysis is cut in half using a diamond blade core saw.  The core half not bagged and tagged for assay is returned to the core box with a sample tag number stapled into the core box.  All diamond drill core is temporarily stored in racks or square piled in a secure compound at the core logging facility on Government Road and eventually transported to the Timmins Mine compound or permanent storage. Drill core from the Gold River project is easily accessible for inspection, or re-logging.

 

11.2.3: HOLE COLLAR AND DOWNHOLE ATTITUDE SURVEYS

 

The proposed drill holes locations are spotted in the field using a hand-held gps.  On a regular basis or as required the collars are surveyed by L. Labelle Surveys of Timmins for a final collar location.  The locations are surveyed and reported in UTM (NAD83).  The elevations are initially recorded in metres above Mean Sea Level (MSL);  for consistency within the LSG database, those elevations are normalized with the Timmins Mine surface elevation benchmark, where 300 MSL is reported as 10,000 m Mine Grid elevation;  A collar elevation of 310 MSL, would therefore be converted to 10,010 m in the database.

 

As the holes are drilled, changes in azimuth and inclination are monitored at 30 to 50 metre intervals using an EZ-shot Reflex instrument. Seven holes were re-surveyed using a north-seeking gyro by Halliburton/Sperry Drilling Services of North Bay, Ontario, and no significant discrepancies were noted with the Reflex instrument readings.

 

The table located in Appendix 1 lists the collar location, drill azimuth, hole inclination (drill dip) and total metres drilled.

 

70



 

11.2.4: SECURITY

 

The Gold River Project secure chain of custody for diamond drill core and samples starts at the drill and is completed with the safe return and storage of sample pulp and sample rejects locked garage storage facility.  Unscheduled visits to the diamond drill sites are made to insure safety, good working practices and drill core security.  The core is transported from the field to the core logging facility by the drill foreman.  Lake Shore Gold Corp.’s personnel receive the core and carry out the logging and sample preparation procedures as previously described.  The samples are enclosed within sealed shipping bags are delivered to the ALS Canada Ltd. (“ALS”) preparation laboratory facility located at 2090 Riverside Drive in Timmins by Lake Shore Gold Corp employees.  The ALS employee that receives the sample shipment signs a chain of custody document that is returned to Lake Shore’s office for reference and filing. The return assay results are reviewed by Mr. Jacques Samson, P.Geo., Ms. Christina Riddell, the data base manager, and selected members of the Lake Shore management group, on a need to know basis.

 

11.2.5: SURFACE DIAMOND DRILL CORE SAMPLE PREPARATION, ANALYSIS AND ANALYTICAL PROCEDURES

 

The following description outlines the method of treatment and procedures utilized by ALS Canada Ltd., to process and analysis surface diamond drill core from Lake Shore Gold Corp.’s Gold River property.  Lake Shore Gold Corp. employees are not involved in the sample preparation or analysis of samples once they have been delivered to the assay preparation laboratory in Timmins. Each project analysis sample program submitted to ALS Canada Ltd. (“ALS Canada”, “ALS”) is given a separate client number.  The laboratory is instructed to maintain the sample stream, the processing and analysis by keeping the samples in sequential order as they are shipped to the lab. Samples are entirely crushed to 70 % passing 2 millimetre mesh. The crushed samples were split and 250 grams sub-sample are pulverized to 85% passing less than 75 micron using a ring and puck pulverize (PREP-31). A 30 grams aliquot was taken from the pulp and analyzed by fire assay and atomic absorption methods (Au-AA23). For samples that returned an assay value greater than three grams per tonne gold, another pulp sample was taken and analyzed using a gravimetric finish (Au-GRAV21). Effective March 15th 2011, the threshold for proceeding with a gravimetric finish was raised to ten grams per tonne gold, in order to improve turnaround time.  If visible gold was noted in the core sample, the samples may be analyzed by the Pulp and Metallic method (Au-SCR21). The entire samples were crushed to 70 % passing 6 millimetre mesh, and the entire sample was then pulverized to 85 % passing 75 micron (PREP-32). The pulp is passed through a 100 micron stainless steel screen and the entire (+) fraction is analyzed by fire assay and gravimetric finish.  The (-) fraction is homogenized and two 30 grams aliquots are analyzed by fire assay and atomic absorption finish (Au-AA25 and Au-AA25D).  The total gold content is then calculated by combining the weighted averages of the two fine fractions with the grade of the coarse fraction.

 

All samples are also analyzed for arsenic (As) by Aqua Regia digestion and atomic absorption scanning (AA-45, and AA46 if greater than 10,000 ppm).

 

As part of ALS Canada Limited’s internal QA/QC program a duplicate reject sample it prepared every 50th sample. The number of internal blanks, standards and duplicate control samples inserted into the sample stream depends upon rack size.  For regular AAS, ICP-AES and ICP MS methods the rack holds 40

 

71



 

positions, of which, there are two laboratory standards, one laboratory duplicate and one laboratory blank. For regular fire assay methods the rack contains 84 positions, for which there are two laboratory standards, three laboratory duplicates and one blank sample.

 

Lake Shore Gold Corp. blank samples are prepared from known gold barren diamond drill core samples of diabase.  These blank samples are blindly packaged as regular core samples, and are labeled and inserted in the sample stream, in sequence with the regular core samples, at a frequency of one approximately every 20 samples.  Blank samples, are used to check for possible contamination in the crushing circuit, and are not placed after a standard sample.

 

Certified gold standards individually wrapped in 60 grams sealed envelopes were prepared by Ore Research and Exploration Pty. Ltd. of 6-8 Gatwick Road, Bayswater North, Victoria, Australia (“OREA”) and provided by Analytical Solutions Ltd.  Several standards are used in order to vary the expected value and depending on availability of the standard.  These Certified Standards are purchased from Ms. Lynda Bloom, Analytical Solutions Ltd., at 1214-3266 Yonge Street, Toronto, Ontario. Standard samples are inserted into the sample stream at a frequency of one per 20 samples and are used to check the precision of the analytical process.  Table 11.1 lists the standards utilized by Lake Shore for the Gold River project.

 

TABLE 11.1.0: OREAS STANDARDS USED BY LAKE SHORE GOLD CORP. FOR THE GOLD RIVER PROJECT

 

Standard

 

Target

 

Std.Dev

 

Min

 

Max

 

Nb

 

Average

 

%Diff.

 

Sig.

 

PBelow

 

PAbove

 

POutside

 

 

 

g/tAu

 

g/tAu

 

g/tAu

 

g/tAu

 

 

 

g/tAu

 

%

 

 

 

%

 

%

 

%

 

O-10c

 

6.660

 

0.183

 

6.110

 

7.080

 

43

 

6.586

 

-1.1

%

1

 

65.1

%

34.9

%

2.3

%

O-10Pb

 

7.150

 

0.193

 

6.570

 

7.730

 

13

 

7.106

 

-0.6

%

0

 

53.8

%

46.2

%

7.7

%

O-15h

 

1.019

 

0.025

 

0.945

 

1.093

 

123

 

1.018

 

-0.1

%

0

 

48.8

%

51.2

%

0.8

%

O-15Pa

 

1.020

 

0.027

 

0.940

 

1.100

 

198

 

0.992

 

-2.7

%

1

 

86.1

%

13.9

%

6.1

%

O-15Pb

 

1.060

 

0.030

 

0.970

 

1.140

 

292

 

1.056

 

-0.4

%

1

 

57.5

%

42.5

%

1.7

%

O-18c

 

3.52

 

0.107

 

3.200

 

3.840

 

19

 

3.529

 

0.3

%

0

 

39.5

%

60.5

%

0.0

%

O-18Pb

 

3.630

 

0.070

 

3.420

 

3.840

 

29

 

3.653

 

0.6

%

0

 

39.7

%

60.3

%

3.4

%

O-2Pd

 

0.885

 

0.029

 

0.797

 

0.973

 

472

 

0.882

 

-0.3

%

1

 

53.0

%

47.0

%

1.1

%

O-53Pb

 

0.623

 

0.021

 

0.559

 

0.687

 

64

 

0.621

 

-0.4

%

0

 

47.7

%

52.3

%

3.1

%

O-54Pa

 

2.900

 

0.110

 

2.570

 

3.230

 

58

 

2.904

 

0.1

%

0

 

40.5

%

59.5

%

1.7

%

O-60b

 

2.570

 

0.107

 

2.250

 

2.890

 

87

 

2.572

 

0.1

%

0

 

38.5

%

61.5

%

1.1

%

O-61d

 

4.760

 

0.143

 

4.330

 

5.190

 

73

 

4.825

 

1.4

%

1

 

28.1

%

71.9

%

0.0

%

O-66a

 

1.237

 

0.054

 

1.075

 

1.399

 

248

 

1.239

 

0.2

%

0

 

48.0

%

52.0

%

1.6

%

O-67a

 

2.238

 

0.096

 

1.950

 

2.526

 

111

 

2.252

 

0.6

%

0

 

39.6

%

60.4

%

1.8

%

O-68a

 

3.890

 

0.147

 

3.450

 

4.330

 

101

 

3.876

 

-0.4

%

0

 

48.0

%

52.0

%

3.0

%

O-6Pc

 

1.520

 

0.067

 

1.320

 

1.720

 

506

 

1.540

 

1.3

%

1

 

28.3

%

71.7

%

0.8

%

All

 

1.683

 

 

 

 

 

 

 

2437

 

1.685

 

0.0

%

 

 

47.8

%

52.2

%

1.8

%

 

Prior to May, 2010, ALS had been instructed to take one reject duplicate Lake Shore Gold sample after every 25 samples processed. This procedure involved taking the duplicate sample and crushing it to -6 mesh, run it through a riffle splitter to create two samples of approximately equal proportions. One of the halves is then assigned the sample number and the other duplicate sample is placed in a separate plastic bag and labeled with the same sample number and the suffix “dup”. The two samples are then treated as two entirely separate samples through the rest of the sample preparation and assaying process.  The method of selecting reject duplicates was further modified starting May, 2010 in order to make a blind duplicate sample. Currently 1 reject duplicate is selected every 20 samples by the geologist logging the drill core. The geologist gives the duplicate sample a sample number and places it in an

 

72



 

empty bag, sequentially behind the sample from which it will be cut. When received by the lab, the preceding sample to the duplicate is crushed to -6 mesh, then run through a riffle splitter to create two samples of approximately equal proportions.  One half is returned back into the original sample bag and the other half is placed into the empty bag, now as a separate sample with a different sample number. From this point on, the sample is blind to the analytical process.  The insertion of a duplicate sample is to monitor the integrity of the assay results.

 

11.2.6: DATA MANAGEMENT

 

Copies of assay certificates are either downloaded from the external lab LIMS system and/or sent via mail to the LSG database manager, and to the project’s Qualified Person.  The digital assay data, in the form of “csv” files are checked manually against the final paper assay certificates for clerical errors, and the results interrogated by a Lab Logger Version 2.0 program created by Gemcom.  The use of the software program ensures that the results from the QA/QC samples fall within the approved limits of the standard before this data is imported into the database.

 

11.2.7: ACCURACY ANALYSIS - STANDARDS AND BLANKS

 

Beginning in March 2009, samples results were entered into an Excel spreadsheet to determine if the assay value for the standards falls outside the control limits, if this occurred then these samples would be highlighted for check analysis. Since April 2010 this process has been handled using an ACCESS application developed by Gemcom Software International Inc. called Lab Logger (v.2.0).  Sample assay results, internal QC information, shipping data, standards, and duplicate samples are each stored in separate QC database tables, and data can be merged into relevant plot files as needed.

 

The QC samples in each group were subjected to specific pass or failure criteria, which determined whether a re-assay of the batch was required.  A sample group failure was identified whenever the analytical result for any certified standard in the group of 20 was greater than three standard deviations (the control limit) from the certified mean value for the standard and for any blank material, a value greater than 100 ppb (0.100 ppm).  All failed groups of samples were investigated to attempt to determine the cause of the erroneous result (analytical or clerical).  Potential clerical errors are sometimes reconciled by checking against original drill log records or original laboratory data sheets.  After the batch pass/failure criteria was applied, a geological override may be applied by the project QP on batches for which re-assay would be of no benefit (i.e. completely barren of gold assay values and mineralization indicators).  Sample groups given a geological override were not re-assayed.

 

Sample groups in which the QC samples were outside the established control limits that did not receive a geological override are not imported into the database. Instead, these samples were requested to be re-run at the analytical lab. In the case that the standard failed, all samples back to either: a) the last blank or standard that passed; or b) the first sample for the project in the sequence of samples being analyzed, were re-run from the pulp. In the case that the blank failed, all samples back to either: a) the last blank or standard that passed; or b) the first sample for the project in the sequence of samples being analyzed, were re-run from the reject material as this indicates contamination in the sample preparation stage.  If a request is made for re-analysis due to a standard failure then a new standard is sent to the lab to be analyzed with the samples in question.

 

73



 

11.2.8: PRECISION ANALYSIS — DUPLICATES

 

Prior to April 2010 internal laboratory pulp duplicate data and reject duplicate data were statistically followed and analyzed using EXCEL and after April 2010 using the Lab Logger software and were used for comparative statistical analysis. Comparison was made using descriptive statistics and scatter plots.  These plots were used primarily to identify project specific problems in assay reproducibility (precision), and individual erratic results, indicating potential sampling problems or clerical errors in the sample order within the batch.  When problems were identified in the data precision, the labs were notified and asked to investigate and report back their findings.  Erratic sampling results are then noted in monthly reports so that the geologist would be aware of the uncertainty in the sample value and be able to check for potential clerical errors within the samples then as per standard procedures, the first assay result from the pair was accepted into the database.

 

11.2.9: REPORTING AND PLOTTING

 

Brief monthly reports are completed during the year to include the number of samples sent to each lab for each project, the number of QC samples that failed, together with the reason why. As well, on a monthly basis, graphs are generated of each individual blind standard and blank, as well as the non-blind reject pairs and pulp duplicate pairs to check for sample bias at the assay lab.  All major projects are summarized individually, either at year end or at the end of the program, as soon as reasonably possible.

 

11.3.0: CHECK ASSAY PROGRAM

 

11.3.1: GENERAL STATEMENT

 

For major programs, or programs leading to resource or reserve calculations, a check assay program is implemented either during or following completion of drilling.  In this program, approximately 5% of the pulps form previously analyzed samples will be selected for re-assay at a neutral assay facility.  In order to select these check assays, groups of samples that passed QC but excluding QC samples are picked randomly from samples from a specific program.

 

The pulps were selected randomly by hole, ensuring that a wide range of original assay values, from trace to high grade were represented. The samples selected for check analysis were sent to SGS Mineral Services of Toronto for analysis.  For some selections, consecutive groups of samples ranging from 10-40 in number were picked randomly to make the selection process simpler. The pulps were initially analyzed using the fire assay with an AA finish (SGS analysis code FAA313) method and for results greater than 5 grams per tonne a re-assay was conducted by fire assay using a gravimetric finish.

 

11.3.2: PROCEDURES

 

Pulps will be selected by LSG project personnel and an electronic list of selected sample numbers will be prepared for the samplers. The samples will be submitted to the analytical facility in groups of 20, with the blind QC consisting of one standard and one previously analyzed blank pulp (18 samples, 2 QA/QC

 

74



 

samples). The laboratory will report their internal pulp duplicate results as part of the assay report.  The old and new sample numbers and the positions of the standard and blank pulps will be recorded on the Check Assay excel table as the samples are packed and shipped to the lab for analysis.  Once analysis has been completed, the assay lab will report their findings in the standard LSG assay file format, including all of their internal QC data as part of the electronic assay file and will also provide a complete documentation of the means and standard deviation values for all internal reference materials used for the analyses.

 

When the check assay results are returned, the QC inserted in the check assay batches will be analyzed and comparative statistical analysis will be completed on all possible pairs of data, including, internal non-blind pulp duplicates and original assay versus check assay.

 

Reporting will be completed, after all assays are received, and have passed quality control checks.  A master report for each project will be issued documenting the procedures implemented and the QC results for all of the analyses.  The check assay results will be reported under separate cover for each individual project.

 

11.4.0: DISCUSSION

 

11.4.1: GENERAL OVERVIEW

 

Table 11.4.1 summarizes the diamond drill core QA/QC sampling program by WTM and LSG.  The QA/QC data for the West Timmins Mining period was only partially recovered; portions of the various electronic databases appeared incomplete, and the remaining QA/QC data still needs to be captured from hard copies of the drill logs and/or from the samples books, where available.  Analytical results from 1,799 QA/QC samples which included 1484 control samples from WTM and 315 control samples from Band-Ore were recovered from the historical databases, and were reviewed (as a single batch) by SGS Geostat, including an additional 7145 control samples from the Lake Shore drilling programs.  The QA/QC graphics on standards and blanks generated by Lake Shore Gold for the Gold River project are included in Appendix 5.  Observations, statistical analyses, discussion of results and recommendations of the data are contained in an independent report completed by Michel Dagbert, P. Eng of SGS Geostat, which is located in Appendix 8

 

TABLE 11.4.1: GOLD RIVER QA/QC DIAMOND DRILL CORE SAMPLING PROGRAM

 

 

 

Surface Diamond Drilling

 

Surface Diamond Drilling

 

Sample Type

 

(WTM*)

 

(LSG)

 

Number of blank samples

 

806

 

2503

 

Number of duplicate samples

 

4

 

2126

 

Number of Standard samples

 

674

 

2516

 

Total QA/QC Samples

 

1484

 

7145

 

Number of QA/QC failures

 

N/A

 

63

 

Number of QA/QC failures override*

 

N/A

 

50

 

Number of QA/QC failures sent for re-assay

 

N/A

 

13

 

 


*WTM numbers reported are approximations from partial recovery of data

 

75



 

Note *

 

Reasons for a geological override include:

 

1)                                     if a standard or a blank fails by less than 0.05 grams per tonne as this is very close to the cut-off for a pass.

2)                                     If a standard or a blank fails by more than 0.05 grams per tonne and there are no ore grade samples, and no ore grade sample was anticipate within the area of the QC failure the sample is overridden as it is believed that no significant assay is affected.

3)                                     Occasionally a failure is due to the wrong standard being recorded as sent or two QC samples being switched at some point in the shipping process.  If this occurs and the error can be absolutely proven but corrections cannot be made the failure is overridden

4)                                     In the situation of a standard or blank failing but the drill hole is in an area that is actively being mined or developed before a re-assay can be returned the failure is overridden.

5)                                     Any time there is a failure of a blank ore standard that does not fall into one of the criteria it can still be overridden if the qualified person believes the error is forgivable.  In this case a comment stating the override is added to the database. An example of this is the QP noted that one standard was consistently failing by the same extent of an error.  The error was overridden and the standard replaced in future sample shipments.

6)                                     All other failures are pulp re-assayed by the laboratory they were initially assayed.

 

76



 

12.0: DATA VERIFICATION

 

12.1.0: GENERAL DISCUSSION

 

The diamond drilling logs, and assay results used in the preparation of the resource models were derived from four separate exploration companies.  Much reliance regarding the quality of the data is placed on the diligence of the supervisors overseeing the programs, being Mr. Joe MacPherson for Esso Minerals Canada (1985-1988), Mr. Robert Duess as QP for Band-Ore Resources Ltd. (1992-2006), Mr. Darin Wagner as QP for West Timmins Mining (2006-2009), and Mr. Jacques Samson as QP for Lake Shore Gold Corp. (2009-present).

 

12.2.0: HISTORICAL TREATMENT

 

Historical assays from the Esso Minerals exploration programs could not be verified, as drill core, rejects and pulps are no longer available.  Assay certificates for drill holes T-1 to T-5 were found, and results were consistent with the gold assays reported in the historical drill logs.  Results for the rest of the Esso holes were accepted at face value, as they appeared to be consistent with the results from more recent drilling.

 

Cavey (2002) reports that Joe Spiteri of Spiteri Geological and Mining Consultants Inc. (“SGM”) completed a quality control and data verification program on the drill core from three of the mineralized zones on the Thorne property. He selected 206 samples of drill core and sent them to a second lab for analysis. The following is his summary of this program from a July 27, 1997 memo to Band-Ore.

 

“—To summarize, SGM selected 206 sample intervals for check assay and 9 intervals (3 from each zone) for specific gravity measurement. The distribution of the assay database was as follows: In all cases the remaining —half of the core was sent for measurement. All the samples were selected from assay intervals deemed to be part of the mineralized zone. Wherever possible, complete — ore intervals were selected to simulate a complete cut across the deposit. (West Zone (69 QC Samples); Lower Fault Zone (55 QC Samples); East Zone 82 QC Samples.)

 

The sample preparation work commissioned by SGM was performed by Chemex Laboratories in Timmins, while the analysis was performed in Mississauga.

 

The correlation coefficient for the complete data base is greater than 0.95, which is statistically good, in particular because we are comparing separate halves of core (i.e. a coarse sample). With the exception of 2 or 3 statistical outliers the scatter of the overall data was found to be good. It should be noted; however, that for values greater than 10 g/t Swastika Laboratories shows a high bias in both the East and West Zones (but not the LFZ).

 

This same bias is apparent in “Figure 4” of the July 17, 1997 SGM Report. This figure compared 84 originals and rejects from Swastika and Bondar-Clegg. The fact that a similar bias occurs between originals/rejects and two halves of the core, leads me to believe that

 

77



 

the problem is not with the core splitting. It is recommended that the pulps or rejects presently being stored with Chemex be sent to Swastika for re-assay.

 

The specific gravity measurements show very little variation from zone to zone, regardless of sulphide concentration. The average being 2.8.”

 

During the 2003 drilling program Mr. G. Cavey took five duplicate core samples from one of the drill holes at the time of a site visit.  The duplicates were analyzed in Vancouver by IPL Laboratories using the same procedures as ALS Chemex Chemitec, one of the labs used by Band-Ore and returned similar analytical results. Band-Ore Resources also undertook a routine QA/QC (quality control/quality assurance) program in addition to any programs employed by the individual laboratories, which was designed by the author (Cavey, 2003).  A minimum of 4% of samples submitted for analysis (four samples per hundred) are submitted as field blanks, and at least one sample per hole is submitted as a field duplicate.  Band-Ore also sporadically requests the re-assay of rejects at different laboratories for comparison of results.  The company has retained all split core samples in the core boxes with the exception of selected pieces of core and intervals taken by Band-Ore personnel for presentation purposes (these samples have not been located by Lake Shore Gold Corp. personnel).  Therefore, the author is of the opinion that the current sampling and QC/QA program now in place at Thorne meets the standards set out in NI 43-101 (Cavey, 2003).

 

Cavey’s 2004 report introduces the use of a certified standard per hole.  He states “In addition, Band-Ore inserts at least one blank, and at least one certified standard per hole, which is blindly placed into each hole and sent to the lab. There were no discrepancies in the analyses of the blanks and standards inserted into the sample streams that would suggest a lab error. Linda Bloom, of Analytical Solution Ltd., supplied the standard reference material. The reference material was supplied as 60 gm sealed foil packets termed OREAS reference material, Ore Research & Exploration Pty Ltd., 3 London Drive, Bayswater, Victoria, 3153, Australia. Grade varied from 0.182 to 11.27 g/t Au.”

 

During the 2004-2005 drill phase, a total of 3,621 core samples were sent for analyses plus the 211 QC/QA samples which therefore represented approximately 6% of the total sample database. The author is of the opinion that the current sampling and QC/QA program now in place at Thorne meets the standards set out in NI 43-101 and that no additional data verification sampling was required for future drill programs (Cavey 2006).  Band-Ore, in most situations, routinely inserts at least one blank and at least one certified standard per hole, which are blindly placed into each hole and sent to the lab. Only three holes did not have a QC/QA sample inserted. In areas of wide spread mineralization or large alteration zones, additional standards and blanks were inserted into the sample stream. In addition to the blanks and standards, the company routinely creates a duplicate sample by sawing one of the ½ split core into a ½ splits (now ¼ of the original core size) and submits the duplicate into the sample stream in select holes. There were no discrepancies in the analyses of the blanks and standards inserted into the sample streams that would suggest a lab error. Linda Bloom, of Analytical Solution Ltd., supplied the standard reference material. The reference material was supplied as 60 gm sealed foil packets termed OREAS reference material, Ore Research & Exploration Pty Ltd., 3 London Drive, Bayswater, Victoria, 3153, Australia. Band-Ore used 13 different standards, grade varied from 49 ppb to 11.27 g/t Au.

 

From September 2006 to November 2009, West Timmins Mining (WTM) had implemented a QA/QC program under the supervision of QP Mr. Darrin Wagner.  As stated in a press release dated February 07, 2007, Mr. Wagner states that “for quality control purposes blank, duplicate and analytical control standards were inserted into the sample sequence at irregular intervals and no significant discrepancies

 

78



 

are reported.”

 

For the purpose of data verification, Lake Shore Gold sent the analytical results of 1799 QA/QC samples from the Gold River property (GR) which included 1484 control samples from WTM and 315 control samples from Band-Ore to be reviewed by Michel Dagbert, P. Eng of SGS Geostat.  He concluded: “Despite the high variability of gold grades from GR samples, the QAQC data of samples from pre-LSG holes (2003-2006) and analyzed at the ALS and Swastika labs tend to indicate that the quality of those sample grade values is satisfactory. Although we have significant differences between mean results and target values for some standards, we do not see any overall bias from the results of standards. Blanks show a few cases of likely contamination but the proportion of real failures keeps low (0.4%).  Based on results for standards and blanks, the quality (both accuracy and precision) of assays at the Accurassay lab is more questionable. Fortunately, the results for standards at that lab indicate that gold values from that lab are likely to undervalue the true gold grade of submitted samples” (Dagbert 2012).  His complete report of statistical analysis is included in Appendix 8.

 

In August 2011, Lake Shore Gold also completed a check-assay program on 124 pulp samples collected from nine drill holes completed by Band-Ore, and from one hole completed by WTM.  The pulps were selected from mineralization zones thought to be representative of the Gold River West and Gold River East Zones, including samples from the Kapika area.  The correlation coefficient between ALS Chemex and the original assays from Swastika Laboratories is 0.997, which is considered excellent.  Details are included in Appendix 6.

 

12.3.0: LAKE SHORE GOLD CORP. DATA

 

Geological core logging and sampling are carried-out by LSG personnel, under the direct supervision of Jacques Samson, P.Geo. and QP for the project.  Verification of the data being recorded is part of an ongoing process, where drill logs are first to be reviewed by the original logger.  Processing of the assay results through the database manager will identify any apparent QA/QC failures, which are directly notified to the QP for the project.  The QP will then look into the apparent issues, and determine the nature of the failure (data entry error or analytical), and will dictate a course of action.  All drill logs have been verified by the QP, to ensure that lithologies, surveyed collar locations, downhole survey data, and assay data entries are complete.  A few minor issues were noted in the header tables, such as missing data entry for township, claim number for collar location, and comments regarding if the casing had been retrieved or not.  Portions of approximately 30 holes drilled by Lake Shore Gold Corp. were reviewed by Dave Rhys in 2011, and edits to the lithological tables were subsequently added to the corresponding drill logs.

 

All QA/QC data from Lake Shore Gold’s diamond drilling of the Gold River project up to January 17, 2012 was sent to SGS Geostat for review.  Michel Dagbert concluded:  “Despite the high variability of gold grades from GR samples, the QAQC data of samples from LSG holes in 2010-2011 and analyzed at the ALS Canada Ltd. lab tend to indicate that the quality of those sample grade values is more than satisfactory. Although we have significant differences between mean results and target values for some standards, we do not see any overall bias from the results of standards. Blanks show a few cases of likely contamination but the proportion of real failures keeps extremely low (0.2%). Lab and coarse duplicates show better than expected sample errors i.e. about 5% relative difference for pulp duplicates and 20% relative difference for coarse duplicates. Check pulp samples at the SGS lab indicate that there is a possibility that ALS values are slightly conservative” (Dagbert, M., 2011).

 

79



 

12.4.0: ELECTRONIC DATABASE VERIFICATION

 

The historical database consisted of hard copies of drill logs, and numerous electronic versions provided by WTM in Excel, Access, and Log II format.  The LSG drill data is recorded directly into a computer using GEMCOM GEMS custom Drill Logger software.  In an effort to integrate all historical drill data into the current Lake Shore electronic database, all hard copies of historical drill logs were compared with the original digital copies available.

 

If only a hard copy of the drill log was found, or if the electronic versions were found to be incomplete, the most critical elements such as litho codes, collar locations, downhole surveys and assays were manually re-entered in the database.  Missing sampled intervals were re-entered by referring to the original sample books if available. Driller timesheets were often consulted when the end of hole was not noted in the log.  Out of 752 drill holes, 31 drill logs remain incomplete, including 5 which are completely missing.

 

For consistency, the format for naming drill holes was standardized (i.e. Gw07-01a would have been renamed GW-07-01A), and holes which were extended were assigned the suffix letter “E” (i.e. since TW96-23 was extended, it has been renamed TW-96-23E).

 

Different geological legends were used by the various operators over the years.  All litho codes were converted to a standard geological legend compatible with the one currently used by LSG for the project.

 

All original downhole survey tests available were collected, re-entered in an Excel table, and were verified for discrepancies against the electronic data.

 

Most historical drill holes collars were originally surveyed for Band-Ore and West Timmins Mining in NAD 27 coordinate system by Talbot Surveys Ltd.  Upon request by LSG, the surveying contractor provided a transformation to NAD 83.  For verification of accuracy, 24 historical collars were re-surveyed by Labelle L. Surveys.  Only one significant discrepancy was noted (TH-97-221), and this hole was excluded from the resource models.  All collars were plotted, and outliers were compared to historical drill plans and sections; in a few cases, the surveyed collar locations had to be rectified and positioned relative to other drill holes, as they clearly related to mislabeled or misread collars during the field survey.

 

Great effort was made to obtain digital and/or hard copies of assay certificates from all analytical labs used during the drilling programs by Band-Ore and West Timmins Mining.  Most certificates from Accurassay, ALS Chemex and Swastika Laboratories were located, and results were manually re-entered if gaps in the historical assay database were noted; all electronic certificates were imported and compared with the historical records.  A few minor discrepancies probably relating to clerical errors were noted and rectified.  For most of the Band-Ore drilling period (particularly from 1995 to 1998), the electronic certificates were not available, and only the most significant assay results reported in the drill logs were cross-checked against the original printed certificates.

 

Most historical drill logs are in the current Lake Shore Gold’s database in a “skeleton” format, which includes collar location, downhole surveys, litho codes and assays; geological details and header information such as dates, name of the core logger, etc, were not imported in the electronic database, but the original hard copies of the drill logs are available for reference.

 

80



 

The database was validated for interval overlaps, unusual sample lengths, and negative intervals.  Minor errors were noted and rectified, and no critical errors were found that would affect the geological or mineralization model.

 

12.5.0: RECOMMENDATIONS

 

Several recommendations were made following core review by Mr. Dave Rhys during the summer of 2011 (Rhys, 2011a, 2011b).

 

It was noted that several discrete lithologic units were not always recognized by the core loggers.  In particular, properly identifying the mafic unit which lies at the core of the Gold River Shear Zone, may help in targeting new mineralization zones; “Its presence defines the position of the shear zone, and changes in the thickness and morphology of the unit may have had important influence on the development of networks of shear zones hosting mineralization which occur in the adjacent sedimentary sequence” (Rhys 2011b).  Re-logging of some of the recent drill holes is currently underway, with a better emphasis on tracking deformation, alteration and density of the grey quartz-carbonate veinlets.  This should be expanded to a review of some of the historical core if accessible.  Valuable information could also be captured from the historical drill logs, coded and entered in the electronic database.  As data is being collected, modeling of the lithological units (mafics, conglomerates, porphyries) will help in positioning the various zones of mineralization, and may assist in targeting new areas.

 

A review of the geophysical data covering the Gold River property was initiated in 2011.  This project needs to be re-evaluated, focusing on tracking the Gold River Shear Zone and its associated mafic unit, and could assist in the identification of new potential gold-bearing structures.

 

81



 

13.0:  MINERAL PROCESSING AND METALLURGICAL TESTING

 

13.1.0: GENERAL DISCUSSION

 

Cavey reports in his June 30, 2002 and December 20, 2003 reports that Lakefield Research Limited performed a preliminary metallurgical examination on a 68 kilogram composite sample of drill core from the Thorne East Zone from holes TH-96-12, 19, 21, 22, 23, 25, 27, 30, 31, 32, 36, 37, 39, 41, 43, 45, 46, 47, 48, 51, 54 and 58. Lakefield completed gravity, cyanidation, froth flotation and pressure oxidization/cyanidation test on the composite sample. The information contained in this section is derived from a Lakefield report, titled —An Investigation of the Recovery of Gold and Silver from Northern Ontario Ore Samples, Lakefield Research” dated Feb 17, 1997. The author (Cavey) believes the information to be accurate and accepts the validity of the report.

 

In summary, gold recovery was poor as the gold particles were found to be fine grained regardless of feed size for both the gravity and cyanidation circuits. J. Spiteri P.Eng., summarizes the Lakefield report as follows:

 

—It was determined that a flotation time of 20 minutes would yield a recovery of in excess of 90% and a concentrate grade of 100g/t. pressure autoclaving was used as a means to oxidize the sulphide matrix. It yielded recoveries of 99% thereby indicating the refractory nature of the ore. It was concluded that a high grade concentrate can be produced by re-grinding and cleaning a rougher concentrate, but this concentrate would incur significant penalties as a result of the arsenic content. Lakefield recommended that studies be performed to test the possibility of reducing the arsenic content in the final concentrate. They did conclude that eliminating the arsenic would result in a loss of a significant proportion of the gold. It should be noted that the actual arsenic grade has not been established.”

 

All attempts by LSG at locating a copy of the original Lakefield Research report were unsuccessful.  No drill core from the West Deposit was sent for metallurgical testing.

 

No additional historical metallurgical testing is reported to have been completed.

 

The authors accepts the possibility that the conclusions of the investigation summarized by Spiteri is accurate for the samples taken, but that these may not be representative for all mineralization at the property or deposits being evaluated for resource potential. LSG is currently in the process of selecting samples from the various mineralized zones in order to carry out a new metallurgical study.

 

82



 

14.0: MINERAL RESOURCE ESTIMATES

 

14.1.0: SUMMARY

 

Lake Shore Gold has prepared an updated Mineral Resource Estimate for the Gold River property based on historical diamond drilling and drilling completed by LSG between February 2010 and January 17th 2012. All drilling was completed from surface with drill spacing locally down to 20 to 25 metres on strike and down-dip and up to 100m spacing at depth. A total of 752 holes totaling 228,045 metres have been completed on the Gold River property of which Lake Shore Gold completed 140 holes for a total of 55,816 metres. Most of drilling completed by Lake Shore targeted the East Deposit area above the 600 metre depth. A total of 492 solid intersections were used in the Resources estimate from 328 unique drill holes.

 

The Resource models are comprised of fifteen zones which have been grouped into two deposits called the East and West Deposits as shown in Figure 14.1.1. The Deposits extend for 3.3 kilometres along the Gold River Trend and are roughly centered on 461480E section and extend from surface to the 9200m elevation (0 to 800m below surface) for the East Deposit and on 459390E section and extend from surface to 9555m elevation (0 to 445m below surface) for the West Deposit. The Mineral Resource Estimate by category is tabulated in Table 14.1.1

 

The Gold River Resource totals 0.69Mt at 5.29 g/t Au, amounting to 117,400 ounces of gold in the Indicated category and 5.27Mt at 6.06 g/t Au, amounting to 1,027,800 ounces of gold in the Inferred category.

 

The Resources was estimated using Inverse Distance to the power 2 (ID2) interpolation method with all gold assays capped to 50 gram metres or 25 gram metres depending on the zone, and an assumed long-term gold price of US$1,200 per ounce.  The base case estimate assumes a cut-off grade of 2.0 gpt Au.

 

TABLE 14.1.1: GOLD RIVER TREND DEPOSITS MINERAL RESOURCE ESTIMATES

(Prepared by Lake Shore — January,  2012)

 

Resource
Classification

 

Deposit

 

Tonnes

 

Capped
Grade

g/t Au

 

Contained Gold
(ounces)

 

Indicated Resources

 

East

 

597,000

 

5.42

 

104,100

 

 

 

West

 

93,000

 

4.44

 

13,300

 

 

 

 

 

 

 

 

 

 

 

 

 

Total Indicated

 

690,000

 

5.29

 

117,400

 

 

 

 

 

 

 

 

 

 

 

Inferred Resources

 

East

 

4,317,000

 

6.39

 

887,300

 

 

 

West

 

955,000

 

4.57

 

140,500

 

 

 

 

 

 

 

 

 

 

 

 

 

Total Inferred

 

5,273,000

 

6.06

 

1,027,800

 

 

83



 

Notes

1.              CIM definitions were followed for classification of Mineral Resources.

2.              Mineral Resources are estimated at a cut-off grade of 2.0 g/t Au.

3.              Mineral Resources are estimated using an average long-term gold price of US$1,200 per ounce and a US$/C$ exchange rate of 0.93.

4.              A minimum mining width of two metres was used.

5.              Capped gold grades are used in estimating the Mineral Resource average grade.

6.              Sums may not add due to rounding.

7.              There are no Mineral Reserves estimated for the Gold River Trend.

8.              Metallurgical recoveries are assumed to average 85%.

9.              Mining costs are assumed to average $90.00/tonne.

10.       Mr. Robert Kusins, B.Sc., P.Geo., is the Qualified Person for this Resource Estimate.

 

There are no Mineral Reserves present on the property as of the date of this Technical Report.

 

The current Resource Estimate updates a 1998 Estimate by Spiteri Geological & Mining Consultants Inc. which totalled approximately 4 million tonnes of 3 g/t gold for about 400,000 contained gold in the Inferred category. The thirteen previous zones have been largely re-interpreted into fifteen zones based on the previous drilling and holes completed since 1998. A comparison of the previous nomenclature for the zones and the current designations are summarized in Table 14.1.2.

 

TABLE 14.1.2: COMPARISON OF HISTORICAL AND CURRENT ZONE NOMENCLATURE

 

Spiteri 1998

 

Lake Shore 2012

 

Area

 

Zone

 

Deposit

 

Zone

 

Thorne West

 

Footwall

 

West Deposit

 

W1A, W1A1

 

 

 

Hangingwall

 

 

 

W1B, W1B1

 

 

 

 

 

 

 

 

 

East Zone

 

South Limb

 

East Deposit

 

4800, 4800_S1, 4800_S1A

 

 

 

Plum (Core)

 

 

 

4800_N1

 

 

 

Nose

 

 

 

4800_N1, 4800_N2

 

 

 

 

 

 

 

 

 

Lower Fault

 

Main

 

East Deposit

 

4800_S1, 4800_S2

 

 

 

Small

 

 

 

4800_S1

 

 

 

Diabase

 

 

 

4800_S1

 

 

 

West

 

 

 

4800_S1

 

 

 

 

 

 

 

 

 

Other Zones

 

South Limb - East

 

East Deposit

 

4800, 4800_S1, 4800_S1A

 

 

 

4500E

 

 

 

4800_S1

 

 

 

4800E

 

 

 

4800_S1

 

 

 

North Porphyry

 

 

 

4800_N1

 

 

 

 

 

 

 

 

 

New Zones

 

 

East Deposit

 

4800_S1D

 

 

 

 

 

 

4800_S3D

 

 

 

 

 

 

4800_N4

 

 

 

 

 

 

4800_N5A (Kapika)

 

 

 

 

 

 

4800_N5B (Kapika)

 

 

84



 

FIGURE 14.1.1:  3-D VIEW OF GOLD RIVER TREND DEPOSITS, LOOKING NORTHEAST

 

GRAPHIC

 

85



 

14.2.0: ESTIMATION METHOD

 

14.2.1: ESTIMATION METHOD AND PARAMETERS

 

The following general procedure was used in developing of the block model Mineral Resource Estimate for the Gold River Deposits and includes:

 

·                  Database compilation and verification in Gemcom GEMS (“GEMS”).

 

·                  Interpretation of the zones on 25m spaced sections taking into account continuity of lithology, alteration and mineralization. Limits of the zone were defined by a lower cut-off of about 2.0gpt Au to provide continuity of zones. Mineralization often extends across lithological contacts. A minimum mining width of approximately 2.0m. Closed 3D rings were constructed and assigned an appropriate rock type and stored with its section definition in the GEMS polyline workspace

 

·                  Zones are defined by 3 or more intersections that form a continuous band of mineralization.

 

·                  The sectional interpretations are then strung together by tie lines and 3-D solids or wireframes are generated that represent the mineralized zones that are used for estimation of tonnes and grade. Outside edges of the 3-D model are extruded half the distance to the next section in areas with drilling, or 50.0m in areas with no drilling. Eleven 3-D solids were constructed to enable individual volumes, tonnages and grades to be reported. All solids were validated using GEMS validation tools to insure valid solids had been generated. A 3-D view of the interpreted zones is shown in Figure 14.2.1.

 

·                  Solid intersection composites are generated from all drill holes intersecting the 3-D Mineral Resource Solids. Corresponding entry and exit points are saved to the drill hole workspace and back coded with a zone identifier.

 

·                  Individual 1m composites are generated from the assay table based on down-the-hole averaging within the limits of the solid intersection composites. Composites whose widths are less than 0.5m are removed from the composite table. The composites are stored in a GEMS point area table along with a corresponding rock code for each composite.

 

·                  The 1m composites are then used to generate a block model grade based on an Inverse Distance Squared (“ID²”) interpolation that encompasses the 3-D wireframes that were assigned a unique rock code (4800, 4800_S1, 4800_S1A, 4800_S2, 4800_S1D, 4800_S3D, 4800_N1, 4800_N2, 4800_N4, 4800_N5A, 4800_N5B, W1A, W1A1, W1B, W1B1). Blocks were interpolated utilizing 5 passes. The first pass populated blocks within a 15m search radius requiring 3 holes within the search radius with a maximum of 2 composites from any one hole and a maximum of 10 composites. The second pass populated blocks within a 30m search radius requiring 3 holes within the search radius with a maximum of 2 composites per hole and a maximum of 10 composites. The third pass populated blocks within a 60m search radius requiring 2 holes within the search radius with a maximum of 2 composites per hole and a maximum of 10 composites. . The fourth pass populated blocks within a 60m search radius requiring 1 holes within the search

 

86



 

radius with a maximum of 2 composites per hole and a maximum of 10 composites. The final pass was populated within a 120m search radius requiring a minimum of 1 holes, a maximum of 2 composites per hole and a maximum of 10 composites.

 

·                  The Resources were categorized on longitudinal section by grouping of areas of predominately pass 1 and 2 as Indicated and the remaining areas of largely pass 3 and 4 as Inferred Resources. A final category field was added to the block model to track this categorization.

 

87



 

FIGURE 14.2.1:  3-D VIEW OF EAST DEPOSIT RESOURCE SOLIDS, LOOKING NORTHEAST

 

GRAPHIC

 

88



 

FIGURE 14.2.2:  3-D VIEW OF WEST DEPOSIT RESOURCE SOLIDS, LOOKING NORTHEAST

 

 

89



 

14.2.2: DATABASE

 

The database used for the current Resource Estimate is comprised of a Gemcom GEMS (Microsoft SQL) database which was compiled from data received from West Timmins Mining Inc. and work completed by LSG since acquisition of the properties. The GEMS database was used for the Mineral Resource estimation process and consists of tables including header, survey, lithology, and assay data with pertinent fields summarized in Table 14.2.2.1 Other tables and additional fields within the above tables are currently being utilized by Lake Shore in logging of the drill core and final resource estimation.

 

The following validation steps were taken to insure the integrity of the database:

 

1)              Plotting of plans and sections to check for location, elevation and downhole survey errors.

 

2)              Checking for any gaps, overlaps and out of sequence intervals for assay and lithology data using the GEMS validation tools.

 

3)              Thorough review of all historical data available to insure assay and survey (collar and down hole) information were properly presented in the database.

 

4)              Random validation of assay and lithology data against the drill logs and assay certificates.

 

Only minor discrepancies were noted and corrected prior to the estimation of the resources. None of the errors detected would have a significant impact on the Mineral Resource Estimate. The database, in the writer’s opinion, is appropriate for reporting of the Gold River Trend Resource.

 

In addition to the drill hole data, other data such as cross-sectional geological interpretation strings, section and level plan definitions, 3-D geological solids, point area data of assays and composites, as well as the block model, are stored within the GEMS database.

 

90



 

TABLE 14.2.2.1:  SUMMARY OF GEMS SQL DRILL HOLE DATABASE

 

Table Name

 

Table Description

 

Fields

Header

 

Drill hole collar location data in local grid co-ordinates

 

Hole-ID
Location X
Location Y
Location Z
Length

Collar_Az
Collar_ Dip

 

 

 

 

 

Survey

 

Down hole survey data of direction measurements at down hole distances

 

Hole-ID
Distance
Azimuth
Dip

 

 

 

 

 

Assays

 

Sample interval assay data with Au units grams per tonne

 

Hole-ID
From
To
Sample_NO
Au_GPT_FIN
Au_GPT_AA
Au_GPT_GRA
Au_GPT PM

 

 

 

 

 

Lithomaj

 

Major logged rock type intervals down hole

 

Hole-ID
From

To
Rocktype

 

 

 

 

 

Lithomin

 

Minor logged rock type intervals down hole

 

Hole-ID
From
To
Rocktype

 

14.2.3: GRADE CAPPING

 

Lake Shore Gold has utilized grade capping in its estimation of the Mineral Resources for the Gold River Trend Resource. To evaluate potential cutting factors, assay values were extracted from the database into a GEMS point area cloud and only those assays within the limits of the solid were used in plotting of cumulative distribution plots and log distribution plots. Individual statistical reports based on the raw gold assays were generated for each of the fifteen solids and are tabulated in Table 14.2.3.1. Due to a number of zones having a limited number of samples, the zones were grouped into East and West Deposits. The Kapika Zone (4800_N5A and 4800_N5B), a part of the East Deposit displaying a different style of mineralization and host rock was grouped separately for grade capping purposes.

 

91



 

A review of the West Deposit data shows all zones with a coefficient of variation of less than 2.00, which indicates no grade capping would be required for these zones. The combined totals for the East Deposit of 5.41 would indicate capping of the gold grade is required.

 

TABLE 14.2.3.1:  BASIC STATISTICS OF RAW AU ASSAYS RESOURCE SOLIDS

 

Zone

 

Total #
Samples

 

Minimum
(gpt Au)

 

Maximum
(gpt Au)

 

Mean
(gpt Au)

 

99th
Percentile

 

Coefficient of
Variation

 

4800

 

282

 

0.0025

 

138.00

 

5.64

 

62.13

 

2.25

 

4800_S1

 

375

 

0.0025

 

1350.00

 

10.41

 

91.95

 

6.97

 

4800_S1A

 

95

 

0.0025

 

71.24

 

5.23

 

53.62

 

1.77

 

4800_S2

 

39

 

0.0025

 

19.80

 

3.76

 

19.80

 

1.17

 

4800_S1D

 

72

 

0.0025

 

67.20

 

5.90

 

57.81

 

1.71

 

4800_S3D

 

154

 

0.008

 

295.00

 

8.13

 

110.50

 

3.34

 

4800_N1

 

267

 

0.0025

 

168.00

 

6.19

 

90.87

 

2.51

 

4800_N2

 

80

 

0.007

 

40.70

 

6.98

 

39.40

 

1.29

 

4800_N4

 

33

 

0.014

 

15.25

 

3.81

 

15.25

 

0.88

 

4800_N5A*

 

40

 

0.0025

 

122.20

 

6.09

 

122.20

 

3.18

 

4800_N5B*

 

86

 

0.010

 

35.20

 

4.74

 

31.40

 

1.23

 

Total East

 

1523

 

0.0025

 

1350.00

 

7.09

 

83.72

 

5.41

 

W1A

 

102

 

0.0025

 

25.71

 

3.97

 

25.51

 

1.16

 

W1A1

 

27

 

0.030

 

18.14

 

4.30

 

18.14

 

1.00

 

W1B

 

78

 

0.0025

 

16.69

 

3.92

 

15.03

 

0.88

 

W1B1

 

11

 

0.874

 

9.96

 

4.36

 

9.96

 

0.65

 

Total West

 

218

 

0.0025

 

25.71

 

4.01

 

24.32

 

1.02

 

Total All Zones

 

1741

 

0.0025

 

1350

 

6.71

 

71.72

 

5.36

 

 


* Kapika Zone

 

The zones were grouped into East Deposit (excluding Kapika) and Kapika Zone styles of mineralization and cumulative frequency plots were generated to determine discrete breaks in the population at the upper level of the assay data, to determine appropriate cutting levels for the zones. The GEMS statistical reports were as well examined to determine breaks in the populations. Gram metre values were used in the capping exercise to better represent the higher grade samples which are often taken over narrow intervals. Individual plots were created for each of the 2 mineralization styles, as well as a combined plot for gram metre gold values above a 0.1 g/t Au lower cut-off and are shown in Figures 14.2.3.1 to 14.2.3.4.

 

92



 

Figure 14.2.3.1: CUMULATIVE FREQUENCY EAST DEPOSIT (EXCLUDING KAPIKA ZONE)

 

 

FIGURE 14.2.3.2: LOG CUMULATIVE FREQUENCY EAST DEPOSIT (EXCLUDING KAPIKA)

 

 

93



 

FIGURE 14.2.3.3: CUMULATIVE FREQUENCY KAPIKA ZONE

 

 

FIGURE 14.2.3.4: LOG CUMULATIVE FREQUENCY KAPIKA ZONE

 

 

94



 

It was determined from the data that a gram metre value of 50m.g/t Au was appropriate for East Deposit. This capping level results in 16 assay values being capped out of a total of 1,179 assays occurring within the limits of the resource solids. This represents 1.4% of the total population. The capping level for the Kapika Zone was estimated at 25m.g/t Au. This capping level results in 2 assay values being capped out of a total 110 assays occurring within the limits of the resource solids. This represents 1.8% of the total population. No capping was required for the West Deposit. A summary of the samples above the grade cap is tabulated in Table 14.2.3.2.

 

TABLE 14.2.3.2:  SAMPLES ABOVE GRADE CAP BY ZONE

 

Zone

 

Capped Grade
(m. g/t Au)

 

# of Samples
Above Cap

 

Total # of Samples

 

 

 

 

 

 

 

 

 

East Deposit

 

50

 

16

 

1,179

 

Kapika

 

25

 

2

 

110

 

West Deposit

 

 

0

 

218

 

All Zones

 

 

 

18

 

1,507

 

 

14.2.4: BLOCK MODEL ASSAY COMPOSITING

 

Each 3-D solid was assigned a unique numeric rock code and name which were used to back code a name and rock code into all drill hole solid intersections. A total of 492 solid intersections were used in the Resources estimate from 328 unique holes and are summarized in Appendix 4, Gold River Solid Intersections.  This solid intersection table was used to generate a set of equal length composites of 1m length within the limits of the 3-D solid. The 1m composites are stored in a GEMS table and extracted out into a point area cloud for interpolation purposes. Both capped and uncapped composite grades are stored in the point area file.

 

A total of 1,654 1m composites from 492 holes were used in the estimating of the Resource.  Basic statistics of the 1m composites were compiled for the fifteen solids used in the Resource Estimate and are tabulated in Tables 14.2.4.1.

 

95



 

TABLE 14.2.4.1:  SAMPLE COMPOSITE STATISTICS

 

 

 

4800

 

4800_S1

 

4800_S1A

 

4800_S1D

 

Statistic

 

Au g/t

 

Au g/t Cap
(50m.g/t)

 

Au g/t

 

Au g/t Cap
(50m.g/t)

 

Au g/t

 

Au g/t Cap
(50m.g/t)

 

Au g/t

 

Au g/t Cap
(50m.g/t)

 

# Samples

 

291

 

291

 

349

 

349

 

91

 

91

 

60

 

60

 

Minimum

 

0.00

 

0.00

 

0.00

 

0.00

 

0.0025

 

0.0025

 

0.00

 

0.00

 

Maximum

 

107.14

 

50.00

 

405.67

 

50.00

 

71.18

 

49.96

 

48.32

 

48.32

 

Mean

 

4.81

 

4.46

 

6.83

 

5.07

 

5.14

 

4.90

 

5.30

 

5.30

 

Median

 

2.26

 

2.26

 

3.15

 

3.15

 

2.64

 

2.64

 

3.49

 

3.49

 

Variance

 

98.42

 

52.84

 

625.85

 

62.61

 

79.05

 

53.14

 

63.90

 

63.90

 

Std Dev

 

9.92

 

7.27

 

25.02

 

7.25

 

8.89

 

7.29

 

7.99

 

7.99

 

CV

 

2.06

 

1.63

 

3.66

 

1.43

 

1.73

 

1.49

 

1.51

 

1.51

 

 

 

 

4800_S2

 

4800_S3D

 

4800_N1

 

4800_N2

 

Statistic

 

Au g/t

 

Au g/t Cap
(50m.g/t)

 

Au g/t

 

Au g/t Cap
(50m.g/t)

 

Au g/t

 

Au g/t Cap
(50m.g/t)

 

Au g/t

 

Au g/t Cap
(50m.g/t)

 

# Samples

 

46

 

46

 

93

 

93

 

298

 

298

 

63

 

63

 

Minimum

 

0.00

 

0.00

 

0.01

 

0.01

 

0.00

 

0.00

 

0.01

 

0.01

 

Maximum

 

14.33

 

14.33

 

116.38

 

49.95

 

168.00

 

50.00

 

27.98

 

27.98

 

Mean

 

3.27

 

3.27

 

7.54

 

6.41

 

5.73

 

4.71

 

6.15

 

6.15

 

Median

 

2.39

 

2.39

 

3.06

 

3.06

 

2.43

 

2.43

 

3.97

 

3.97

 

Variance

 

12.37

 

12.37

 

222.25

 

86.11

 

191.32

 

51.17

 

45.50

 

45.50

 

Std Dev

 

3.52

 

3.52

 

14.91

 

9.28

 

13.83

 

7.15

 

6.75

 

6.75

 

CV

 

1.08

 

1.08

 

1.98

 

1.45

 

2.41

 

1.52

 

1.10

 

1.10

 

 

 

 

4800_N4

 

4800_N5A

 

4800_N5B

 

W1A

 

Statistic

 

Au g/t

 

Au g/t Cap
(50m.g/t)

 

Au g/t

 

Au g/t Cap
(25m.g/t)

 

Au g/t

 

Au g/t Cap
(25m.g/t)

 

Au g/t

 

Au g/t Cap
(m.g/t)

 

# Samples

 

38

 

38

 

81

 

81

 

90

 

90

 

119

 

119

 

Minimum

 

0.00

 

0.00

 

0.00

 

0.00

 

0.00

 

0.00

 

0.002

 

0.002

 

Maximum

 

8.98

 

8.98

 

73.98

 

25.00

 

17.09

 

17.09

 

25.69

 

25.69

 

Mean

 

3.20

 

3.20

 

2.63

 

1.91

 

3.89

 

3.89

 

4.19

 

4.19

 

Median

 

2.62

 

2.62

 

0.58

 

0.58

 

2.84

 

2.84

 

3.05

 

3.05

 

Variance

 

5.30

 

5.30

 

79.14

 

16.04

 

16.50

 

16.50

 

20.70

 

20.70

 

Std Dev

 

2.30

 

2.30

 

8.90

 

4.01

 

4.06

 

4.06

 

4.55

 

4.55

 

CV

 

0.72

 

0.72

 

3.39

 

2.10

 

1.04

 

1.04

 

1.08

 

1.08

 

 

96



 

TABLE 14.2.4.1:  SAMPLE COMPOSITE STATISTICS CONTINUED

 

 

 

W1A1

 

W1B

 

W1B1

 

Total

 

Statistic

 

Au g/t

 

Au g/t Cap
(m.g/t)

 

Au g/t

 

Au g/t Cap
(m.g/t)

 

Au g/t

 

Au g/t Cap
(m.g/t)

 

Au g/t

 

Au g/t Cap
(m.g/t)

 

# Samples

 

38

 

38

 

81

 

81

 

9

 

9

 

1,747

 

1,747

 

Minimum

 

0.17

 

0.17

 

0.0025

 

0.0025

 

1.58

 

1.58

 

0.00

 

0.00

 

Maximum

 

18.05

 

18.05

 

16.69

 

16.69

 

7.56

 

7.56

 

405.67

 

50.00

 

Mean

 

4.24

 

4.24

 

3.83

 

3.83

 

4.15

 

4.15

 

5.27

 

4.60

 

Median

 

2.82

 

2.82

 

3.09

 

3.09

 

4.06

 

4.06

 

2.66

 

2.66

 

Variance

 

14.91

 

14.91

 

10.28

 

10.28

 

3.72

 

3.72

 

202.72

 

45.51

 

Std Dev

 

3.86

 

3.86

 

3.21

 

3.21

 

1.93

 

1.93

 

14.24

 

6.75

 

CV

 

0.91

 

0.91

 

0.84

 

0.84

 

0.46

 

0.46

 

2.70

 

1.47

 

 

14.3.0: SPECIFIC GRAVITY

 

Specific gravity (“SG”) was determined on 141 samples from 59 holes of East and West Deposits at the Lake Shore exploration office using the conventional approach of weighing the samples dry and immersed in water. Similar styles of mineralization are present in both deposits with specific gravity varying between 2.67 and 3.12. The average of all samples within the Resource solids was 2.80 which was the value used for the Resource Estimate.

 

14.4.0: VARIOGRAPHY

 

Semi-variograms were created for the Resource solids using the 1m composites with the assay intervals capped at 50 m.g/t Au for the East and West Deposits. The variograms for the East and West Deposits are shown in Figure 14.4.1 along with a combined variogram.

 

In general the variography confirmed the general orientation of the models with the primary direction along the strike of the zones between 90 and 102 degrees azimuth. The models typically produced a range for the primary structure from 30 to 40m with sill values from 15 to 50 gammas and low nugget values. A shallow plunge to the east was apparent from all of the models generated.

 

97



 

FIGURE 14.4.1 VARIOGRAMS

 

East

 

 

West

 

 

Combined

 

 

 

98



 

14.5.0: BLOCK MODEL MINERAL RESOURCE MODELING

 

14.5.1: GENERAL

 

The grade of the Mineral Resources is estimated by using the ID² interpolation method. This method interpolates the grade of a block from several composites within a defined distance range from the block. The estimation uses the inverse of the distance between a composite and the block as the weighting factor to determine the grade.

 

14.5.2: BLOCK MODEL PARAMETERS

 

The Mineral Resources have been estimated using a separate block models for each of the East and West Deposits which form the Resource.  A summary of the block model grid parameters are shown in Table 14.5.2.1.

 

TABLE 14.5.2.1: BLOCK MODEL GRID PARAMETERS

 

East Deposit

 

Model Origin

 

Grid

 

Model Dimension

 

Block Dimension

X

 

460450 E

 

Columns

700

 

Column width

3.0 m

Y

 

5354790 N

 

Rows

380

 

Row width

2.0 m

Z

 

10050 el

 

Levels

350

 

Level height

3.0 m

 

 

 

 

Orientation

No rotation

 

 

 

 

West Deposit

 

Model Origin

 

Grid

 

Model Dimension

 

Block Dimension

X

 

458750 E

 

Columns

420

 

Column width

3.0 m

Y

 

5355200N

 

Rows

260

 

Row width

2.0 m

Z

 

10050 el

 

Levels

215

 

Level height

3.0 m

 

 

 

 

Orientation

No rotation

 

 

 

 

14.5.3: GRADE INTERPOLATION

 

Blocks within the block models were interpolated by a five pass system with the first pass requiring that composites from at least three holes be used in determining the block grade. Separate interpolation passes were carried out for the East and West Deposits.

 

The primary search distance for this pass was set to 15m which is equivalent to the ½ the range as determined from the variography. This pass resulted in the interpolation of 1,194 blocks or 0.5% of the

 

99



 

total for the East Deposit and no blocks interpolated for the West Deposit. The second pass was based again on three holes required within the search distance and the distance was expanded to 30m, or equivalent to the range as determined from the variography. This pass resulted in 27,652 blocks estimated or 11.2% of the total for the East Deposit and 2,206 blocks estimated or 4.6% of the total for the West Deposit.

 

The third pass required only 2 holes within a search radius of 60m, or equivalent to two times the range as determined from the variography. This pass resulted in 143,683 blocks being interpolated or 58.4% of the total for the East Deposit and 36,722 blocks or 76.4% of the total for the West Deposit.

 

The final two passes both required a minimum of one hole within the search radius of 60m and 120m to fill in the resource solids. The fourth pass interpolated 64,549 blocks or 26.2% of the total for the East Deposit and 7,306 blocks or 15.2% of the total for the West Deposit, while the final pass estimated 9,150 blocks or 3.7% of the total for the East Deposit and 1,833 blocks or 3.8% of the total for the West Deposit.

 

The variography as well as the general geometry of zones, alteration and mineralization were used to establish the search ellipse parameters. The orientation of the search ellipse by deposit and zone are summarized in Table 14.5.3.1. Similar search ellipse parameters were used for multiple zones where appropriate.

 

TABLE 14.5.3.1: SEARCH ELLIPSE PARAMETERS

 

East Deposit

 

Zone: 4800, 4800_S1, 4800_S1A, 4800_S2

 

 

 

Search Ellipse 
Orientation (ZXZ)

 

Search Ellipse 
Range

 

Number of Samples

 

Pass

 

z

 

x

 

z

 

x

 

y

 

z

 

min

 

max

 

Max/hole

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

-2

 

-62

 

0

 

15

 

15

 

8

 

5

 

10

 

2

 

2

 

-2

 

-62

 

0

 

30

 

30

 

15

 

5

 

10

 

2

 

3

 

-2

 

-62

 

0

 

60

 

60

 

30

 

3

 

10

 

2

 

4

 

-2

 

-62

 

0

 

60

 

60

 

30

 

2

 

10

 

2

 

5

 

-2

 

-62

 

0

 

120

 

120

 

50

 

2

 

10

 

2

 

 

100



 

Zone: 4800_S1D, 4800_S3D

 

 

 

Search Ellipse 
Orientation (ZXZ)

 

Search Ellipse 
Range

 

Number of Samples

 

Pass

 

z

 

x

 

z

 

x

 

y

 

z

 

min

 

max

 

Max/hole

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

5

 

-80

 

0

 

15

 

15

 

8

 

5

 

10

 

2

 

2

 

5

 

-80

 

0

 

30

 

30

 

15

 

5

 

10

 

2

 

3

 

5

 

-80

 

0

 

60

 

60

 

30

 

3

 

10

 

2

 

4

 

5

 

-80

 

0

 

60

 

60

 

30

 

2

 

10

 

2

 

5

 

5

 

-80

 

0

 

120

 

120

 

50

 

2

 

10

 

2

 

 

Zone: 4800_N1, 4800_N2, 4800_N4, 4800_N5A, 4800_N5B

 

 

 

Search Ellipse 
Orientation (ZXZ)

 

Search Ellipse 
Range

 

Number of Samples

 

Pass

 

z

 

x

 

z

 

x

 

y

 

z

 

min

 

max

 

Max/hole

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

-2

 

-85

 

0

 

15

 

15

 

8

 

5

 

10

 

2

 

2

 

-2

 

-85

 

0

 

30

 

30

 

15

 

5

 

10

 

2

 

3

 

-2

 

-85

 

0

 

60

 

60

 

30

 

3

 

10

 

2

 

4

 

-2

 

-85

 

0

 

60

 

60

 

30

 

2

 

10

 

2

 

5

 

-2

 

-85

 

0

 

120

 

120

 

50

 

2

 

10

 

2

 

 

West Deposit

 

Zone: W1A, W1A1

 

 

 

Search Ellipse 
Orientation (ZXZ)

 

Search Ellipse 
Range

 

Number of Samples

 

Pass

 

z

 

x

 

z

 

x

 

y

 

z

 

min

 

max

 

Max/hole

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

10

 

-68

 

0

 

15

 

15

 

8

 

5

 

10

 

2

 

2

 

10

 

-68

 

0

 

30

 

30

 

15

 

5

 

10

 

2

 

3

 

10

 

-68

 

0

 

60

 

60

 

30

 

3

 

10

 

2

 

4

 

10

 

-68

 

0

 

60

 

60

 

30

 

2

 

10

 

2

 

5

 

10

 

-68

 

0

 

120

 

120

 

50

 

2

 

10

 

2

 

 

Zone: W1B, W1B1

 

 

 

Search Ellipse 
Orientation (ZXZ)

 

Search Ellipse 
Range

 

Number of Samples

 

Pass

 

z

 

x

 

z

 

x

 

y

 

z

 

min

 

max

 

Max/hole

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

5

 

-65

 

0

 

15

 

15

 

8

 

5

 

10

 

2

 

2

 

5

 

-65

 

0

 

30

 

30

 

15

 

5

 

10

 

2

 

3

 

5

 

-65

 

0

 

60

 

60

 

30

 

3

 

10

 

2

 

4

 

5

 

-65

 

0

 

60

 

60

 

30

 

2

 

10

 

2

 

5

 

5

 

-65

 

0

 

120

 

120

 

50

 

2

 

10

 

2

 

 

101



 

14.6.0: BLOCK MODEL VALIDATION

 

Plans and sections were cut through the block model and Resource solids to visually compare the block grades to the drill hole grades. The grade and distribution of the block grade is consistent with drill hole assay data and the interpolation parameters that were used. A typical section through the Resource solids is illustrated in Figure 14.6.1 for the West Deposit area and in Figure 14.6.2 for the East Deposit area. A Plan view of the models cut at the -160m Level are shown for the East Deposit area is shown in Figures 14.6.3.

 

Volumes of the individual solids were compared to volumes of the individual solids from the block model to insure proper coding of the solid.

 

A nearest neighbor interpolation of the block model using the same parameters and search ellipse as the ID² interpolation was completed and compared. Results showed no significant differences between the two interpolation methods and are tabulated in Table 14.6.1.

 

An independent review of the Resource Estimate was completed by Michel Dagbert, P. Eng of SGS Geostat.  A copy of the review titled “Resource Modeling and Estimation of the Gold River Trend Deposits” is attached in Appendix 8.

 

102



 

FIGURE 14.6.1:  SECTION 459560 LOOKING WEST - RESOURCE BLOCK MODEL

 

GRAPHIC

 

103



 

 

FIGURE 14.6.2:  SECTION 461460E LOOKING WEST - RESOURCE BLOCK MODEL

 

GRAPHIC

 

104



 

FIGURE 14.6.3:  BLOCK AND DRILL HOLE GRADES, -160m LEVEL

 

GRAPHIC

 

105



 

TABLE 14.6.1: COMPARISON OF ID² AND NEAREST NEIGHBOUR INTERPOLATIONS, BLOCKS ABOVE 0.0 GPT Au UNCLASSIFIED

 

East Deposit

 

Interpolation
Method

 

Tonnage*
(t)

 

Grade
(g/t Au)

 

Ounces**
(oz Au)

 

ID²

 

6,432,418

 

5.42

 

1,120,092

 

NN

 

6,471,251

 

5.57

 

1,158,050

 

Relative difference

 

-1

%

-3

%

-3

%

 

West Deposit

 

Interpolation
Method

 

Tonnage*
(t)

 

Grade
(g/t Au)

 

Ounces**
(oz Au)

 

ID²

 

1,164,259

 

4.25

 

159,236

 

NN

 

1,164,259

 

4.22

 

157,970

 

Relative difference

 

0

%

1

%

1

%

 

All Deposits

 

Interpolation
Method

 

Tonnage*
(t)

 

Grade
(g/t Au)

 

Ounces**
(oz Au)

 

ID²

 

7,596,677

 

5.24

 

1,279,328

 

NN

 

7,635,510

 

5.36

 

1,316,020

 

Relative difference

 

-1

%

-2

%

-3

%

 

14.7.0: MINERAL RESOURCES AND CLASSIFICATION

 

14.7.1: GENERAL

 

Lake Shore has separated the resources into eleven Resource solids between 460620E and 462340E for the East Deposit, a horizontal distance of 1.7 kilometres and four Resource solids between 459040E and 459740E for the West Deposit, a horizontal distance of 700 metres. Vertically, the zones have been defined from surface to about the 9200m elevation (800m below surface) for the East Deposit and from surface to the 9555m elevation (445m below surface) for the West Deposit.  The bulk of the resources are located above the 400m Level with 83% of the tonnes and 73% of the ounces located above this elevation. Details of the Resources by type are summarized in the following sections and views of the block models are illustrated in Figure 14.7.2.1 and 14.7.2.2.

 

106



 

14.7.2: MINERAL RESOURCES

 

The Indicated Mineral Resources for the Gold River Trend Deposits totals 690,000 tonnes at 5.29 g/t Au amounting to 117,400 ounces of gold. Table 14.7.2.1 summarizes the Resources at the 2.0 g/t Au cut-off.   Inferred Resources are as well summarized in Table 14.7.2.1 and amount to 5.27 million tonnes at 6.06 g/t Au totaling 1,027,800 ounces of gold. The effective date of this resource is January 17, 2012.

 

TABLE 14.7.2.1:  GOLD RIVER TREND DEPOSITS RESOURCES

 

Deposit

 

Category

 

Tonnes

 

Capped Grade
(g/t Au)

 

Capped Ounces
Au

 

East

 

Measured

 

 

 

 

 

 

Indicated

 

597,000

 

5.42

 

104,100

 

West

 

Measured

 

 

 

 

 

 

Indicated

 

93,000

 

4.44

 

13,300

 

Total

 

Measured and Indicated

 

690,000

 

5.29

 

117,400

 

 

 

 

 

 

 

 

 

 

 

East

 

Inferred

 

4,317,000

 

6.39

 

887,300

 

West

 

Inferred

 

955,000

 

4.57

 

140,500

 

Total

 

Inferred

 

5,273,000

 

6.06

 

1,027,800

 

 

Notes

1.               CIM definitions were followed for classification of Mineral Resources.

2.               Mineral Resources are estimated at a cut-off grade of 2.0 g /t Au.

3.               Mineral Resources are estimated using an average long-term gold price of US$1,200 per ounce and a US$/C$ exchange rate of 0.93.

4.               A minimum mining width of two metres was used.

5.               Capped gold grades are used in estimating the Mineral Resource average grade.

6.               Sums may not add due to rounding.

7.               There are no Mineral Reserves estimated for the Gold River Trend.

8.               Metallurgical recoveries are assumed to average 85%.

9.               Mining costs are assumed to average $90.00/tonne.

10.         Mr. Robert Kusins, B.Sc., P.Geo., is the Qualified Person for this Resource Estimate.

 

A summary by Level is shown in Table 14.7.2.2.

 

107



 

TABLE 14.7.2.2:  GOLD RIVER TREND DEPOSITS RESOURCES BY LEVEL

 

Resource
Classification

 

Level

 

Deposit

 

Tonnes

 

Capped
Grade

(g/t Au)

 

Capped Ounces
Au

 

Indicated

 

Surface to -400m Level

 

East

 

597,000

 

5.42

 

104,100

 

 

 

 

 

West

 

93,000

 

4.44

 

13,300

 

 

 

 

 

All

 

690,000

 

5.29

 

117,400

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

-400m to -800m Level

 

East

 

 

 

 

 

 

 

 

West

 

 

 

 

 

 

 

 

All

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Total Indicated

 

East

 

597,000

 

5.42

 

104,100

 

 

 

 

 

West

 

93,000

 

4.44

 

13,300

 

 

 

 

 

All

 

690,000

 

5.29

 

117,400

 

 

 

 

 

 

 

 

 

 

 

 

 

Inferred

 

Surface to -400m Level

 

East

 

3,331,000

 

5.38

 

576,400

 

 

 

 

 

West

 

950,000

 

4.58

 

139,700

 

 

 

 

 

All

 

4,281,000

 

5.20

 

716,100

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

-400m to -800m Level

 

East

 

986,000

 

9.81

 

310,900

 

 

 

 

 

West

 

6,000

 

3.87

 

700

 

 

 

 

 

All

 

992,000

 

9.78

 

311,700

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Total Inferred

 

East

 

4,317,000

 

6.39

 

887,300

 

 

 

 

 

West

 

955,000

 

4.57

 

140,500

 

 

 

 

 

All

 

5,273,000

 

6.06

 

1,027,800

 

 

108


 


 

FIGURE 14.7.2.1:  3-D VIEW OF EAST DEPOSIT BLOCK MODEL LOOKING TO THE NORTHEAST

 

GRAPHIC

 

109



 

FIGURE 14.7.2.2:  3-D VIEW OF EAST DEPOSIT BLOCK MODEL LOOKING TO THE NORTHEAST

 

GRAPHIC

 

110



 

Indicated Resources were those blocks that formed a continuous zone on longitudinal section above the 2.0g/t Au cut-off based on blocks largely interpolated by the first two passes (3 holes within 30m search radius) of the interpolation process. Polygons were constructed about the drill hole solid intersections to help define the sphere of influence of individual holes and to demonstrate continuity. Portions of zones 4800, 4800_S1, 4800_S1A, 4800_N1 and 4800_N2 for the East Deposit and W1B for the West Deposit were continuous enough to be classified as Indicated. Longitudinal views of the individual zones were generated and areas of Indicated Resources were clipped out of the Resource Solid to facilitate re-coding of the resource category as illustrated in Figure 14.7.2.3.

 

The remaining portions or entire zones were deemed to lack continuity or the necessary confidence to be classified as Indicated. These portions or entire zones were classified as Inferred.

 

Through the modeling process there were a number of isolated intersections that could not be directly linked to one of the current Resource models. These intersections which amount to 39% of the high assay intervals above 20 g/t Au may with additional drilling provide the necessary continuity to allow construction of Resource solids. These isolated intersections were not included in the current Resource and may provide upside potential if the additional work can establish their continuity.

 

Uncut gold values were carried for the Resource to determine the effect of the capped grade and are tabulated in Table 14.7.2.2. The uncut gold grade for the Indicated Resource at the 2.0 g/t Au lower cut-off is 5.54 g/t Au amounting to 122,900 ounces. The grade capping for the Indicated Resource has reduced the total by 5,500 ounces or 5% of the total resource. Similarly, the uncut gold grade for the Inferred Resource at the 2.0g/t Au lower cut-off is 6.06g/t amounting to 116,800 ounces or 11% of the total resource.

 

111



 

FIGURE 14.7.2.3:  RESOURCE CLASSIFICATION 4800 ZONE, LONGITUDINAL VIEW LOOKING NORTH

 

GRAPHIC

 

112



 

TABLE 14.7.2.3: GOLD RIVER TREND DEPOSITS MINERAL RESOURCE ESTIMATES

 

Category

 

Deposit

 

Zone

 

Tonnes
(t)

 

Uncapped
Grade

(g/t Au)

 

Uncapped
Ounces

(oz)

 

Capped
Grade

(g/t Au)

 

Capped
Ounces

(oz)

 

Indicated

 

East

 

4800

 

153,000

 

6.71

 

33,000

 

6.04

 

29,700

 

 

 

 

 

4800_S1

 

246,000

 

4.69

 

37,100

 

4.63

 

36,600

 

 

 

 

 

4800_S1A

 

73,700

 

7.08

 

16,800

 

7.06

 

16,700

 

 

 

 

 

4800_S1D

 

 

 

 

 

 

 

 

 

 

4800_S2

 

 

 

 

 

 

 

 

 

 

4800_S3D

 

 

 

 

 

 

 

 

 

 

4800_N1

 

95,000

 

5.40

 

16,400

 

4.85

 

14,700

 

 

 

 

 

4800_N2

 

30,000

 

6.65

 

6,400

 

6.65

 

6,400

 

 

 

 

 

4800_N4

 

 

 

 

 

 

 

 

 

 

4800_N5A

 

 

 

 

 

 

 

 

 

 

4800_N5B

 

 

 

 

 

 

 

 

 

 

Sub-total

 

597,000

 

5.71

 

109,700

 

5.42

 

104,100

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

West

 

W1A

 

 

 

 

 

 

 

 

 

 

W1A1

 

 

 

 

 

 

 

 

 

 

W1B

 

93,000

 

4.44

 

13,300

 

4.44

 

13,300

 

 

 

 

 

W1B1

 

 

 

 

 

 

 

 

 

 

Sub-total

 

93,000

 

4.44

 

13,300

 

4.44

 

13,300

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Total Indicated

 

 

 

690,000

 

5.54

 

122,900

 

5.29

 

117,400

 

 

Category

 

Deposit

 

Zone

 

Tonnes
(t)

 

Uncapped
Grade

(g/t Au)

 

Uncapped
Ounces

(oz)

 

Capped
Grade

(g/t Au)

 

Capped
Ounces

(oz)

 

Inferred

 

East

 

4800

 

454,000

 

5.69

 

82,900

 

5.43

 

79,200

 

 

 

 

 

4800_S1

 

1,214,000

 

6.95

 

271,300

 

5.84

 

227,700

 

 

 

 

 

4800_S1A

 

163,000

 

4.20

 

22,000

 

4.20

 

22,000

 

 

 

 

 

4800_S1D

 

458,000

 

7.08

 

104,300

 

7.08

 

104,300

 

 

 

 

 

4800_S2

 

365,000

 

4.12

 

48,300

 

4.12

 

48,300

 

 

 

 

 

4800_S3D

 

757,000

 

12.10

 

294,600

 

10.31

 

250,800

 

 

 

 

 

4800_N1

 

444,000

 

7.80

 

111,500

 

6.06

 

86,600

 

 

 

 

 

4800_N2

 

114,000

 

5.89

 

21,500

 

5.89

 

21,500

 

 

 

 

 

4800_N4

 

224,000

 

4.08

 

29,400

 

4.08

 

29,400

 

 

 

 

 

4800_N5A

 

37,400

 

4.83

 

5,800

 

4.11

 

5,000

 

 

 

 

 

4800_N5B

 

88,000

 

4.44

 

12,600

 

4.44

 

12,600

 

 

 

 

 

Sub-total

 

4,317,000

 

7.23

 

1,004,200

 

6.39

 

887,300

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

West

 

W1A

 

600,000

 

4.71

 

90,800

 

4.71

 

90,800

 

 

 

 

 

W1A1

 

179,000

 

4.73

 

27,200

 

4.73

 

27,200

 

 

 

 

 

W1B

 

143,000

 

3.96

 

18,200

 

3.96

 

18,200

 

 

 

 

 

W1B1

 

34,000

 

3.91

 

4,300

 

3.91

 

4,300

 

 

 

 

 

Sub-total

 

955,000

 

4.57

 

140,500

 

4.57

 

140,500

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Total Inferred

 

 

 

5,273,000

 

6.75

 

1,144,700

 

6.06

 

1,027,800

 

 

113



 

Notes

 

1.               CIM definitions were followed for classification of Mineral Resources.

2.               Mineral Resources are estimated at a cut-off grade of 2.0 g/t Au.

3.               Mineral Resources are estimated using an average long-term gold price of US$1,2000 per ounce and a US$/C$ exchange rate of 0.93.

4.               A minimum mining width of two metres was used.

5.               Capped gold grades are used in estimating the Mineral Resource average grade.

6.               Sums may not add due to rounding.

7.               There are no Mineral Reserves estimated for the Gold River Property.

8.               Metallurgical recoveries are assumed to average 96.5%.

9.               Mining costs are assumed to average $82.00/tonne.

10.         Mr. Robert Kusins, B.Sc., P.Geo., is the Qualified Person for this Resource Estimate.

 

Sensitivities by lower cut-off were run at 0.50 g/t Au increments from 0.50 g/t Au to 3.00 g/t Au and are summarized in Table 14.7.2.3 for the Indicated and Inferred Resources. The higher cut-off grades result in only a slight decrease in total ounces. An elevated cut-off at 5.0g/t was also run for comparative purposes. At the higher cut-offs, the zones become patchier and less continuous and it has not been demonstrated that these higher grades would be achievable in a more selected mining approach. The base case of 2.0 gpt attempts to introduce some level of selectivity to the mining of the resource, but yet maintain continuity of the zone. At lower cut-offs, the zones become more continuous, but it becomes apparent that there would be opportunities to not mine portions of the resource. A grade-tonnage graph illustrating the sensitivities on an unclassified basis is shown in Figure 14.7.2.4.

 

TABLE 14.7.2.4:  GOLD RIVER DEPOSITS SENSITIVITIES

 

 

 

Indicated Mineral Resources

 

Inferred Mineral Resources

 

Cut-off Grade
(gpt Au)

 

Tonnes*
(t)

 

Grade
(g/t Au)

 

Ounces**
Au

 

Tonnes*
(t)

 

Grade
(g/t Au)

 

Ounces**
Au

 

0.50

 

817,000

 

4.69

 

123,100

 

6,448,000

 

5.21

 

1,079,000

 

1.00

 

792,000

 

4.81

 

122,400

 

6,195,000

 

5.39

 

1,073,000

 

1.50

 

747,400

 

5.02

 

120,600

 

5,820,000

 

5.66

 

1,058,200

 

2.00

 

690,000

 

5.29

 

117,400

 

5,273,000

 

6.06

 

1,027,800

 

2.50

 

619,000

 

5.64

 

112,300

 

4,742,000

 

6.49

 

989,200

 

3.00

 

539,000

 

6.07

 

105,200

 

4,176,000

 

7.00

 

939,200

 

5.00

 

283,000

 

7.99

 

72,600

 

2,175,000

 

9.81

 

686,100

 

 


*Rounded to nearest thousand - ** Rounded to nearest hundred

 

114



 

FIGURE 14.7.2.4:  GRADE-TONNAGE GRAPH, UNCLASSIFIED

 

GRAPHIC

 

14.8.0: ADDITIONAL DRILL HOLE INFORMATION EVALUATION

 

Subsequent to the closing of the database on January 17, 2012, additional assays were received for seven additional holes. Four of these holes were from holes that had partial assays of the zones of interest and had been used in the Resource Estimate. The additional assays received from these holes did not change the interpretation of the zones with the exception of hole TH11-124A, which was used to update the Resource Estimate. The remaining 3 holes did not intersect the models and would not have any material impact on the Resource.

 

Revised collar locations were received for twelve holes subsequent to the closing of the database. This resulted in three holes, namely TH-11-121, TH-11-124 and TH11-124A, which intersected models being adjusted. The moving of the holes did not significantly move the locations of the solid intersections and would not have an impact on the Resource.

 

115



 

14.9.0: RECOMMENDATIONS

 

The following items are recommended for further study and evaluation:

 

1)              Evaluate the replacing of the ID2 interpolation method by ordinary kriging

 

2)              Continue monitoring of specific gravity and grade capping, as addition drill hole information is added to the database, to insure appropriate values are being used.

 

3)             Additional drilling, particularly zone 4800_S3D which currently accounts for about one third of Inferred Resource ounces, to better delineate the extent of the Resource and increase its confidence level.

 

4)             Evaluate isolated intersections to determine areas which may be brought into Resources with additional drilling.

 

116



 

15.0: MINERAL RESERVE ESTIMATES

 

This section is not applicable to the current report.

 

117



 

16.0: MINING METHODS

 

This section is not applicable to the current report as there has not been a preliminary economic assessments, pre-feasibility studies, or feasibility studies undertaken on the Gold River property and there is currently no mining activity. The Resources have been modeled with the premise that an underground mining method, yet to be determined, would be appropriate for extraction of the Resource, although this does not preclude local open pit mining of the Resource.

 

118



 

17.0: RECOVERY METHODS

 

This section is not applicable to the current report.

 

119



 

18.0: PROJECT INFRASTRUCTURE

 

There is no infrastructure on the Gold River property other than diamond drill trails and quad / skidoo paths.  The Timmins West Mine location is approximately 4 kilometres north of the property center.

 

120



 

19.0: MARKET STUDIES AND CONTRACTS

 

This section is not applicable to the current report.

 

121



 

20.0: ENVIRONMENTAL STUDIES, PERMITTING AND SOCIAL OR COMMUNITY IMPACT

 

20.1: PERMITS

 

To date no permits have been required to surface explore the Gold River property.

 

20.2: STUDIES

 

The following studies are current to the Timmins Mine Complex situated 4 kilometres north of the Gold River property center:

 

1)              An Acid Rock Drainage Study (“ARD”) is anticipated to be complete in January 2012. The study included the geochemical properties of ore and waste rock from Timmins Mine and Thunder Creek. The study will look at the acid base accounting (“ABA”), leachate generation and whole rock analysis. This information will support permitting for the proposed tailings facility at Timmins Mine and the expansion of the Bell Creek Tailings Facility. The information generated will be used to determine if Waste Rock from the Timmins West Complex is suitable as construction material and if the ore and waste rock have any potential for generation of Acid Rock Drainage. This information will be critical in the design of a tailings and if the effluent generated from waste rock or ore will be required to be treated.  This study is not related to the Gold River project.

 

2)              In order to determine if there are any archeological sites in the area of the Timmins Mine and Thunder Creek, a “Stage 1 Archeological Study” is underway. This study will be used for planning purposes and will assist the mine and exploration in their future areas of development. The draft has been completed with LSG comments submitted.

 

3)         A series of studies in support of the Proposed Tailings Facility for the Timmins West Complex have been initiated.  Some studies are presently ongoing and studies have been placed on hold pending the results of the progress on an expansion of the Bell Creek Tailings Facility On-going studies include:

 

a.       A terrestrial study looking at the Ecosystem of selected tailings locations.

 

b.       An aquatic study of a pond within the planned proposed tailings pond area

 

c.       A geotechnical program for the proposed tailings area

 

4)         Lake Shore Gold Corp is in the process of completing a Storm Water Plan for the Timmins West Complex. This study is to determine how surface water will be managed on site.

 

5)         Preparations are being made to design an Environmental Effects Monitoring for Aquatic Study to be conducted on the Tatachikapika River for 2012 (Ternes, T., 2011)

 

122



 

20.3: CONSULTATION

 

An Impact and Benefits Agreement (“IBA”) with the Mattagami and Flying Post First Nations has been negotiated and signed (February 17, 2011).  The IBA outlines how Lake Shore Gold Corp. and the First Nations communities will work together in the following areas: education and training of First Nation community members, employment, business and contracting opportunities, financial considerations and environmental provisions (Hagan, B.; Samson, J., 2011, personal communication).

 

123



 

21.0: CAPITAL AND OPERATING COSTS

 

This section is not applicable to the current report.

 

124



 

22.0: ECONOMIC ANALYSIS

 

This section is not applicable to the current report.

 

125



 

23.0: ADJACENT PROPERTIES

 

23.1.0: GENERAL STATEMENT ABOUT ADJACENT PROPERTIES

 

The Gold River mineralized zones, within Thorneloe township are situated between 20 to 38 kilometres south west of the historical producing and past producing gold mines of the Porcupine Gold Camp.  Table 23.1.1 states the distance from the centre of the property to a selected list of mines within the Timmins area.

 

TABLE 23.1.1: DISTANCE FROM CENTER OF THE GOLD RIVER PROPERTY TO SIGNIFICANT TIMMINS AREA MINING LANDMARKS

 

MINE

 

DISTANCE (KILOMETERS)

 

GENERAL DIRECTION

 

 

 

 

 

Kidd Creek Mine

 

 

39.3

 

north northeast

Hoyle Pond Mine

 

 

38.2

 

north northeast

Dome Mine

 

 

24.6

 

northeast

McIntyre Mine

 

 

21.8

 

north northeast

Hollinger Mine

 

 

20.9

 

north northeast

Bell Creek Mine Complex

 

 

34.3

 

north northeast

Timmins West Mine

 

 

4

 

north northwest

Thunder Creek Advanced Project

 

 

3.3

 

north northwest

 

The closest and most significant property with reported and published resources is Lake Shore Gold Corp.’s Timmins Mine in Bristol township. The headframe of the mine is approximately 4 kilometres north northwest of the Gold River property’s centre.  SRK Consulting (Canada) Inc. (SRK) present a NI 43-101 compliant Resource Estimate for the Timmins Mine that includes: 3,268,000 tonnes at 8.62 grams per tonne gold, cut (905,000 contained ounces gold) or 12.29 grams per tonne gold (uncut) (1,291,000 contained ounces gold) in the indicated resource category; and an additional 968,000 tonnes with an average grade of 5.62 grams per tonne gold in the inferred resources category.

 

23.2.0: ADVENTURE GOLD INC. — MEUNIER 144 GOLD PROPERTY — BRISTOL TOWNSHIP

 

RT Minerals Corp. and Lake Shore Gold Corp. have optioned the Meunier 144 Gold Property from Adventures Gold Inc.  The property consists of ten (10) freehold patent claims with an approximate area of 160 hectares. The south-east claim, P26393 straddles the junction of highways 101 and 144 with a common boundary to the west boundary of Lake Shore Gold Corp.’s Timmins Mine.  The west and south-west boundaries are contiguous with the western portion of the Thunder Creek property and the claim’s southern boundary is approximately 4.6 kilometres from the centre of the Gold River property.  The claims are underlain by metamorphosed mafic volcanics of the Tisdale assemblage that are intruded by diabase dykes belonging to the Matachewan dyke swarm.  The property has been drill tested for the possible deep, (2,000 metres) down dip, down plunge extension of Timmins Mine, and the Rusk horizon. The 2010 mineral deposits inventory (“MDI”) lists MDI42A05NE00004 as a discretionary gold occurrence located in the central east section of claim P26392.  The MDI reports the showing as “a 12 inch quartz vein reportedly returned 0.17oz/t gold from a 1946 diamond drill hole”.

 

126



 

FIGURE 23.1:  LOCATION OF ADJACENT PROPERTIES

 

GRAPHIC

 

127



 

23.3.0: PELANGIO EXPLORATION INC. — POIRIER OPTION — BRISTOL TOWNSHIP

 

Two staked mineral claims with an area of 64 hectares are situated between the Meunier 144 property — Timmins Mine property and to the north of the Thunder Creek property. The claims are underlain by mafic metavolcanic rocks belonging to the Tisdale assemblage.  The MDI does not describe or locate a mineral occurrence on this property.  On their website Pelangio report completing prospecting, and an MMI soil geochemical survey.  They state quartz veining and sulphides where noted on the property during the surveys.  The location of the quartz veins and sample results are not available. The closest point of the southern boundary of the Pelangio property to the centre of the Gold River property is 4.1 kilometres.

 

23.4.0: NEWCASTLE MINERALS LIMITED — WEST TIMMINS GOLD PROJECT — CARSCALLEN TOWNSHIP

 

The property consist of nine (9) freehold patent claims covering an area of approximately 118 hectares in Carscallen township.  Newcastle Minerals Limited optioned the patents which have both mineral and surface rights from Timmins Forest Products Limited in 2009.  In May of 2010, SGX Exploration entered into an agreement with Newcastle Minerals Limited to acquire an option to earn 75% interest in the nine patents.  The east boundary of the Newcastle claims is situated 6.3 kilometres west of the center of the Gold River property.

 

The western portion of the claim group is underlain by mafic to intermediate metavolcanics belonging to the Deloro assemblage rocks. The central portion of the claims are underlain by felsic to intermediate metavolcanic rocks belonging to the Kidd-Munro Upper assemblage, and the south-eastern portion of the claim group contains Tisdale assemblage mafic metavolcanic rocks. The MDI does not locate a mineral occurrence on this property.

 

Work completed by Newcastle Minerals Inc. is summarized in Table 23.4.1.  Diamond drilling targeted an explanation for geophysical anomalies.  No assays greater than 1 gram were reported in the NI 43-101 report “Technical report on the West Timmins Gold Project Carscallen township, Porcupine Mining District, Ontario” authored by D.C. Leroux P.Geo. A.C.A. Howe International Ltd., September 26, 2011.

 

TABLE 23.4.1: SUMMARY OF WORK NEW CASTLE MINERALS LIMITED

 

YEAR

 

SURVEY TYPE

 

COMMENTS

2010

 

Total field magnetic response

 

13.7 kilometres

 

 

Induced Polarization and Resistivity

 

13.7 kilometres

 

 

MMI soil geochemistry

 

72 samples, from 7 lines

 

 

7 BQ (35mm diameter) diamond drill holes

 

1,516 metres

 

 

Core samples for gold analysis

 

420 samples

 

 

 

 

 

2011-09-30

 

9 BQ diamond drill holes

 

2032 metres

 

 

Core samples for gold analysis

 

817 samples

 

128



 

23.5.0: RICHMONT MINES INC.  — CRIPPLE CREEK PROPERTY — DENTON TOWNSHIP

 

The north-east corner of the Cripple Creek property is approximately 5 kilometres south west of the centre of the Gold River property.  Richmont acquired the project in 2002 and explored the property until 2005.  Exploration activities resumed in 2010 over the project that consists of 26 staked claims, 43 claim units (688 hectares).  Ontario’s Mineral Deposits Inventory indicates four (4) occurrences are located within the property.  Gold was first discovered in the 1950s by R.E.  Halpenny and the showing that bears his name (also known as Mahony Creek-1984, MDI42A05SE00005).  The local stratigraphy, as it is currently understood, is composed of a series of intercalated mafic and ultramafic and mafic metavolcanic flow units belonging to the Tisdale assemblage.  Gold bearing quartz-carbonate veins occur within alteration zones at the mafic —ultramafic metavolcanic contact as well as in strained section of the mafic metavolcanics.  Since the discovery of gold on the property the following companies have tested the property by means of diamond drilling, stripping, trenching overburden sampling, geophysical and geochemical surveys: Hollinger Consolidated Gold Mines Limited, Gambit Exploration, Gowest Amalgamated Resources Limited, Noranda Exploration Company Limited, Hemlo Gold Mines Inc. and Battle Mountain Gold. Three gold bearing area have been identified: MDI42A05SE00056, the Cripple Creek Zone 16 referenced to Battle Mountain’s drill collar cc96-16; MDI42A05SE00057, the Cripple Creek Zone 17 also referenced to a Battle Mountain drill collar cc96-17; MDI42A05SE00058, the Mahoney Creek Zone reference with Hemlo Gold drill collar cc93-1.

 

Richmont Mines Inc., report that they have completed a two phase diamond drill program for a total of 8032 metres of drilling.  No Resource Estimate is reported for this property.

 

23.6.0: EXPLOR RESOURCES INC. — TIMMINS PORCUPINE WEST (ONTARIO) PROPERTY — BRISTOL AND OGDEN TOWNSHIPS

 

Explor Resources Inc. have 120 claims (204 claim units) totaling 3,264 hectares registered to their name in the area of the Timmins Porcupine West Project located in Bristol and Ogden townships.  The southwest corner of the claim group is situated approximately four (4) kilometres from the Timmins Mine headframe.  The 2010 provincial mineral deposits inventory locates 9 mineral occurrences adjacent to the claim line or within the property boundary.  These gold mineral occurrences are:  1) MDI42A06NW00055  — Mineral Estates Ltd (Waterhen Group) — 1930 (also known as: Torburn ddh no 2 — 1931; P. Hubert Claim P8504 — 1911; Hulcano Porcupine -1946); 2) MDI42A06NW00195- Cominco DDH BR-87-1 — 1987; 3) MDI42A06NW00196 - Placer Dome DDH ###-## -####; (also known as: Cameco South Zone — 2002 and Cameco DDH BRS02-19-2002); 4) MDI42A06NW00197 - Cameco DDH BRS02-12 — 2002; (also known as: Cameco SW Zone — 2002); 5) Mdi42a06nw00198 - Hoyle Mining DDH No. 1 — 1945; (also known as: Cameco DDH BRS02-14 — 2002); 6) MDI42A06NW00199- Cameco Main Zone — 2002; (also known as: Bristol Project — 1998, and Placer Dome Project 246 — 1985); 7) MDI42A06NW00200 - Cameco DDH BRS02- 16 — 2002, or Cameco East Zone — 2002; 8) MDI42A06NW00208 - Hollinger DDH B.O. # 3 — 1959; and 9) MDI42A05NE00024 — Foley-Obrien Claim 15462 — 1928 or the Wright Ventures Group — 1939.

 

Cameco Gold Inc. geologists Babin, Samson, and Koziol (2002) describe the property geology as follows: “The property geology is marked by a southwest striking package of sediments which are bounded to the north by mafic volcanics and intruded in the central part of the property by a variably altered quartz-feldspar- porphyritic intrusion.  The margins of the main porphyry body consist of porphyry dyke swarms

 

129



 

of similar composition intruding the sediments.  Recent age dating suggests that the mafic volcanic rocks on the north side of the property belong to the Tisdale Group (Ayers et al, 1999).  The sediments consist of moderately chloritic interbedded sandstones and +/- argillaceous mudstones, exhibiting well defined Bouma sequences away from the porphyry.  Close to the main porphyry intrusion, the sediments are coarser grained with only minor mudstone horizons.  The sand stone beds are more massive, crudely bedded and contain an appreciable percentage of quartz grains and granule size siliceous clasts (chilled porphyry clasts?).  Some sediment horizons close or in contact with the porphyry contain up to 70% variably altered and deformed, granule to cobble size porphyry clasts similar to the main porphyry intrusion, surrounded by a sandstone matrix.  These horizons probably represent brecciated contact zones of the porphyry intruding the sediments.  Where porphyry dykes are not observed in contact with the conglomerate-like horizons they are alternatively be explained as debris flow horizons eroded from the main porphyry.  The mafic volcanic/sediment contact is marked by graphitic argillite and interpreted to dip north based on limited drill hole information in that area of the property.  Because of its generally coarse nature and its composition (rich in quartz grains and siliceous clasts), the sediment package is interpreted to be transitional between the Krist formation and the Porcupine Group sediments described in the Timmins area stratigraphy.  Over the central and south parts of the property, stratigraphic facing is to the south based upon graded bedding and flame structures in the sediments.  Numerous late north-northwest trending diabase dykes of variable with crosscut all units.

 

Langton et al. (2012) describe the property is marked by southwest-striking series of steeply north-dipping faults and zones of high-strain (“shear zones”) that parallel a moderate to strong foliation present in all the rocks except the diabase dykes.  A quartz-feldspar porphyry intrudes the central part of the Property and is itself intruded by a smaller, linear syenite body.  The quartz-feldspar porphyry (QFP) is locally strongly altered by sericitic, chloritic and carbonaceous alteration, and local silicification, where it is transected by high-strain zones.

 

The mineralization as being hosted by a series of strongly foliated, parallel structural zones interpreted to be striking southwest and dipping about 70° northwest.  Gold values are spatially associated with disseminated, fine-to-coarse grained subhedral pyrite.  Chloritized bands of pyrite, chalcopyrite, and red sphalerite are locally cored by quartz-carbonate veins, which have been subsequently boudinaged.  Not all pyrite is associated with gold mineralization.  Visible gold has been recognized occurring as free grains in chlorite, and quartz-carbonate veins, and as inclusions in pyrite and chalcopyrite (but not with sphalerite).

 

The area south and southwest of the QFP hosts several gold-anomalous zones associated with pyrite-pyrrhotite-red sphalerite stringers.  This gold and zinc anomalous mineralization is distinct from the main pyrite-chalcopyrite mineralization seen in the central part of the main porphyry.

 

The chlorite alteration overprints the (earlier) sericite alteration, late, quartz-chlorite-hematite-tourmaline veinlet stockworks locally crosscut the QFP, but there is no apparent correlation between the veinlets and the gold.  Where the QFP is less deformed and sericitized the feldspar phenocrysts are preferentially epidotized, and the rock is generally more siliceous, highly fractured and blocky.

 

Explor Resources Inc.’s recently filed NI 43-101 Technical Report prepared for utilizing diamond drill results available as of May 03, 2011 and an effective date of November 23, 2011 states an Inferred Mineral Resource of 6.29 million tonnes grading 4.11 grams per tonne for 831,175 ounces of in-situ gold at a cut-off of 2.20 grams gold per tonne (Langton et al., 2012).

 

130



 

24.0: OTHER RELEVANT DATA AND INFORMATION

 

No additional information or explanation is necessary to make this Technical Report understandable and not misleading.

 

131



 

25.0: INTERPRETATION AND CONCLUSIONS

 

Lake Shore Gold has prepared an updated Mineral Resource Estimate for the Gold River property based on historical diamond drilling and drilling completed by LSG between February 2010 and January 17th 2012. A total of 752 holes for a total of 228,045 metres were completed on the Gold River property of which Lake Shore Gold completed 140 holes for a total of 55,807 metres. Most of drilling completed by Lake Shore targeted the East Deposit area above the 600 metre depth. The drilling has demonstrated continuity of grade, mineralization and geologic structure to support the definition of a reasonable prospect of economic extraction defined by CIMM standards for indicated and inferred resource classifications.

 

The Resource models are comprised of fifteen zones which have been grouped into two deposits called the East and West Deposits. The Deposits extend for 3.3 kilometres along the Gold River Trend and are roughly centered on 461480E section and extend from surface to the 9200m elevation (0 to 800m below surface).  The bulk of the resources are located above the 400m Level with 83% of the tonnes and 73% of the ounces located above this elevation.

 

The Gold River Resource totals 0.69Mt at 5.29 g/t Au, amounting to 117,400 ounces of gold in the Indicated category and 5.27Mt at 6.06 g/t Au, amounting to 1,027,800 ounces of gold in the Inferred category as shown in Table 25.1. The effective date of this resource is January 17, 2012.

 

The Resources was estimated using Inverse Distance to the power 2 (ID2) interpolation method with all gold assays capped to 50 gram metres or 25 gram metres depending on the zone, and an assumed long-term gold price of US$1,200 per ounce.  The base case estimate assumes a cut-off grade of 2.0 g/t Au.

 

Michel Dagbert, Eng., senior geostatistician, SGS Geostat reviewed the Gold River block model and employed an alternative grade interpolation technique to cross check Lakeshore’s own block model. Michel employed the traditional approach for estimating narrow sheet like structures by projecting hole mineralized intersections to a vertical section plane and using polygons of influence about the intercepts. The polygonal approach produced a total ounce estimate of 1.05Moz versus 1.27Moz at no cut-off for the block model, within acceptable limits given the mostly inferred categorization of the estimated resource.

 

A sensitivity analysis was carried out to examine the impact upon the tonnage, average grade and contained ounces by increasing the cut-off grade up to 5.0 g/t Au.  By increasing the cut-off grade, the model demonstrates opportunity to optimize target grade by carving out the fringe, lower grade mineralization while maintaining grade and geological continuity and minimal loss of ounces.

 

132



 

TABLE 25.1:   MINERAL RESOURCE ESTIMATE — JANUARY 2012

Lake Shore Gold Corp. — Gold River Deposits

 

Category

 

Tonnes

 

Capped Grade
(g/t Au)

 

Oz Au

 

Indicated

 

690,000

 

5.26

 

117,400

 

Inferred

 

5,273,000

 

6.06

 

1,027,800

 

 

Notes

 

1.               CIM definitions were followed for classification of Mineral Resources.

2.               Mineral Resources are estimated at a cut-off grade of 2.0 g  /t Au.

3.               Mineral Resources are estimated using an average long-term gold price of US$1,200 per ounce and a US$/C$ exchange rate of 0.93.

4.               A minimum mining width of two metres was used.

5.               Capped gold grades are used in estimating the Mineral Resource average grade.

6.               Sums may not add due to rounding.

7.               There are no Mineral Reserves estimated for the Gold River Trend.

8.               Metallurgical recoveries are assumed to average 85%.

9.               Mining costs are assumed to average $90.00/tonne.

10.         Mr. Robert Kusins, B.Sc., P.Geo., is the Qualified Person for this Resource Estimate.

 

 

133



 

26.0: RECOMMENDATIONS

 

The following items are recommended for further study and evaluation:

 

1)              Evaluate the replacing of the ID2 interpolation method by ordinary kriging.

 

2)              Continue monitoring of specific gravity and grade capping, as addition drill hole information is added to the database, to insure appropriate values are being used.

 

3)              Additional drilling, particularly zone 4800_S3D which currently accounts for about one third of Inferred Resource ounces, to better delineate the extent of the Resource and increase its confidence level.

 

4)              Evaluate isolated intersections to determine areas which may be brought into Resources with additional drilling.

 

5)              To attempt to better identify and record discrete lithologic units as the mafic unit, conglomerates with an emphasis on “grey alteration and mineralization zones”, grey quartz veinlets and areas of high strain.

 

6)              Construct a lithological model of the deposits that would include a sectional and plan view interpretation.

 

7)     Continue to filter the available geophysical surveys, to assist in the interpretation of alteration, lithology and high strain zones.

 

8)              Continue to keep tracking and improving diamond drill log quality and completeness.

 

9)              Complete metallurgical testing on all of the mineralized zones, comparing similarities and differences.

 

Proposed is an $8,228,000, two stage exploration program based upon the above recommendations.  Expenditures proposed for Phase 2 will be based upon results received in Phase 1, and should be adjusted accordingly.  The Phase 1 program should be directed to expand the existing Inferred Resources by focusing on extending the higher grade mineralized zones along strike and at depth, especially 4800_SD3. The Phase 2 program would involve continued resource expansion, limit infill drilling to upgrade a portion of the Inferred to Indicated and exploration drilling further east and west of the Gold River Deposits to follow up on favorable drill hole intersections. Table 26.0.1: lists the proposed exploration categories and proposed expenditures.

 

134



 

TABLE 26.0.1:  PROPOSED PROGRAM AND BUDGET

 

PHASE

 

SURVEY/WORK TYPE

 

BUDGET ($)

 

 

 

 

 

 

 

Phase 1

 

Diamond Drilling (17,100m)

 

2,138,000

 

 

 

Analytical/Samples (18,900 samples)

 

444,000

 

 

 

Contractor, core storage

 

30,000

 

 

 

Structural Geological Consultant

 

35,000

 

 

 

Geophysical Consultant

 

25,000

 

 

 

Metallurgical Work

 

28,000

 

 

 

Geological Compilation/Core re-logging

 

20,000

 

 

 

Share of Office Administration

 

140,000

 

 

 

Subtotal

 

2,860,000

 

 

 

 

 

 

 

Phase 2

 

Diamond Drilling (25,000m) fill-in resource

 

3,125,000

 

 

 

Exploration Diamond Drilling (10,000m)

 

1,250,000

 

 

 

Analytical/Samples (32,450 samples)

 

763,000

 

 

 

Geological Consultant

 

20,000

 

 

 

Metallurgical Work

 

50,000

 

 

 

Share of Office Administration

 

160,000

 

 

 

Subtotal

 

5,368,000

 

 

 

 

 

 

 

 

 

Grand Total

 

8,228,000

 

 

135



 

27.0: REFERENCES

 

27.1.0: REPORTS AND SCHEDULES

 

ALS Laboratory Group, 2011 (CAD); Schedule of Services and Fees, ALS Minerals.

 

ALS Laboratory Group, 2009 (CAD); Schedule of Services and Fees, ALS Minerals.

 

ALS Laboratory Group, 2011 (CAD); Schedule of Services and Fees, ALS Minerals.

 

Anglin, C. D.,1992; Sm-Nd and Sr Isotope Studies of Scheelite From Some Superior Province Gold Deposits;  A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the requirements for the degree of Doctor of Philosophy, Ottawa-Carleton Geoscience Centre and Department of Earth Science, Carleton University, Ottawa, Ontario.

 

Ayer, J., Berger, B., Johns, G., Trowell, N., Born, P., Mueller, W.U., 1999;  Late Archean Rock Types and Controls On Gold Mineralization In The Southern Abitibi Greenstone Belt Of Ontario; Field Trip B3 Guidebook, Geological Association of Canada (GAC), Mineralogical Association of Canada (MAC), Joint Annual Meeting, 1999, Sudbury, Ontario, Canada.

 

Ayer, J.A., Baker, C.L., Kelly, R.I., Stott, G.M., Thurston, P.C., 1999; Summary of Field Work and Other Activities 1999; Ontario Geological Survey, Open File Report 6000, Queen’s Printer of Ontario.  Ayer, J.A., Trowell, N.F., Madon, Z., Kamo, S., Compilation of the Abitibi Greenstone Belt in the Timmins-Kirkland Lake Area; revision to stratigraphy and new geochronological results; p. (4) 1-14.

 

Ayer, J.A., Dubé, B., Trowell, N.F. 2009, NE Ontario Mines and Minerals Symposium, PowerPoint Presentation: Stratigraphic and Metallogenic Comparison of the Detour Burntbush area with the Southern Abitibi.

 

Ayer, J., Trowell, N., (OGS); Amelin, Y., Kamo, S. and Kwok, Y., (ROM), 2000; PowerPoint Presentation: Deep Crustal Structures in the Abitibi Greenstone Belt And their Prolonged Control on the Distribution of Stratigraphy and Mineral Deposits; Toronto, January 2000.

 

Ayer, J., Barr, E., Bleeker, W., Creaser, R.A., Hall, G., Ketchum, J.W.F., Powers, D., Salier, B., Still, A., Trowell, N.F, 2003; Discovery Abitibi, New geochronology results from the Timmins Area: Implications for the Timing of Late-Tectonic Stratigraphy, Magmatism and Gold Mineralization.  Summary of field work and other activities, Ontario Geological Survey, Open File Report 6120, p. 33-1 to 33-11.

 

Ayer, J.A., Thurston, P.C., Bateman, R., Dubé, B., Gibson, H.L., Hamilton, M.A., Hathaway, B., Hocker, S.M., Houlé, M.G., Hudak, G., Ispolatov, V.O., Lafrance, B., Lesher, C.M., MacDonald, P.J., Péloquin, A.S., Piercey, S.J., Reed, L.E., Thompson, P.H., 2005; Overview of Results from Greenstone Architecture Project; Discovery Abitibi Initiative, Open File Report 6154, Ontario Geological Survey.

 

136



 

Barrie, C.T., 1992; Geology of the Kamiskotia Area, Ontario Geological Survey Open File Report 5829. P.33.

 

Barrie, C.T., and Associates Inc., 2004; Final Report, Geochemistry of Exhalites and Graphitic Argillites near VMS and Gold Deposits, an Ontario Mineral Exploration Technologies (OMET) Project, MRD173, Chapter 4., Geochemistry of Graphitic Argillites near Owl Creek an Hoyle Pond Gold Deposits, Timmins Area, Ontario.

 

Bateman, R., Ayer, J.A., Dubé, B, Hamilton, M.A., 2005; the Timmins-Porcupine Gold Camp, Northern Ontario: The Anatomy of an Archean Greenstone Belt and its Gold Mineralization: Discovery Abitibi Initiative, Open File Report 6158, Ontario Geological Survey.

 

Brisbin, D.I., 1986; Geology of The Owl Creek and Hoyle Pond Gold Mines, Hoyle Township, Ontario, An independent project submitted to the Department of Geological Science Queen’s University, Kingston, Ontario, in conformity with the requirements of the Non-Research Masters of Science Degree in Mineral Exploration.

 

Brisbin, D.I., 1997; Geological Setting of Gold Deposits in the Porcupine Camp, Timmins, Ontario, A thesis submitted to the Department of Geological Science in conformity with the requirements for the degree of Doctor of Philosophy, QueensUniversity, Kingston, Ontario.

 

Brisbin, D.I., 2000; World Class Intrusion Related Archean Vein Gold Deposits of the Porcupine Gold Camp, Timmins, Ontario, Geology and Ore Deposits 2000, The Great Basin and Beyond, Proceedings, Geological Society of Nevada Symposium Volume 1, p. Brisbin-19-35.

 

Burrows, A.G., 1911; the Porcupine Gold Area, Twentieth Annual Report of the Bureau of Mines, 1911, Vol. XX, Part II.

 

Burrows, A.G., and Rogers, W.R., 1912; Map of the Porcupine Gold Area, District of Temiskaming, Ontario; First Edition, July 1910; Second Edition, April 1911. Scale: 1:63,360. To accompany the Twentieth Report of the Bureau of Mines 1911.

 

Burrows, A.G., and Rogers, W.R., 1912; Map of the Porcupine Gold Area, District of Temiskaming, Ontario; First Edition, July 1910; Second Edition, April 1911; Third Edition June 1912. Scale: 1:63,360. To accompany the Twenty-first report of the Bureau of Mines, 1912.

 

Camier, J., 2009; Geological Mapping of the Peralkaline Syenite Intrusion and Host Rocks on the Thunder Creek Property, Lake Shore Gold Corp., Timmins, Ontario.

 

Cavey, G., 2004; Summary Geological Report On The Thorne Property, Bristol, Carscallen, Denton and Thorneloe Townships, Porcupine Mining Division, Ontario, for Band-Ore Resources Ltd. (December 04, 2004)

 

Cavey, G., 2006; Summary Geological Report On The Thorne Property, Bristol, Carscallen, Denton and Thorneloe Townships, Porcupine Mining Division, Ontario, for Band-Ore Resources Ltd.  (March 30, 2006)

 

137



 

CIMM Standing Committee on Reserve Definitions, 2010; CIM Definition Standards — For Mineral Resource and Mineral Reserves, November 27, 2010.

 

Coad, P.R., Brisbin, D.I., Labine, R.J., Roussain, R.,1998;  Geology of Owl Creek Gold Mine, Timmins, Ontario, CIMM Exploration and Mining Geol. Vol. 7, No. 4, p. 271-286.

 

Crick, D., Kusins, R., Powers, D., 2011; Technical Report on the Initial Mineral Resource Estimate for the Thunder Creek Property, Bristol Township, West of Timmins, Ontario, Canada, prepared for Lake Shore Gold Corp and West Timmins Mining Inc.

 

Dagbert, M., 2012: Resource Modeling and Estimation of the Gold River Trend Deposits, SGS Canada Inc., Geostat, March 09, 2012.

 

Darling, G., 2007; Pre-feasibility Study Report, The Lake Shore Gold Timmins West Project, Timmins, Ontario, Lake Shore Gold Corp., SRK Consulting Canada Inc., SRK Project Number 5CL001.001, July 31st, 2007.

 

Darling, G., Kociumbas, M., Sullivan, J.R., Lavigne, J., Hayden, A.S., Small, A.S., Butler, D., Kordgharochorloo, F., Hall, R.A., Schmidt, P.R., 2007; NI 43-101 Technical Report, Lake Shore Gold Corp., Timmins West Project, Timmins, Ontario, Report Prepared for Lake Shore Gold Corp. by SRK Consulting engineers and Scientists.  (October 12, 2007)

 

Darling, G., Fayram, T., Kusins, R., Samson, J., Miree, H., 2009: Updated NI 43-101 on The Timmins Mine Property, Ontario, Canada, prepared for: Lake Shore Gold Corp.

 

Duess, R., 1996; Summary Report of Exploration Activities — February 10, 1995 to December 31, 1995, Thorne Property, Band-Ore Resources Ltd. (January 26, 1996)

 

Easton, R.M., 2000; Geochronology of Ontario; Ontario Geological Survey, Miscellaneous Release Data 75.

 

Eastwood, A.M., 2004; 2004 Diamond Drill Program, Vogel Project, an internal memo Glencairn Gold Corporation.

 

Ferguson, S.A., 1957; Geology of Bristol Township, Sixty-Sixth Annual Report of the Ontario Department of Mines, being Volume LXVI, Part 7.

 

Ferguson, S.A., 1957; Bristol Township, District of Cochrane, Ontario; Ontario Department of Mines, Map 1957-7, scale 1:12,000.

 

Ferguson, S.A., 1968; Geology and Ore Deposits of Tisdale Township, Geological Report 58, Ontario Department of Mines.

 

Ferguson, S.A., Groen, H.A., Haynes, R., 1971; Gold Deposits of Ontario, Part 1, Districts of Algoma, Cochrane, Kenora, Rainy River and Thunder Bay, Ontario Department of Mines, Mineral Resources Circular No 13., p. 49 to 50, 123-124.

 

138



 

Fyon, J.A., Breaks, F.W., Heather, K.B, Jackson, S.L., Muir, T.L., Stott, G.M., Thurston, P.C. 1991; Geology of Ontario, Special Volume 4, Part 2, Chapter 22, Metallogeny of Metallic Mineral Deposits in the Superior Province of Ontario, Ontario Geological Survey, p. 1091 to 1174.

 

Gray, D. Mathew, 1994; Multiple Gold Mineralizing Events In The Porcupine Mining District, Timmins Area, Ontario, Canada;  A thesis submitted to the faculty and the Board of Trustees of the Colorado School of Mines in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Geology).

 

Hawley, J.E., 1926; Thirty-Fifth Annual Report of the Ontario Department of Mines being Vol. XXXV, Part VI, 1926, p. 1 to 36.

 

Hawley, J.E., 1926; Map No. 35g, The Townships of Carscallen, Bristol and Ogden, district of Cochrane, Ontario, scale: 1:47520.

 

Hawley, J.E., 1926; ARM35G, The Townships of Carscallen, Bristol, and Ogden, District of Cochrane, Ontario, Map 35g, scale: 1:47,520, Ontario Department of Mines.

 

Hodder, R.W., Petruk, W., 1980; Geology of Canadian Gold Deposits, Proceedings of the CIM Gold Symposium, published for the Geology Division of CIM, Special Volume 24, The Canadian Institute of Mining and Metallurgy, p. 101 to 170.

 

Jackson, S.L., Fyon, J.A., 1991; Geology of Ontario, Special Volume 4, Part 1, Chapter 11, the Western Abitibi Subprovince in Ontario, Ontario Geological Survey p. 405 to 482.

 

Jackson, S.L., Fyon, J.A., 1991; Geology of Ontario, Special Volume 4, Part 2, Chapter 22, The Metallogeny of Metallic Mineral Deposits in the Superior Province of Ontario, Ontario Geological Survey, p. 1149.

 

Kerrich, R., 1983; Geochemistry of Gold Deposits in the Abitibi Greenstone Belt, Special Volume 27, Canadian Institute of Mining and Metallurgy.

 

Krikham, R.V., Sinclair, W.D., Thorpe, R.I., Duke, J.M., (editors) 1993, Mineral Deposit Modeling, Geological Association of Canada Special Paper 40, p. 465 to 479, and 635 to 678.

 

Lake Shore Gold Corp., 2011; Internal Memo Regarding Permitting, T. Ternes; September 22.

 

Langton, J., Puritch, E., Yassa, A., Armstrong, T., 2112; National Instrument 43-101 Technical Report For Explor Resources Inc., on Timmins Porcupine West Property, Bristol and Ogden Townships, Ontario, MRB & Associates, and P&E Mining Consultants.

 

Leroux, D.C., 2011; Technical Report On The West Timmins Gold Project, Carscallen Township, Porcupine Mining District, Ontario; A.C.A. Howe International Limited; for Newcastle Minerals Limited.

 

Lo, Bob, 2011; Tailings IP Results, an internal Lake Shore Gold Corp. memo.

 

139



 

Lucas, S.B., and St-Onge, M.R. Coordinators, 1998; Geology of Canada No. 7, Geology of the Precambrian Superior and Grenville Provinces and Precambrian Fossils in North America; Geological Survey of Canada, Geology of North America, Volume C-1.

 

Macdonald, A. James, Editor, 1986: Proceedings Volume, Gold 86; an International Symposium of the Geology of Gold Deposits:

 

Burrows, D.R., and E.T.C. Spooner, McIntyre Cu-Au Deposit, Timmins, Ontario, Canada; p. 23-40.

 

Mason, R., and Melnik, N., the Anatomy of an Archean Gold System — The McIntyre-Hollinger Complex at Timmins, Ontario, Canada; p. 40-56.

 

Wood, P.C. et al., the Hollinger-McIntyre Au-Quartz Vein System, Timmins, Ontario, Canada; Geological Characteristics, Fluid Properties and Light Stable Isotope Geochemistry; p. 56-81.

 

MacPherson, J., 1987; Summary Report and Recommendations for the Nov/86 to Feb/87 Work Program on the Robele Joint Venture, Thorneloe Township, Ontario, District of Cochrane, Esso Minerals Canada.

 

Melnik-Proud, Nadia, 1992; The Geology And Ore Controls In And Around The McIntyre Mine At Timmins, Ontario, Canada; A thesis submitted to the Department of Geological Sciences in conformity with the requirements for the degree of Doctor of Philosophy, Queen’s University, Kingston, Ontario, Canada.

 

Miller, A., 2004; Contribution To The Geology of The Holmer Gold Deposit: Orogenic Mesothermal Lode Gold Hosted In A Lake Archean Alkaline Intrusive Complex: Lithologies, Metamorphism and Overprinting Hydrothermal Alteration Assemblages Northern Volcanic Zone, Abitibi Subprovince, Canada, Volume 1 of 2, for Lake Shore Gold Corp. Miller and Associates.

 

Miller, A., 2008; A Contribution To The Geology of The Thunder Creek Property, Northern Volcanic Zone, Abitibi Subprovince, Canada:  Lithologies, Metamorphism, Overprinting, Hydrothermal Alteration Assemblages, Precious Metal Mineralogy Based On Petrography, Ore Microscopy & Scanning Electron Microscope Investigation Of Selected Drill Core Samples From Drill Holes TC04-13, TC07-27, -30, -36, -37 With Comparison Of The West Timmins Gold Property (Formerly Holmer Gold Deposit); Internal Report for Lake Shore Gold Corp. by Miller & Associates, Ottawa,Ontario, Canada.

 

Miller, A., 2009; Rusk Horizon and Rusk Showing, Thunder Creek Project, Northern Volcanic Zone, Abitibi Subprovince, Canada: Mineralogy of Selected Drill Core Samples from Drill Holes TC-08-51, TC-08-52, TC08-54, TC-1891 utilizing Scanning Electron Microscope with Petrography and Ore Microscope. Parts A-C- D; Internal Report for Lake Shore Gold Corp. by Miller & Associates, Ottawa, Ontario, Canada.

 

Miller, A., 2009; Rusk Horizon and Rusk Showing, Thunder Creek Project, Northern Volcanic Zone, Abitibi Subprovince, Canada: Mineralogy of Selected Drill Core Samples from Drill Holes TC-08-51, TC-08-52, TC08-54, TC-1891 utilizing Scanning Electron Microscope with Petrography and Ore Microscope. Part B; Internal Report for Lake Shore Gold Corp. by Miller & Associates, Ottawa, Ontario, Canada.

 

140



 

Miller, A., 2009; Part A — Petrography and Ore Microscopy addendum to January 11, 2009 Report entitled Rusk Horizon and Rusk Showing, Thunder Creek Project, Northern Volcanic Zone, Abitibi Subprovince, Canada: Mineralogy of Samples TC08-54 (663), TC-08-54 (668) utilizing Part A - Scanning Electron Microscope, Part B - Petrography and Ore Microscope, Internal Report for Lake Shore Gold Corp. by Miller & Associates, Ottawa, Ontario, Canada.

 

Miller, A., 2009; Part B — Scanning Electron Microscopy addendum to January 11, 2009 Report entitled Rusk Horizon and Rusk Showing, Thunder Creek Project, Northern Volcanic Zone, Abitibi Subprovince, Canada: Mineralogy of Samples TC08-54 (663), TC-08-54 (668) utilizing Part A - Scanning Electron Microscope, Part B - Petrography and Ore Microscope, Internal Report for Lake Shore Gold Corp. by Miller & Associates, Ottawa, Ontario, Canada.

 

Neczakar, E., Kociumbas, M.W., Sullivan, J.R., 2004; A Technical Review of the Holmer Gold Property In Bristol Township, Timmins Area, Ontario, Canada, for Lake Shore Gold Corp., Watts, Griffis, and McQuat limited, September 07, 2004.

 

Placer Dome, 2005; Canadian Operations, Sustainability Report.

 

Pyke, D.R., 1982; Geology of the Timmins Area, District of Cochrane, Report 219, Ontario Geological Survey.

 

Poulsen, K.H., 1996; Geology of Canadian Mineral Deposit Types, Geology of Canada, No. 8., Geological Survey of Canada, Chapter 15, Lode Gold, p. 323 to 392.

 

Powers, D., 2009; Amended Technical Review and Report of the “Thunder Creek Property” Bristol And Carscallen Townships, Porcupine Mining Division, Ontario, Canada prepared for Lake Shore Gold Corp. and West Timmins Mining Inc.

 

Pressacco, R., 1999; Special Project: Timmins Ore Deposit Descriptions, Ontario Geological Survey, Open File Report 5985.

 

Ross, K., 2003; Petrographic Study of Twenty Five Samples From The Holmer Gold Deposit, Timmins, Ontario, Internal Lake Shore Gold Corp. Report by Panterra Geoservices Inc., Surrey, British Columbia.

 

Ross, K., 2010; Petrographic Study of the Timmins Gold Mine and Thunder Creek Area, Timmins, Ontario, Prepared for Lake Shore Gold Corp., March 12, 2010.

 

Rhys, D.A., 2003; Structural Mapping Study of the Surface Outcrops of the Holmer Gold Deposit, Timmins, Ontario, Internal Lake Shore Gold Corp. Report by Panterra Geoservices Inc, Surrey, British Columbia.

 

Rhys, D., Lewis, P., 2004; Gold Vein Deposits: Turning Geology into Discovery, BC & Yukon Chamber of Mines, Cordilleran Exploration Round-Up, short course notes.

 

141



 

 

Rhys, D., 2010a; Structural Study of Gold Mineralization in Portions of the Timmins Mine and Thunder Creek Projects, Porcupine Mining District, Ontario. Report prepared for Lake Shore Gold, March 12, 2010.

 

Rhys, D., 2010b; An Internal Lake Shore Gold Corp. Memo: Golden River East Zone: Observations and Interpretation from Brief Field Review, December 10, 2010.

 

Rhys, D., 2010; Thunder Creek — Rusk Zone: assessment of structural controls through examination of initial underground on 300 and 315 levels, Memo dated December 21, 2010.

 

Rhys, D.A., 2011a;  Setting, style and controls on gold mineralization in the Golden River East Zone, Thorne Property, PowerPoint presentation prepared for Lake Shore Gold Corp. by Panterra Geoservices Inc.

 

Rhys, D., 2011b; An Internal Lake Shore Gold Corp. Memo: Golden River East Zone Drill Core Review: Summary of Geological Observations and Recommendations, September 06, 2011.

 

Rocque, P., Mah, S., Hamilton, R., Wilson, G., Kilpatrick, R., 2006; Review of Porcupine Joint Venture Operation, Ontario, Canada, NI 43-101 Technical Report, prepared for Goldcorp Inc., prepared by AMEC Americas Limited.

 

Rudd, Jonathan, 2007; Report on a Helicopter-Borne AeroTem II Electromagnetic and Magnetic Survey, Aeroquest Job # 07066, Block AB, Timmins Area, Ontario, NTS 042A05, 06, for West Timmins Mining Inc.

 

Samson, J., 2005; The 2003-2005 Diamond Drill Program on The Thunder Creek Property, Bristol Township, Lake Shore Gold Corp., Report.

 

Samson, J., 2008; The 2006 Stripping and Trenching Program on The Thunder Creek Property, Bristol Township, Lake Shore Gold Corp., Report.

 

Samson, J., 2009; The 2007-2008 Diamond Drill Program (Phase 4) on The Thunder Creek Property, Bristol Township, Lake Shore Gold Corp., Report.

 

Sullivan, J.R., Lavigne, J.G., Kociumbas, M.W., 2007;  A Technical Review of the Timmins West Gold Project in Bristol Township, Timmins Area, Ontario, Canada, for Lake Shore Gold Corp., Watts, Griffis and McOuat Limited, Consulting Geologists and Engineers.  (January 03, 2007)

 

Thompson, P.H., 2002; Toward a New Metamorphic Framework for Gold Exploration in the Timmins Area, Central Abitibi Greenstone Belt, Ontario Geological survey, Open File Report 6101.

 

Titaro, D., George, P.T., Brady, B.S., 1999; Feasibility Study of Development Alternatives, Vogel Gold Project, Timmins Ontario for Black Hawk Mining Inc., prepared by A.C.A. Howe International Limited, Toronto, Ontario, Canada.

 

van Hees, E.H.P., 2000; Gold Deposition In The Western Abitibi Greenstone Belt And Its Relation To Regional Metamorphism; A dissertation submitted in partial fulfillment of requirements of the degree of Doctor of Philosophy (Geology) in The University of Michigan.

 

142



 

Wagner, D.W., 2008; Technical Report of the Thunder Creek Gold Property, Bristol Township, Timmins, Ontario, Canada, for West Timmins Mining Inc.  (June 27, 2008)

 

Wetherup, S., 1997:  Summary Structural Report, Thorne Gold Property, Ontario, Canada, Caracle Creek International Consulting, unpublished report for West Timmins Mining Inc., 11 pages

 

Wilson, G.C., Rucklidge, J.C., 1986; Grant 262; Geoscience Research Grant Program, Summary of Research 1985-1986; Lithological Features and Economic Significance of Reduced Carbonaceous Rocks in Gold Deposits, Ontario Geological Survey, Miscellaneous Paper 130, p. 177-189.

 

Wilson, G.C., Rucklidge, J.C., 1987; Grant 262; Geoscience Research Grant Program, Summary of Research 1986-1987; Geology, Geochemistry, and Economic Significance of Carbonaceous Host Rocks in Gold Deposits of The Timmins Area, Ontario Geological Survey, Miscellaneous Paper 136, p. 66-76.

 

Winter, L.D.S., 2004; National Instrument 43-101 Technical Report, Lake Shore Gold Corp., Timmins Gold Project, Timmins, Ontario. (September 28, 2004)

 

Winter, L.D.S., 2004; National Instrument 43-101 Technical Report, Lake Shore Gold Corp., Timmins Gold Project, Timmins, Ontario.  (November 26, 2004)

 

Winter, L.D.S., 2006; National Instrument 43-101 Technical Report, Lake Shore Gold Corp., Timmins Gold Project, Timmins, Ontario.  (January 25, 2006)

 

27.2.0: ASSESSMENT RESEARCH IMAGING FILES (AFRI)

 

Allan, J.E., 1974; Diamond Drill Logs, Allerston Gold Property, Bristol Twp., Ducanex Resources, AFRI No. 42A05NE8449.

 

Anderson, S.D., 1994; Work Report on the Bristol Lake Property, Trenching and Sampling Program for R.J. Poirier by Rayan Exploration Ltd., AFRI No. 42A05NE0079.

 

Anderson, S.D., 1995; Report on an Induced Polarization Survey on the Bristol Township Properties, Porcupine Mining Division, Ontario, for R.J. Poirier by Rayan Exploration Ltd., AFRI No. 42A05NE0078.

 

Anderson, S.D., 1996; Geophysical Report on the Bristol Township Property, Induced Polarization Survey Located in Bristol Township, Porcupine Mining Division, for Marl/Pelangio Larder J.V., Rayan Exploration Ltd., AFRI No. 42ANE0165.

 

Anderson, S.D., 2003; Geophysical Report on the Magnetometer Survey, Bristol Lake Property, Bristol Township, Porcupine Mining Division for Rolly Poirier, Vision Exploration, AFRI No. 42A05NE2049.

 

Bald, R., 1987; Diamond Drill Logs, Bristol Township, Highwood Resources. AFRI No. 42A05NE8428.

 

143



 

Barnett, E.S., 1985; Diamond Drill Report, Bristol Township, Kidd Creek Mines Ltd. AFRI No. 42A05NE8489.

 

Begauskas, J., Vamos, P.J., 1996; Report on the Allerston Project (Portion of the Allerston Option) in Bristol Township, West Timmins Area, Prospectors Alliance Corp. AFRI No. 42A05NE0167.

 

Benham, W., 1984; Diamond Drill Report, Allerston Option, Rio Algom Exploration Inc., Bristol Township, AFRI No. 42A05NE8473.

 

Bradshaw, R.J., 1973; Magnetic — Electromagnetic Survey on the Property of Holmer Gold Mines Limited, Bristol Township, Ontario, AFRI No. 42A05NE8495.

 

Bradshaw, R.J., 1973; Magnetic — Electromagnetic Survey on the Property of Mill Hill Mines Limited, Bristol, Denton, Carscallen and Thorneloe Townships, Ontario, AFRI No. 42A05SE0024.

 

Bradshaw, R.J., 1974; Magnetic — Electromagnetic Survey on the Shield Group, Bristol Township, Ontario, AFRI No. 42A05NE8463.

 

Bradshaw, R.J., 1978; Magnetic — Electromagnetic Survey on the Property of Holmer Gold Mines Limited, Bristol Township, Ontario, AFRI No. 42A05NE8439.

 

Bradshaw, R.J., 1978; Geological Report on Part of the Property of Holmer Gold Mines Limited, Bristol Township, Ontario, AFRI No. 42A05NE8494.

 

Burns, J.G., 1996; Evaluation Report on Claims Located in Bristol Township, Porcupine Mining Division for Copper Dome Mines Ltd., AFRI No. 42A05NE0095.

 

Calhoun, R., 1994; Diamond Drill Hole Summary, Mahoney Creek Project (No. 507), Noranda Exploration Company Limited, Claims 1177808, 1177809, AFRI No. 42ANE0075.

 

Calhoun, R., 1995; Summary of Induced Polarization Survey, Mahoney Creek Project (No. 507), Hemlo Gold Mines Inc., AFRI No. 42ANE0084.

 

Calhoun, R., Edwards, J., 1997; Battle Mountain Gold, Diamond Drill Logs, Mahoney Creek, Project 507, AFRI No. 42A05NE0169.

 

Calhoun, R., Edwards, J., 1997; Battle Mountain Gold, Diamond Drill Logs, Thunder Creek, Project 506, AFRI No. 42A05NE2007.

 

Calhoun, R., 1998; Diamond Drill Logs, Allerston Option, Bristol Township, Falconbridge Ltd., AFRI No. 42A05NE2019.

 

Calhoun, R., 2000; Diamond Drill Logs, KM-2 Project, Bristol Township, Falconbridge Ltd., Explorers Alliance Corp., AFRI No. 42A05NE2030.

 

Calhoun, R., 1999; Diamond Drill Logs, Wallingford South Project, Bristol Township, Pelangio Mines Inc., Prospectors Alliance Inc., AFRI No. 42A05NE2034.

 

144



 

Calhoun, R., 2001; Summary Report of Fugro MegaTem® Survey, Timmins West Area by GeoCal Exploration Services, for Explorers Alliance Corp., AFRI No. 42A06NW2026.

 

Chataway, R.T., 1981; Diamond Drilling 1981, Preussag Canada Limited, Timmins West Project, Timmins, Ontario, AFRI No. 42A05NE8478.

 

Clark, D., 1989; Report on Magnetic Survey, southwestern Poirier Block, Holmer Project, Bristol Township, Ontario, M588, AFRI No. 42ANE8648.

 

Croxall, J.E., 1979; Magnetic and Electromagnetic Surveys, Claims No. 495307, 495309, 515901, North Part of the Croxall-Miller Property, Southwestern pare of Bristol Township, Porcupine Mining Division, AFRI No. 42A05NE8447.

 

Croxall, J.E., 1992. Mechanical Overburden Stripping, Bristol Township, AFRI No. 42A05NE8488.

 

Daigle, R.J., 1994; Noranda Exploration Co. Ltd., Geophysical Assessment Report, Project 507, Induced Polarization Survey, Bristol, Carscallen, Denton, Thorneloe, Townships, Ontario, N/.T.S. 42A-SW, Porcupine Mining Division, AFRI No. 42A05NE0083.

 

Daigle, R.J., 1994; Noranda Exploration Co. Ltd., Total Field Magnetic Assessment Report, Project 507, Bristol, Carscallen, Denton, Thorneloe, Townships, Ontario, N/.T.S. 42A-05, Porcupine Mining Division, AFRI No. 42A05NE0081.

 

Daigle, R.J., 1994; Noranda Exploration Co. Ltd., Assessment Report, Project 144, Porcupine Mining Division, AFRI No. 42A05SE0011.

 

Daigle, R.J., 1995; Line Cutting, TFM and I.P. Surveys, Bristol Township, Hemlo Gold Inc., N.T.S. 42-A-05, Porcupine Mining Division, AFRI No. 42ANE0080.

 

Daigle, R.J., 1997; Report of Work for Band-Ore Resources Ltd. on Carstol Property, Carscallen and Bristol Townships, 1997 Line Cutting, TFM, and I.P. Surveys, AFRI No. 42A05NE0131.

 

Daigle, R.J., 1997; Report of Work for Band-Ore Resources Ltd. on West Porcupine Project 1996-1997, Geophysical Surveys, Line Cutting, IP., TFM., AFRI No. 42A06SW0025.

 

Deevy, A.J., 1985; Report on Bristol Township Property, Project 404, Allerston Option, Westfield Minerals Ltd., AFRI No. 42A05NE8498.

 

Dionna, R.J., 1965; Diamond Drill Report, Claim P55903, Bristol Township, United Buffadison, AFRI No. 42A05NE8650.

 

Diorio, P., 1984; Assessment Report on Magnetic and VLF-EM Surveys Conducted on Claims 724587- 724591, 740864-740873, 752195-752205, 779457-779461, 79509-779515, 825436-825440 Located in the Bristol Township in Porcupine Mining District, Ontario., Utah Mines, AFRI No. 42A05NE8491.

 

Diorio, P., 1985; Assessment Report on Induced Polarization Conducted on Claims 724587-724591, 740864-740873, 752195-752205, 779457-779461, 779509-779515, 825436-825440

 

145



 

Located in the Bristol Township in Porcupine Mining District, Ontario., Utah Mines, AFRI No. 42A05NE8456.

 

Duess, R., 1997; Diamond Drill Logs and Sections, Bristol Property, Sedex Mining Corp./Band-Ore Resources Ltd. Joint Venture, Bristol and Thorneloe Townships, Porcupine Mining Division, AFRI No. 42A06NW0042.

 

Filo, J.K., 1997; Diamond Drill Report for Pelangio Larder Mines Limited and Copper Dome Mines Ltd, on the Poirier Joint Venture within Bristol Township, Northern Ontario, AFRI No. 42A05NE0168.

 

Fumerton, S., Clark, D.,1988; Geological and Geochemical Assessment Report, Bristol Township, M588, Chevron Minerals Ltd., AFRI No. 42A05NE8459.

 

Fumerton, S., 1988; Report of Work Done in 1987 on the Holmer Property, Bristol Township, M588, Chevron Minerals Ltd., AFRI No. 42A05NE8490.

 

Gasteiger, W.A., 1981; Report on Geophysical Work, Bristol Township, Allerston Claims and Bristol 66, Texasgulf Inc., AFRI No. 42A06NW8486.

 

Gasteiger, W.A., 1981; Report on Geophysical Work, Bristol, Denton, Carscallen, Thorneloe Townships, Airborne EM and Airborne Mag., Texasgulf Canada Ltd., AFRI No. 42A06NW0303.

 

George, P.T., 1973; Report on the property of Holmer Gold Mines Ltd., Bristol Township, Ontario, AFRI No. 42A05NE8475.

 

George, P.T., 1975; Diamond Drill Report, for Geonex Limited (Ralph Allerston), Bristol Township, Ontario, AFRI No. 42A05NE8436.

 

Glenn, W.E., 1987; Airborne Geophysical Survey, Bristol Township, Chevron Canada Resources Limited, AFRI No. 42A05NE8705.

 

Grant, J.C, 1997; Geophysical Report for Copper Dome Mines Ltd. on the Poirier Option,               Bristol Township., Porcupine Mining Division, Northeastern Ontario, AFRI No. 42ANE0104.

 

Grant, J.C., 1997; Geophysical Report for Pelangio Larder/Copper dome Mines Ltd. on the Poirier Option Bristol Township., Porcupine Mining Division, Northeastern Ontario, AFRI No. 42A05NE0158.

 

Grant, J.C., 2004; Geophysical Report for Probe Mines Limited, Bristol Project, Bristol Township, Porcupine Mining Division, Northeastern Ontario, AFRI No. 42A06NW2046.

 

Hendry, K.N., 1987; 1986 Geophysical assessment Report, Bristol Property, Cominco Ltd., AFRI No. 42A06NW8427.

 

Hiava, M., 1987; Diamond Drill Logs, Allerston Property, Bristol Township, AFRI No. 42A05NE8432.

 

Holmer Gold Mines Ltd.,1969; Diamond Drill Log Report, Bristol Township, AFRI No. 42A05NE8500.

 

146



 

Holmer Gold Mines Ltd., 1980; Diamond Drill Log Report, Bristol Township, AFRI No. 42A05NE8460.

 

Johnston, Matthew, 2000; Report of Work on the Bristol Property, Bristol Township, Ontario, NTS 42A/SW, Porcupine Mining Division, for Mike Caron, AFRI No. 42A05NE2037.

 

Jones, W.A., 1958; Diamond Drill Report, Hollinger Mines Ltd., Bristol Township, AFRI No. 42A05NE8454.

 

Klein, J., 1987; 1986 Geophysical Assessment Report on Claims P835909-835916, P871660 and P871661, Bristol Property, Cominco Ltd., AFRI No. 42A06NW8423.

 

Kilpatrick, J.M., 1973; Report on the Property on the Boundary of Townships of Carscallen, Bristol, Denton and Thorneloe, Mill Hill Mines Limited.  AFRI No. 42ASE0025.

 

Lebaron, P.S., 1984; Report on Reverse Circulation Overburden Drilling, Croxall Option, Bristol and Thorneloe Townships, Noranda Exploration Company Limited, AFRI No. 42A05SE0010.

 

Lebaron, P.S., 1985; Diamond Drill Report, Croxall Option, Bristol Township, Noranda Exploration Company Limited, AFRI No. 42A05SE0001.

 

Legault, J.M., Williston, C., Warne, J., 1997; Geophysical Survey Logistical Report, Quantec, regarding the Gradient-Realsection TDIP\Resistivity Survey over the Bristol Property, Bristol Twp., ON., on behalf of Prospectors Alliance Corp., Toronto, Quantec IP Incorporated, AFRI No. 42A05NE2018.

 

Mackenzie, C.D, 1995; Ground Magnetometer Survey and VLF Survey for the Ralph Allerston Property, Bristol Twp., Block 1190579, 4 Units, District of Cochrane, Timmins, Ontario, AFRI No. 42A05NE0077.

 

MacPherson, J., 1988; Report on Linecutting, and Ground Magnetometer on Bristol #1 and 2, Mattagami River and Hwy 144 Grids, Thorneloe and Bristol Townships, District of Cochrane, Esso Minerals Canada, AFRI No. 42A06NW0317.

 

Manchuck, B., 1989; Diamond Drill Report, Chevron Minerals Ltd., AFRI No. 42A05NE8649.

 

McCann, S., 1995, Hemlo Gold Mines Inc., Diamond Drill Logs, Mahoney Creek Project (507), AFRI No. 42ANE0085.

 

McCann, S., 1995, Hemlo Gold Mines Inc., Diamond Drill Logs, Mahoney Creek Project (507), AFRI No. 42ANE0087.

 

McLeod, C.C., 1979; Reverse Circulation Overburden Drilling, Texasgulf Inc., AFRI No. 42A05NE8457.

 

McLeod, C.C., 1981; Reverse Circulation Overburden Drilling, Texasgulf Inc., AFRI No. 42A05NE8464.

 

Meikle, R.J.; 1994; Geophysical Report on a Magnetometer Survey for Band-Ore Resources Ltd., on Claim 1177822, Bristol Twp., Porcupine Mining Division, Ontario, by Rayan Exploration, AFRI No. 42A05NE0070.

 

147



 

Meikle, R.J.; 1994; Geophysical Report on a Magnetometer Survey for Band-Ore Resources Ltd., on the Thunder Creek Property, Bristol /Carscallen Twp., Porcupine Mining Division, Ontario, by Rayan Exploration, AFRI No. 42A05NE2062.

 

Meikle, R.J.; 1994; Geophysical Report on a Magnetometer Survey for Band-Ore Resources Ltd., on the Thunder Creek Property, Bristol /Carscallen Twp., Porcupine Mining Division, Ontario, by Rayan Exploration, AFRI No. 42A05NE8701.

 

Meikle, R.J.; 1995; Geophysical Report on the, Bristol Township Property Magnetometer Survey Located In Bristol Township., Porcupine Mining Division, Ontario, for Pelangio Larder Mines Ltd., AFRI No. 42A05NE0092.

 

Moore, D.D., 1987; Diamond Drill Logs BR87-1, 87-2, 87-6, Cominco Ltd., AFRI No. 42A06NW8424.

 

Muir, J.E., 1980; Mineralogical Examination of Jim Croxall’s Sample, Falconbridge Metallurgical laboratories, AFRI No. 42A05NE8430.

 

Mullen, D., 1979; Diamond Drill Logs, Allerston Option, Bristol Township, Texasgulf Ltd., AFRI No. 42A05NE8479.

 

Newsome, J.W., 1986; Assessment Report on Diamond Drilling Conducted on Claim 779509, Bristol Township, Porcupine Mining Division, Ontario, for Utah Mines Ltd., AFRI No. 42A06NW8426.

 

Perry, J., 1977; Magnetic Survey Report, Bristol Township, M-264, Porcupine Mining Division, District of Cochrane, Canadian Nickel Company, AFRI No. 42A06NE8435.

 

Perry, J., 1977, Geological Report, Allerston Option, Bristol Township, Canadian Nickel Company Limited, AFRI No. 42A06NW8485.

 

Robinson, G.D., 1958; Diamond Drill Report, Hollinger Mines Ltd., Bristol and Thorneloe Townships, AFRI No. 42A05NE8477.

 

Roth, J., 1988; Report on Magnetic and Induced Polarization surveys, Holmer Project, Bristol Township for Chevron Canada Resources Ltd., AFRI No. 42A05NE8492.

 

Vamos, P.J., 1998; Report on the Exploration Program Conducted by Prospectors Alliance Corp., during 1996 and 1997, on the East Portion of the Allerston Option, AFRI No. 42A05NE2012.

 

Van Hees, E.H., 1989, Diamond Drill Log and Assay Results, Chevron Minerals Ltd., AFRI No. 42A06NW8429.

 

Wamtech Pty, Ltd., 2004; MMI Manual for Mobile Metal Ion Geochemical Soil Survey.  Version 5.04.

 

Warren, T.E., 1981; Timmins west Project, Geophysical Surveys, 1981, Mag., VLF, HEM, Preussag Canada Limited, AFRI No. 42A06SW0206.

 

148



 

Webster, B., 1977; Induced Polarization and Resistivity Survey Report, Bristol Township (M-264), Porcupine Mining Division, District of Cochrane, for R. Allerston, AFRI No. 42A06NW8471.

 

Webster, B., 1977; Magnetic Survey Report, Bristol Township (M-264), Porcupine Mining Division, District of Cochrane, for Canadian Nickel Company Ltd., AFRI No. 42A06NW8431.

 

Webster, B., 1997; Logistical and Interpretive Report, Spectral Induced Polarization Surveys, Timmins West Project, The Allerston Grid, Prospectors Alliance Corp., Bristol Twp., Northern Ontario, AFRI No. 42A05NE2001.

 

27.3.0: PRESS RELEASES

 

2003-11-11; O’Connor, W.J., Lake Shore and Band-Ore Ink Timmins, Ontario Deal.

 

2003-11-12; Innes, D.G., Lake Shore Options Thunder Creek Property Adjoining The Timmins Gold Project, Ontario.

 

2003-12-03; Innes, D.G., Lake Shore Gold Reports More Timmins Gold Property Results and Updates From the Thunder Creek-Bazooka-Highway Projects Ontario- Quebec.

 

2004-03-24; Innes, D.G., Lake Shore Confirms Gold Mineralization on Thunder Creek Property Timmins, Ontario.

O’Connor, W.J., Gold Mineralization Confirmed on Thunder Creek Property.  Band-Ore Resources Ltd.

 

2004-08-25; Innes, D.G., Lake Shore Gold Corp. Initiates Second Phase 3.000 Metre drilling Program Thunder Creek Property, Timmins, Ontario.

O’Connor, W.J., Lake Shore Gold Corp., Initiates Second Phase 3,000 Metre Drill Program Thunder Creek Gold Property, Band-Ore Resources Ltd., Timmins, Ontario.

 

2005-02-14; Innes, D.G., Thunder Creek Project Update, Timmins, Ontario.

O’Connor, W.J., Thunder Creek Project Update, Band-Ore Resources Ltd., Timmins, Ontario.

 

2006-06-21; O’Connor, W.J., Exploration Update, Thunder Creek Property, Band-Ore Resources Ltd., Timmins, Ontario.

 

2006-08-11; Booth, B.R., Lake Shore Gold Quarterly Project Update.

 

2006-09-14; Wagner, D.W., West Timmins Mining Inc. To Begin Trading Sept. 18, Amalgamation of Sydney And Band-Ore Receives Final Approvals.

 

2006-09-26; Notice of Change in Corporate Structure, Report Date: 2006-09-26; Amalgamation became effective on September 13, 2006. (Sydney Resources Corporation and Band-Ore Resources Limited) - new West Timmins Mining Inc.

 

149



 

2006-09-18; Wagner, D.W., Canadian Gold Company Launched On Toronto Stock Exchange. West Timmins Mining Inc. to Focus on Large Projects in West Timmins Camp and Sierra Madres of Mexico.

 

2006-10-30; Wagner, D.W., West Timmins Commences 12,000 Metre Drill Program on West Timmins Gold Project.

 

2006-11-09; Booth, B.R., Lake Shore Third Quarter Project Update.

 

2007-01-18; Wagner, D.W., West Timmins Gold Project Update: New Gold Discoveries Reported on Highway 144, Wakemac and Allerston Properties.

 

2007-02-07; Wagner, D.W., West Timmins Mining Intersects New Zone of Gold Mineralization on Thorne Property, West Timmins Project.

 

2007-02-28; Wagner, D.W., West Timmins Mining Intersects High Grade Gold Mineralization from 4800 Zone, Thorne Property, West Timmins Project.

 

2007-04-11; Wagner, D.W., West Timmins Mining Exploration Update: 5 Drills Turning on WTM Gold Projects; 8,000 metres, 10-12 holes, Thunder Creek Property, Timmins, funded by Lake Shore Gold.

 

2007-05-10; Booth, B.R. Lake Shore Gold First Quarter Project Update.

 

2007-07-09; Wagner, D.W., West Timmins Mining Inc. Annual Report 2006.

 

2007-07-11; Wagner, D.W. West Timmins Gold Project Exploration Update.

 

2007-08-01; Booth, B.R., Lake Shore Intersects New High-Grade Gold Mineralization at Thunder Creek, Ontario.

Wagner, D.W., High Grade Gold Intersected on West Timmins’ Thunder Creek Property, Ontario.

 

2007-08-15; Booth, B.R., Lake Shore Second Quarter Project Update.

 

2007-09-05; Booth, B.R., Lake Shore Reports Additional High-Grade Gold Intersection at Thunder Creek.

 

2007-09-06; Wagner, D.W., West Timmins Reports New High Grade Gold Discovery at Thunder Creek Property, Timmins, Ontario.

 

2007-09-13; Wagner, D.W., West Timmins Continues to Intersect Gold Mineralization on Thorne Property, Timmins, Ontario.

 

2007-11-13; Booth, B.R., Lake Shore Reports Third Quarter Results.

 

2007-11-17; Wagner, D.W., West Timmins to Initiate Drilling on Highway 144 Gold Property, Timmins, Ontario

 

150



 

2007-12-04; Booth, B.R., Lake Shore Intersects 24.61 Grams Gold Per Tonne over 7.0 Metres at Thunder Creek Property in Ontario.

Wagner, D.W. 24.61 Grams Gold Per Tonne Intersected over 7.0 Metres On West Timmins’ Thunder Creek Property, Timmins, Ontario.

 

2008-02-07; Wagner, D.W., Drilling extends Pond and West Gold Zones, West Timmins Gold Project, Ontario.

 

2008-03-31; Makuch, T., Lake Shore Intersects 8.57 g/t Gold over 9.0 Metres at Thunder Creek Property in Ontario.

Wagner, D.W., WTM Reports 8.57 g/t Gold over 9.0 Metres for Follow-Up Drilling at Thunder Creek.

 

2008-04-21; Wagner, D.W., WTM To Test Northern Extension of Thunder Creek — Timmins West Trend.

 

2008-05-15; Makuch, T., Lake Shore Gold Announces First Quarter 2008 Results.

 

2008-07-10; Wagner, D.W., West Timmins Mining Inc. Annual Report 2008.

 

2008-08-05; Makuch, T., Lake Shore Gold Provides Update on Thunder Creek Exploration.

Wagner, D.W., 22,000 Metre Diamond Drill Program Commences on WTM’s Thunder Creek Property In Timmins, Ontario.

 

2008-08-12; Makuch, T., Lake Shore Gold on Track to Achieve 2008 Targets.

 

2008-08-13; Wagner, D.W., WTM Completes $1,950,000 Non Brokered, Flow Through Private Placement, -  proceeds to fund the announced 22,000 metre diamond drill program on the Thunder Creek Property.

 

2008-09-22; Wagner, D.W., Multiple Zones of Gold Mineralization Intersected on WTM’s Thorne Property.

 

2008-11-10; Makuch, T., Lake Shore Gold Reports Timmins West on Schedule for Production in First Quarter 2009.

 

2008-11-24; Wagner, D.W., WTM Vests 51% Interest in Allerston Gold Property, Timmins Ontario, and Delivers Joint Venture Notice.

 

2008-12-02; Wagner, D.W., WTM Reports New High Grade intercepts from the Golden River West Zone.

 

2008-12-16; Makuch, T., Lake Shore Gold Significantly Extends Rusk Zone and Announces New High- Grade Gold Intercepts at Thunder Creek.

Wagner, D.W., WTM Reports 11.20 g/t Gold over 10.4 metres at Thunder Creek, Timmins, Ontario.

 

2009-01-21; Wagner, D.W., Drilling Program Accelerated on WTM’s Thunder Creek Gold Property, Timmins, Ontario.

 

151



 

2009-02-18; Wagner, D.W., WTM Discovers Large New Gold System on HWY 144, Property, Timmins, Ontario.

 

2009-02-23; Makuch, T., Lake Shore Gold Provides Corporate Update.

 

2009-03-10; Wagner, D.W., WTM Intersects 60.5 Metres Grading 1.03 g/t Gold In Expansion Drilling At Golden River West, Timmins, Ontario.

 

2009-03-17; Wagner, D.W., WTM Reports High Grades and Visible Gold In Follow-up drilling at HWY 144.

 

2009-03-31; Makuch, T., Lake Shore Gold Announces 19.55 g/t over 6.0 Metres And Discovery of Second Mineralized Horizon in Porphyry at Thunder Creek.

 

Wagner, D.W., WTM Reports 8.86 g/t (0.26 oz/t) Gold over 24.85 Metres (81.58 feet) from Rusk Zone — Is History Being Repeated in Timmins, Ontario?

 

2009-04-16; Wagner, D.W., WTM Reports High-Grade Results from 100% Owned Thorne Property: District Scale Potential of the West Timmins Gold Project Continues to Expand.

 

2009-05-05; Makuch, T., Lake Shore Gold Continues To Advance Projects on Schedule and Budget and To Achieve Exploration Success In First Quarter of 2009.

 

2009-05-05; Makuch, T., Lake Shore Gold Reports Additional High-Grade Intercepts at Thunder Creek, Confirms 175 Metre minimum Strike Length for Rusk and Porphyry Zones and Identifies New Sub-Zone at Depth.

Wagner, D.W., WTM Reports 7.95 g/t (0.23 oz/t) Gold over 19.45 Metres (63.80 feet) As Thunder Creek Gold System Continues to Expand.

 

2009-05-12; Wagner, D.W., WTM Intersects 13.64 g/t (0.4 oz/t) over 8.2 Metres (26.9 Feet) on North Zone Target, 100% Owned Thorne Property, Timmins, Ontario.

 

2009-06-08; Wagner, D.W., Third and Fourth Drill Added on TWM’s Thunder Creek Property, Timmins, Ontario.

 

2009-06-24; Makuch, T., Lake Shore Gold Reports 12.75 Grams Per Tonne Over 83.40 Metres at Thunder Creek. 

Wagner, D.W., WTM Intersects 83.40 Metres (273.55 feet) Grading 12.75 g/t (0.37 oz/ton) Gold on Thunder Creek Property, Timmins, Ontario.

 

2009-07-06; Wagner, D.W., TWM Intersects 11.15 g/t (0.33 oz/t) Gold over 7.30 Metres (23.94 feet) From Golden River North Zone, Thorne Property, Timmins, Ontario.

 

2009-07-13; Wagner, D.W., West Timmins Mining Inc. Annual Report 2009.

 

2009-08-24; Wagner, D.W., West Timmins Gold Project Update.

 

2009-08-25; Wagner, D.W., WTM Acquires 10 Additional Properties in The West Timmins Gold District.

 

152



 

Wagner, D.W., Thunder Creek Drilling Intersects 12.17 g/t Gold over 9.00 Metres, Extends Porphyry System to 1,125 Vertical Metres Depth.

 

2009-08-27; Makuch, T., Lake Shore Gold and West Timmins Agree to Business Combination.

 

2009-10-07; Makuch, T., Lake Shore Gold Releases Updated National Instrument 43-101 Report for Timmns Mine.

 

2009-10-29; Makuch, T., Lake Shore Gold Reports Results of Underground Drilling and Development at Timmins Mine, Results Confirm Previous Drilling and Expand Resource Potential.

 

2009-11-04; Makuch, T., West Timmins Mining Shareholders Approve Business Combination Agreement With Lake Shore Gold.

 

2009-11-06; Makuch, T., Lake Shore Gold and West Timmins Mining Complete Business Combination.

 

2009-11-11; Makuch, T., Lake Shore Gold Continues to Achieve Development and Exploration Success and  to Grow Property Position, Plans to Commence Accelerated Thunder Creek Advanced Exploration Program.

 

2010-01-06; Makuch, T., Lake Shore Gold Acquires Interest in RT Minerals Corp.

 

2010-01-26; Makuch, T., Lake Shore Gold Extends Thunder Creek to Depth, Confirms High-Grade Core And Discovers New Zone.

 

2010-02-12; Makuch, T., Lake Shore Gold Commences Drill Program on Gold River Trend, The Company’s Third Major Timmins West Target.

 

2010-02-17; Makuch, T., Lake Shore Gold Reports Results of Underground Exploration at Timmins Mine 650-Level Test Block.

 

2010-02-18; Makuch, T., Lake Shore Gold Announces Major Extension to Timmins Mine Mineralization, Thunder Creek Rusk Horizon.

 

2010-03-10; Makuch, T., Lake Shore Gold Announces 2009 Year End Results, Continued Exploration and Development Success, Timmins Mine to Achieve Commercial Production in 2010.

 

2010-04-12; Makuch, T., Annual Report 2009.

 

2010-05-04; Makuch, T., Lake Shore Gold Advances Third Major Target in Timmins West Complex, Confirms Presence of Large Gold-Bearing System Along Gold River Trend Extending to Depth.

 

2010-05-05; Makuch, T., Lake Shore Gold Announces Continued Progress at Three Timmins Mining Projects During First Quarter 2010.

 

2010-06-23; Makuch, T., Lake Shore Gold Intersects High-Grade Mineralization at Thorne Property, Expands Resource Potential Near Surface and at Depth.

 

153



 

2010-06-29; Makuch, T., Lake Shore Gold Ramp Reaches Thunder Creek Deposit, Intersects High-Grade Gold Mineralization.

 

2010-08-10; Makuch, T., Lake Shore Gold Announces Continued Progress During Second Quarter 2010.

 

2010-08-10; Makuch, T., Lake Shore Gold Reports Wide, High-Grade Intercepts at Timmins Mine Including 13.55 GPT over 50.80 Metres and 61.35 GPT over 15.00 Metres.

 

2010-08-30; Makuch, T., Lake Shore Gold Expands Thunder Creek Rusk Zone, Announces Additional Wide, High-Grade Intercepts.

 

2010-11-01; Makuch, T., Lake Shore Gold Continues to Confirm and Expand Thunder Creek Rusk Horizon, Initial Drilling on 650 Level Intersects Rusk Zone and 100 Metres of Porphyry.

 

2010-11-10; Makuch, T., Lake Shore Gold Achieves Key Production, Development and Exploration Milestones Following Successful Third Quarter.

 

2010-11-11; Makuch, T., Lake Shore Gold Announces New High-Grade Intercepts, Major Extension of Main Zone and Expansion of Resource Blocks at Timmins Mine.

 

2010-11-24; Makuch, T., Lake Shore Gold Confirms and Expands Large Gold System In Thunder Creek Porphyry, Intersects 99.60 Metres Grading 4.91 GPT Including 6.92 GPT over 61.4 Metres.

 

2010-12-01; Makuch, T., Lake Shore Gold Achieves 12,000 Ounces of Gold in November, Files Closure Plan For Commercial Production.

 

2011-01-06; Makuch, T., Lake Shore Gold Declares Commercial Production At Timmins Mine, 12,300 Ounces of Gold Produced in December of 2010.

 

2011-01-07; Makuch, T., Lake Shore Gold Increase Interest in RT Minerals Corp.

 

2011-01-11; Makuch, T., Lake Shore Gold Demonstrates Near Surface Resource Potential and Extends Mineralization to Minimum 750 Metre Depth At Gold River Trend.

 

2011-01-25; Makuch, T., Lake Shore Gold To Nearly Triple Gold Production in 2011, Significantly Grow Resources and Increase Exploration Spending.

 

2011-01-25; Makuch, T., Lake Shore Gold Confirms Broad Mineralized Envelope With High-Grade Sections Around 730 Level at Thunder Creek.

 

2011-02-24; Makuch, T., Lake Shore Gold Intersects Wide, High-Grade Mineralization At Timmins Mine, Confirms and Expands Ultramafic and Main Zones.

 

2011-02-28; Makuch, T., Lake Shore Gold Discovers Significant New Gold Zone at 144 Property, Becomes Company’s Fourth Major Project Along Western Extension of Timmins Gold Camp.

 

2011-03-04; Makuch, T., Lake Shore Gold Reports Wide Intersections With High-Grade Sections Within

 

154



 

Porphyry Zone at Thunder Creek, Underground and Surface Drilling Highlight Potential to Expand Mineralized System.

 

2011-03-09; Makuch, T., Lake Shore Gold Achieves Major Milestones in n2010, On Track to Nearly Triple Production and Significantly Grow Resources in 2011.

 

2011-05-15; Makuch, T., Annual Report 2010.

 

2011-05-02; Makuch, T., Lake Shore Gold Intersects Wide, High-Grade Mineralization at Timmins Mine, Highlights Significant Potential For Resource Expansion and Discovery of New Zones.

 

2011-07-26; Makuch, T., Lake Shore Gold Continues To Define and Extend Mineralization at Thunder Creek, Potential New Zone Discovered 500 Metres Along TC-144 Trend.

 

2011-11-10; Makuch, T., Lake Shore Gold discovers Potential 1.9 Kilometre Down Plunge Extension of Timmins Gold Mineralization.

 

2011-11-16; Makuch, T., Lake Shore Gold Announces Large, High-Grade Initial Resource at Thunder Creek.

 

2012-01-12; Makuch, T., Lake Shore Reports 2011 Operating Results, Pours 26,550 ounces in Fourth Quarter and 86,565 ounces for Full Year.

 

2012-01-17; Makuch, T., Lake Shore Gold Announces New Extension At Thorne Property, Mineralization Now Confirmed 750 Metres East of Existing Resource.

 

2012-02-08; Makuch, T., Lake Shore and Franco-Nevada Enter Agreement for $50 Million Royalty and Equity Investment.

 

2012-02-15; Makuch, T., Lake Shore Confirms Large-Scale Resources For Timmins West Mine.

 

2012-02-22; Makuch T., Lake Shore Gold Announces Large Increase in Resources At Gold River Trend, Total Ounces Nearly Triple, Grade, Doubles.

 

155



 

28.0: DATE AND SIGNATURE PAGE

 

This report titled “Technical Report on the Update of Mineral Resource Estimate for the Gold River Property, Thorneloe Township, Timmins, Ontario, Canada” having an effective date of January 17, 2012 was prepared and signed by the following authors:

 

 

(Signed & Sealed) “Jacques Samson”

 

 

Dated at Timmins, Ontario

 

April 05, 2012

Jacques Samson, P.Geo.

 

Senior Project Geologist,

 

Lake Shore Gold Corp.

 

 

 

 

 

(Signed & Sealed) “Robert Kusins”

 

 

Dated at Timmins, Ontario

 

April 05, 2012

Robert Kusins, P.Geo.

 

Chief Mineral Resource Geologist,

 

Lake Shore Gold Corp.

 

 

 

 

 

(Signed & Sealed) “David Powers”

 

 

Dated at Timmins, Ontario

 

April 05, 2012

David Powers, P.Geo.

 

David Powers Geological Services

 

156



 

29.0: CERTIFICATE OF QUALIFIED PERSON(S)

 

To Accompany the Report titled “Technical Report on the Update of Mineral Resource Estimate for the Gold River Property, Thorneloe Township, Timmins, Ontario, Canada”, for Lake Shore Gold Corp. and West Timmins Mining Inc. with an effective date of January 17, 2012.

 

I, Jacques Samson, do here by certify that:

 

1.               I reside at 806 Denise Street, Timmins, Ontario, P4N 7N8.

 

2.               I hold a Bachelor of Science (Honours) Degree in Geology (1986) from the University of Ottawa, Ottawa, Ontario.

 

3.               I am a registered practicing member of the Association of Professional Geoscientists of Ontario (APGO member 0421).

 

4.               I have been practicing my profession since 1986, and have experience with regards to the planning and supervision of mineral exploration programs.

 

5.               I have read the definition of “qualified person” set out in National Instrument 43-101 (“NI 43-101”) and certify that by reason of my education, affiliation with a professional association (as defined in NI 43-101) and past relevant work experience, I fulfill the requirements to be a “qualified person” for the purposes of NI 43-101.

 

6.               I am responsible for responsible for Items: 1, 7, 12, 13, 19, 21, 22, 24, 25, 26 and 27 contained in this report.

 

7.               As Senior Project Geologist and QP for the project, I have been supervising the drilling program since February 2010.  My last site visit was completed on December 06, 2011.

 

8.               I am not aware of any material fact or material change with respect to the subject matter of the Technical Report that is not reflected in the Technical Report, the omission to disclose which makes the Technical Report misleading.

 

9.               I am currently employed by Lake Shore Gold as Senior Project Geologist. I currently hold stock options of Lake Shore Gold under the Lake Shore Gold’s employee stock option plan.

 

10.         I have read National Instrument 43-101 and Form 43-101F1, as well as the Repeal and Replacement of National Instrument 43-101 Standards of Disclosure for Mineral Projects, Form 43-101F1 Technical Reports, and Companion Policy 43-101CP (April 08, 2011) and this Technical Report has been prepared in compliance with these instruments and forms.

 

157



 

11.         I consent to the filing of the Technical Report with any stock exchange and other regulatory authority and any publication by them for regulatory purposes, including electronic publication in the public company files on their websites accessible by the public, of the Technical Report.

 

Dated this April 05, 2012

 

 

 

“J. Samson”

 

 

 

(Signed and Sealed)

 

J. Samson, P. Geo.

 

 

158



 

Robert Kusins P. Geo.

126 Forest Place

Timmins ON P4N 8K1

 

Tel.: 705-269-4344

Fax: 705-268-1794

e-mail: bkusins@lsgold.com

 

CERTIFICATE of AUTHOR

 

To Accompany the Report titled “Technical Report on the Update of Mineral Resource Estimate for the Gold River Property, Thorneloe Township, Timmins, Ontario, Canada”, for Lake Shore Gold Corp. and West Timmins Mining Inc. with an effective date of January 17, 2012.

 

I, Robert Kusins, P. Geo., do hereby certify that:

 

1.                                       I reside at 126 Forest Place, Timmins, Ontario. P4N

 

2.                                       I graduated with a B Sc degree in Geology from McMaster University in 1978.

 

3.                                       I am a member of the Association of Professional Geoscientists of Ontario (Registration Number 0196).

 

4.                                       I have worked continuously as a geologist for a total of 33 years since my graduation from university.

 

5.                                       I have read the definition of “qualified person” set out in National Instrument 43-101 (“NI 43-101”) and certify that by reason of my education, affiliation with a professional association (as defined in NI 43-101) and past relevant work experience, I fulfill the requirements to be a “qualified person” for the purposes of NI 43-101.

 

6.                                       I am responsible for sections 1, 14, 15, 16, 17, 24, 25, 26 and 27 contained in this report.

 

7.                                       I have worked on interpretation and resource estimates on the Gold River property since March 2010.  A site visit was completed on December 06, 2011.

 

8.                                       I am not aware of any material fact or material change with respect to the subject matter of the Technical Report that is not reflected in the Technical Report, the omission to disclose which makes the Technical Report misleading.

 

9.                                       I am currently employed by Lake Shore Gold as Chief Resource Geologist. I currently hold 1,000 shares of Lake Shore Gold and options under the Lake Shore Gold’s employee stock option plan.

 

10.                                 I have read National Instrument 43-101 and Form 43-101F1, as well as the Repeal and Replacement of National Instrument 43-101 Standards of Disclosure for Mineral Projects,

 

159



 

Form 43-101F1 Technical Reports, and Companion Policy 43-101CP (April 08, 2011) and this Technical Report has been prepared in compliance with these instruments and forms.

 

11.                                 I consent to the filing of the Technical Report with any stock exchange and other regulatory authority and any publication by them for regulatory purposes, including electronic publication in the public company files on their websites accessible by the public, of the Technical Report.

 

 

Dated this April 05, 2012

 

 

 

“R. Kusins”

 

 

 

(Signed and Sealed)

 

R. Kusins, P. Geo.

 

 

160



 

CERTIFICATE

 

To Accompany the Report titled “Technical Report on the Update of Mineral Resource Estimate for the Gold River Property, Thorneloe Township, Timmins, Ontario, Canada”, for Lake Shore Gold Corp. and West Timmins Mining Inc. with an effective date of January 17, 2012.

 

I, David H. R. Powers, do here by certify that:

 

1.             I reside at 385 Sony Street, South Porcupine, Ontario, Canada, P0N 1H0.

 

2.             I am a graduate from Lakehead University, Thunder Bay, Ontario with an Honours B.Sc. Geology degree (1974), and I have practiced my profession continuously since that time.

 

3.             I am a member of the Association of Professional Geoscientists of Ontario (Membership Number 0114).

 

4.             I have practiced my profession as a geologist for 36 years being employed by Noranda Exploration Company Limited (N.P.L.), Noranda Mines Limited, Placer Dome C.L.A. Limited, Placer Dome North America Limited, Dome Mine, Placer Dome (C.L.A.) Limited — Porcupine Joint Venture, and Placer Dome Canada. As an independent geological consultant my services have provided to Central Crude Limited, Dome Mine, CanAlaska Uranium Limited and Pacific North West Capital Corp.  I have actively explored for Archean hosted gold deposits since 1985.

 

5.             I have experience with various mineral deposit types, Mineral Resource estimation techniques, and the preparation of technical reports.

 

6.             I have read the definition of “qualified person” set out in NI 43-101 and certify that by reason of my education, affiliation with a professional association (as defined in NI43-101) and past relevant work experience, I fulfill the requirements to be a “qualified person” for the purpose of NI 43-101.

 

7              I have visited the Gold River Property on December 06, 2011, examined core from the property as well as the core logging and core storage areas.

 

8.             I am responsible for the preparation of Items 2 Items 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 18, 20, 23, 24, 25, and 27 of the Technical Report titled: “Technical Report on the Updated Mineral Resource Estimate for the Gold River Property, Thorneloe Township, Timmins, Ontario, Canada”,, having an effective date of January 17, 2012.

 

9.             I am not aware of any material fact or material change with respect to the subject matter of the Technical Report that is not reflected in the Technical Report.

 

10.           I am independent of the issuer (Lake Shore Gold Corp.) applying tests in section 1.4 of National Instrument 43-101, and there were no circumstances that were or could be seen to interfere with my judgment in preparing the Technical Report.

 

11.           I have read National Instrument 43-101 and form 43-101F1, as well as the Repeal and Replacement of National Instrument 43-101 Standards of Disclosure for Mineral Projects, Form 43-

 

161



 

101F1 Technical Reports, and Companion Policy 43-101CP (April 08, 2011) and this Technical Report has been prepared in compliance with these instruments and that forms.

 

12.           I consent to the filing of the Technical Report with any stock exchange and other regulatory authority and any publication by them for regulatory purposes, including electronic publication in the public company files on their websites accessible by the public, of the Technical Report.

 

 

Dated in South Porcupine, Ontario, this the April 05, 2012

 

 

 

“David H. R. Powers”

 

 

 

(Signed and Sealed)

 

David H. R. Powers, P.Geo. (APGO No. 0114)

 

 

162



 

APPENDIX 1

 

DIAMOND DRILL HOLE COLLAR LOCATIONS, AZIMUTH, INCLINATION,

AND METRES DRILLED

 

163



 

DIAMOND DRILL HOLE COLLAR LOCATIONS, AZIMUTH, INCLINATION, AND METRES DRILLED

 

HOLE-ID

 

Operator

 

Easting
NAD83

 

Northing
NAD83

 

Elevation
(mine grid)

 

AZIMUTH

 

DIP

 

CASING
(m)

 

START
(m)

 

EOH
(m)

 

Total Drilled
(m)

 

EH-96-01

 

Band-Ore

 

463949

 

5355938

 

10000

 

180

 

-46

 

18

 

0

 

302

 

302

 

EH-96-02

 

Band-Ore

 

463949

 

5356438

 

10000

 

180

 

-45

 

24

 

0

 

88

 

88

 

GS-03-02

 

Band-Ore

 

460007

 

5353503

 

10000

 

180

 

-50

 

28

 

0

 

338

 

338

 

GS-03-03

 

Band-Ore

 

460007

 

5353678

 

10000

 

180

 

-45

 

31

 

0

 

338

 

338

 

GS-03-04

 

Band-Ore

 

460365

 

5354409

 

10002

 

180

 

-45

 

7

 

0

 

329

 

329

 

GS-03-07

 

Band-Ore

 

460207

 

5353456

 

10000

 

180

 

-45

 

24

 

0

 

284

 

284

 

GS-03-08

 

Band-Ore

 

459960

 

5353409

 

10000

 

180

 

-45

 

46

 

0

 

251

 

251

 

GS-03-09

 

Band-Ore

 

460506

 

5354400

 

10007

 

180

 

-45

 

18

 

0

 

191

 

191

 

GS-03-10

 

Band-Ore

 

460753

 

5354590

 

10015

 

180

 

-45

 

28

 

0

 

413

 

413

 

GS-03-11

 

Band-Ore

 

460529

 

5354148

 

10007

 

180

 

-46

 

19

 

0

 

353

 

353

 

GS-03-12

 

Band-Ore

 

460440

 

5354522

 

10003

 

180

 

-45

 

10

 

0

 

332

 

332

 

GS-04-01

 

Band-Ore

 

461733

 

5356028

 

10000

 

174

 

-47

 

50

 

0

 

251

 

251

 

GS-04-02

 

Band-Ore

 

461741

 

5355886

 

10010

 

0

 

-47

 

50

 

0

 

251

 

251

 

GS-04-03

 

Band-Ore

 

461947

 

5355230

 

10018

 

0

 

-46

 

51

 

0

 

269

 

269

 

GS-04-04

 

Band-Ore

 

461108

 

5356228

 

10000

 

180

 

-45

 

42

 

0

 

249

 

249

 

GS-04-05

 

Band-Ore

 

460962

 

5355625

 

10011

 

180

 

-60

 

42

 

0

 

371

 

371

 

GS-04-06E

 

Band-Ore

 

460939

 

5355864

 

10009

 

178

 

-45

 

33

 

0

 

617

 

617

 

GS-05-01

 

Band-Ore

 

462857

 

5355678

 

10000

 

185

 

-45

 

43

 

0

 

356

 

356

 

GS-05-02

 

Band-Ore

 

463126

 

5355511

 

10000

 

180

 

-45

 

35

 

0

 

311

 

311

 

GS-05-03

 

Band-Ore

 

463319

 

5355913

 

10000

 

180

 

-45

 

26

 

0

 

314

 

314

 

GS-05-04

 

Band-Ore

 

462321

 

5355873

 

10000

 

180

 

-45

 

50

 

0

 

353

 

353

 

GS-05-05

 

Band-Ore

 

460949

 

5355719

 

10010

 

180

 

-70

 

22

 

0

 

680

 

680

 

GS-05-06

 

Band-Ore

 

460357

 

5354708

 

10000

 

175

 

-47

 

27

 

0

 

653

 

653

 

GS-05-07

 

Band-Ore

 

460749

 

5354728

 

10000

 

180

 

-49

 

30

 

0

 

611

 

611

 

GS-06-01

 

WTM

 

461971

 

5355032

 

10024

 

180

 

-45

 

16

 

0

 

134

 

134

 

GS-06-02

 

WTM

 

462003

 

5355107

 

10021

 

250

 

-55

 

12

 

0

 

302

 

302

 

GS-06-03

 

WTM

 

461944

 

5355227

 

10017

 

230

 

-50

 

24

 

0

 

218

 

218

 

GS-06-04

 

WTM

 

462243

 

5355032

 

10024

 

180

 

-45

 

9

 

0

 

266

 

266

 

GS-06-05

 

WTM

 

462308

 

5355033

 

10023

 

180

 

-45

 

10

 

0

 

150

 

150

 

GS-06-06

 

WTM

 

462309

 

5355121

 

10020

 

180

 

-45

 

39

 

0

 

227

 

227

 

GS-06-07

 

WTM

 

462010

 

5355175

 

10018

 

230

 

-50

 

27

 

0

 

252

 

252

 

GS-07-08

 

WTM

 

461934

 

5355249

 

10016

 

230

 

-50

 

33

 

0

 

111

 

111

 

GS-07-09

 

WTM

 

461882

 

5355299

 

10016

 

230

 

-50

 

31

 

0

 

221

 

221

 

GS-07-10

 

WTM

 

461968

 

5355221

 

10017

 

180

 

-45

 

28

 

0

 

125

 

125

 

GS-07-11

 

WTM

 

461923

 

5355022

 

10025

 

230

 

-50

 

18

 

0

 

101

 

101

 

GS-07-12

 

WTM

 

461923

 

5355022

 

10025

 

230

 

-50

 

13

 

0

 

101

 

101

 

GS-07-13

 

WTM

 

461904

 

5355046

 

10023

 

230

 

-75

 

21

 

0

 

101

 

101

 

GS-07-14

 

WTM

 

461904

 

5355046

 

10023

 

230

 

-74

 

20

 

0

 

92

 

92

 

GS-07-15

 

WTM

 

461897

 

5355005

 

10025

 

180

 

-90

 

12

 

0

 

65

 

65

 

GS-07-16

 

WTM

 

461884

 

5355026

 

10025

 

180

 

-55

 

18

 

0

 

65

 

65

 

GS-07-17

 

WTM

 

461884

 

5355026

 

10025

 

180

 

-65

 

16

 

0

 

65

 

65

 

GS-07-18

 

WTM

 

461884

 

5355026

 

10025

 

180

 

-45

 

19

 

0

 

50

 

50

 

GS-07-19

 

WTM

 

461896

 

5355036

 

10024

 

180

 

-55

 

18

 

0

 

71

 

71

 

GS-07-20

 

WTM

 

464410

 

5355708

 

10000

 

30

 

-50

 

36

 

0

 

161

 

161

 

GS-07-21

 

WTM

 

464543

 

5355717

 

10000

 

210

 

-45

 

48

 

0

 

281

 

281

 

GS-07-22

 

WTM

 

462887

 

5356781

 

10000

 

200

 

-50

 

63

 

0

 

485

 

485

 

GS-07-23

 

WTM

 

460952

 

5354766

 

10019

 

175

 

-50

 

13

 

0

 

251

 

251

 

GS-07-24

 

WTM

 

460948

 

5354989

 

10018

 

200

 

-50

 

23

 

0

 

302

 

302

 

GS-07-25

 

WTM

 

461782

 

5355261

 

10016

 

200

 

-45

 

14

 

0

 

161

 

161

 

GS-07-26

 

WTM

 

461645

 

5355143

 

10029

 

180

 

-45

 

21

 

0

 

224

 

224

 

GS-07-27

 

WTM

 

461343

 

5355357

 

10020

 

180

 

-45

 

22

 

0

 

200

 

200

 

GS-07-28

 

WTM

 

461569

 

5355352

 

10022

 

180

 

-55

 

17

 

0

 

500

 

500

 

GS-09-29

 

WTM

 

461494

 

5355359

 

10021

 

178

 

-60

 

15

 

0

 

449

 

449

 

GS-09-30

 

WTM

 

461494

 

5355358

 

10022

 

178

 

-63

 

15

 

0

 

449

 

449

 

GS-09-31

 

WTM

 

461517

 

5355251

 

10028

 

170

 

-75

 

15

 

0

 

290

 

290

 

GS-09-32

 

WTM

 

461469

 

5355358

 

10021

 

178

 

-63

 

14

 

0

 

440

 

440

 

GS-09-33

 

WTM

 

461467

 

5355397

 

10019

 

175

 

-65

 

17

 

0

 

539

 

539

 

 

164



 

HOLE-ID

 

Operator

 

Easting
NAD83

 

Northing
NAD83

 

Elevation
(mine grid)

 

AZIMUTH

 

DIP

 

CASING
(m)

 

START
(m)

 

EOH
(m)

 

Total Drilled
(m)

 

GS-09-34

 

WTM

 

461532

 

5355253

 

10027

 

179

 

-70

 

15

 

0

 

269

 

269

 

GS-09-35

 

WTM

 

461502

 

5355252

 

10028

 

183

 

-75

 

15

 

0

 

425

 

425

 

GS-09-36

 

WTM

 

461594

 

5355202

 

10029

 

180

 

-63

 

18

 

0

 

125

 

125

 

GS-09-37

 

WTM

 

461620

 

5355204

 

10028

 

178

 

-45

 

21

 

0

 

200

 

200

 

GS-09-38

 

WTM

 

461620

 

5355203

 

10028

 

178

 

-67

 

17

 

0

 

302

 

302

 

GS-09-39

 

WTM

 

461670

 

5355202

 

10025

 

178

 

-45

 

24

 

0

 

227

 

227

 

GS-09-40

 

WTM

 

461670

 

5355203

 

10025

 

180

 

-65

 

18

 

0

 

275

 

275

 

GS-09-41

 

WTM

 

461468

 

5355297

 

10026

 

178

 

-63

 

19

 

0

 

350

 

350

 

GS-09-42

 

WTM

 

461299

 

5355145

 

10026

 

178

 

-60

 

20

 

0

 

134

 

134

 

GS-09-43

 

WTM

 

461345

 

5355147

 

10027

 

178

 

-58

 

19

 

0

 

128

 

128

 

GS-09-44

 

WTM

 

461346

 

5355247

 

10025

 

178

 

-58

 

18

 

0

 

251

 

251

 

GS-09-45

 

WTM

 

461324

 

5355144

 

10027

 

178

 

-58

 

15

 

0

 

125

 

125

 

GS-09-46

 

WTM

 

461343

 

5355307

 

10022

 

175

 

-55

 

18

 

0

 

434

 

434

 

GS-09-47

 

WTM

 

459591

 

5355625

 

10006

 

175

 

-50

 

31

 

0

 

317

 

317

 

GW-03-01

 

Band-Ore

 

459950

 

5355320

 

10015

 

179

 

-45

 

30

 

0

 

164

 

164

 

GW-03-02

 

Band-Ore

 

460131

 

5355272

 

10011

 

180

 

-46

 

16

 

0

 

233

 

233

 

GW-03-03

 

Band-Ore

 

459537

 

5356095

 

10011

 

174

 

-45

 

32

 

0

 

215

 

215

 

GW-03-04

 

Band-Ore

 

459431

 

5356078

 

10011

 

180

 

-45

 

31

 

0

 

251

 

251

 

GW-03-05

 

Band-Ore

 

460013

 

5356326

 

10008

 

178

 

-45

 

32

 

0

 

252

 

252

 

GW-03-06

 

Band-Ore

 

460297

 

5356283

 

10007

 

180

 

-49

 

49

 

0

 

271

 

271

 

GW-03-07

 

Band-Ore

 

460131

 

5355323

 

10011

 

180

 

-47

 

13

 

0

 

152

 

152

 

GW-03-08

 

Band-Ore

 

459537

 

5356141

 

10011

 

180

 

-45

 

28

 

0

 

216

 

216

 

GW-03-09

 

Band-Ore

 

459537

 

5356141

 

10011

 

180

 

-45

 

31

 

0

 

248

 

248

 

GW-03-10

 

Band-Ore

 

460010

 

5356373

 

10009

 

178

 

-45

 

34

 

0

 

66

 

66

 

GW-03-10A

 

Band-Ore

 

460010

 

5356373

 

10009

 

175

 

-48

 

30

 

0

 

276

 

276

 

GW-03-11

 

Band-Ore

 

460128

 

5355365

 

10011

 

180

 

-45

 

9

 

0

 

95

 

95

 

GW-03-12

 

Band-Ore

 

460103

 

5355365

 

10012

 

180

 

-47

 

10

 

0

 

188

 

188

 

GW-03-13

 

Band-Ore

 

460104

 

5355414

 

10012

 

180

 

-47

 

12

 

0

 

209

 

209

 

GW-03-14

 

Band-Ore

 

460013

 

5356516

 

10008

 

180

 

-46

 

68

 

0

 

365

 

365

 

GW-03-15

 

Band-Ore

 

460108

 

5355442

 

10013

 

180

 

-53

 

11

 

0

 

13

 

13

 

GW-03-16

 

Band-Ore

 

460079

 

5355409

 

10013

 

180

 

-48

 

16

 

0

 

200

 

200

 

GW-03-17

 

Band-Ore

 

460083

 

5355438

 

10014

 

180

 

-52

 

13

 

0

 

230

 

230

 

GW-03-18

 

Band-Ore

 

460104

 

5355414

 

10012

 

182

 

-60

 

11

 

0

 

245

 

245

 

GW-03-19

 

Band-Ore

 

460054

 

5355408

 

10014

 

180

 

-45

 

19

 

0

 

182

 

182

 

GW-03-20

 

Band-Ore

 

460083

 

5355441

 

10014

 

180

 

-64

 

12

 

0

 

302

 

302

 

GW-03-21

 

Band-Ore

 

460221

 

5355600

 

10009

 

174

 

-50

 

21

 

0

 

410

 

410

 

GW-03-21A

 

Band-Ore

 

460207

 

5355598

 

10009

 

174

 

-45

 

18

 

0

 

26

 

26

 

GW-03-22

 

Band-Ore

 

460057

 

5355437

 

10014

 

180

 

-55

 

14

 

0

 

307

 

307

 

GW-03-23E

 

Band-Ore/WTM

 

459925

 

5355405

 

10015

 

180

 

-47

 

24

 

0

 

302

 

302

 

GW-03-24

 

Band-Ore

 

459959

 

5356378

 

10011

 

180

 

-50

 

30

 

0

 

193

 

193

 

GW-03-25

 

Band-Ore

 

460039

 

5356375

 

10008

 

180

 

-50

 

33

 

0

 

56

 

56

 

GW-03-26

 

Band-Ore

 

459984

 

5356403

 

10008

 

180

 

-50

 

30

 

0

 

201

 

201

 

GW-03-27

 

Band-Ore

 

460032

 

5355438

 

10015

 

180

 

-51

 

10

 

0

 

167

 

167

 

GW-03-28

 

Band-Ore

 

460029

 

5355459

 

10014

 

180

 

-52

 

10

 

0

 

215

 

215

 

GW-03-29

 

Band-Ore

 

460029

 

5355459

 

10014

 

180

 

-64

 

9

 

0

 

262

 

262

 

GW-03-30

 

Band-Ore

 

460306

 

5356503

 

10007

 

180

 

-50

 

54

 

0

 

239

 

239

 

GW-03-31

 

Band-Ore

 

460029

 

5355511

 

10013

 

180

 

-60

 

10

 

0

 

335

 

335

 

GW-03-32

 

Band-Ore

 

460030

 

5355343

 

10015

 

180

 

-45

 

18

 

0

 

38

 

38

 

GW-04-01

 

Band-Ore

 

459876

 

5355421

 

10014

 

180

 

-45

 

34

 

0

 

308

 

308

 

GW-04-02

 

Band-Ore

 

459739

 

5356117

 

10008

 

180

 

-47

 

30

 

0

 

215

 

215

 

GW-04-03

 

Band-Ore

 

459736

 

5356338

 

10007

 

180

 

-47

 

23

 

0

 

296

 

296

 

GW-04-04

 

Band-Ore

 

459875

 

5355369

 

10013

 

180

 

-45

 

33

 

0

 

290

 

290

 

GW-04-05

 

Band-Ore

 

459900

 

5355316

 

10014

 

178

 

-45

 

39

 

0

 

227

 

227

 

GW-04-06

 

Band-Ore

 

459826

 

5355347

 

10008

 

180

 

-48

 

36

 

0

 

227

 

227

 

GW-04-07

 

Band-Ore

 

459875

 

5355269

 

10007

 

180

 

-47

 

32

 

0

 

200

 

200

 

GW-04-08

 

Band-Ore

 

459766

 

5355338

 

10006

 

180

 

-45

 

36

 

0

 

302

 

302

 

GW-04-09

 

Band-Ore

 

459714

 

5355374

 

10007

 

180

 

-47

 

38

 

0

 

437

 

437

 

 

165



 

HOLE-ID

 

Operator

 

Easting
NAD83

 

Northing
NAD83

 

Elevation
(mine grid)

 

AZIMUTH

 

DIP

 

CASING
(m)

 

START
(m)

 

EOH
(m)

 

Total Drilled
(m)

 

GW-04-10

 

Band-Ore

 

459881

 

5355216

 

10007

 

180

 

-47

 

32

 

0

 

155

 

155

 

GW-04-11

 

Band-Ore

 

459923

 

5355315

 

10015

 

180

 

-48

 

32

 

0

 

251

 

251

 

GW-04-12

 

Band-Ore

 

459876

 

5355471

 

10015

 

180

 

-53

 

41

 

0

 

392

 

392

 

GW-04-13

 

Band-Ore

 

459686

 

5356342

 

10008

 

180

 

-45

 

49

 

0

 

320

 

320

 

GW-04-14

 

Band-Ore

 

459957

 

5354578

 

10000

 

180

 

-45

 

42

 

0

 

350

 

350

 

GW-04-15

 

Band-Ore

 

458732

 

5355728

 

10017

 

180

 

-50

 

21

 

0

 

476

 

476

 

GW-04-16

 

Band-Ore

 

458732

 

5355828

 

10017

 

180

 

-45

 

15

 

0

 

209

 

209

 

GW-04-17

 

Band-Ore

 

458757

 

5354228

 

10000

 

180

 

-45

 

65

 

0

 

417

 

417

 

GW-04-18

 

Band-Ore

 

458732

 

5356028

 

10017

 

180

 

-45

 

37

 

0

 

281

 

281

 

GW-04-19

 

Band-Ore

 

459617

 

5355720

 

10006

 

180

 

-60

 

23

 

0

 

633

 

633

 

GW-04-20

 

Band-Ore

 

459617

 

5355752

 

10006

 

180

 

-63

 

35

 

0

 

469

 

469

 

GW-05-01

 

Band-Ore

 

460057

 

5354828

 

10000

 

178

 

-45

 

39

 

0

 

332

 

332

 

GW-05-02

 

Band-Ore

 

460139

 

5356573

 

10008

 

175

 

-53

 

69

 

0

 

308

 

308

 

GW-05-03

 

Band-Ore

 

460165

 

5356372

 

10007

 

177

 

-52

 

48

 

0

 

437

 

437

 

GW-05-04

 

Band-Ore

 

460337

 

5355399

 

10005

 

180

 

-45

 

3

 

0

 

215

 

215

 

GW-05-05

 

Band-Ore

 

460322

 

5355424

 

10005

 

180

 

-45

 

7

 

0

 

161

 

161

 

GW-07-01

 

WTM

 

459863

 

5355269

 

10007

 

180

 

-45

 

36

 

0

 

248

 

248

 

GW-07-01A

 

WTM

 

459867

 

5355273

 

10007

 

360

 

-45

 

33

 

0

 

62

 

62

 

GW-07-02

 

WTM

 

459863

 

5355269

 

10007

 

180

 

-60

 

30

 

0

 

308

 

308

 

GW-07-03

 

WTM

 

459863

 

5355269

 

10007

 

180

 

-70

 

28

 

0

 

317

 

317

 

GW-07-04

 

WTM

 

459888

 

5355270

 

10009

 

180

 

-45

 

36

 

0

 

161

 

161

 

GW-07-05

 

WTM

 

459888

 

5355270

 

10009

 

180

 

-45

 

34

 

0

 

203

 

203

 

GW-07-06

 

WTM

 

459888

 

5355270

 

10009

 

180

 

-60

 

30

 

0

 

251

 

251

 

GW-07-07

 

WTM

 

459891

 

5355274

 

10010

 

180

 

-70

 

27

 

0

 

332

 

332

 

GW-07-08

 

WTM

 

459924

 

5355354

 

10015

 

180

 

-46

 

28

 

0

 

308

 

308

 

GW-07-09

 

WTM

 

460172

 

5355426

 

10012

 

150

 

-48

 

24

 

0

 

494

 

494

 

GW-07-10

 

WTM

 

459903

 

5355321

 

10013

 

180

 

-48

 

35

 

0

 

225

 

225

 

GW-07-11

 

WTM

 

457859

 

5354098

 

10012

 

180

 

-50

 

27

 

0

 

251

 

251

 

GW-07-12

 

WTM

 

458998

 

5355386

 

10013

 

180

 

-50

 

33

 

0

 

152

 

152

 

GW-07-13

 

WTM

 

458888

 

5355376

 

10015

 

180

 

-50

 

30

 

0

 

152

 

152

 

GW-07-14

 

WTM

 

460013

 

5356516

 

10007

 

180

 

-50

 

42

 

0

 

326

 

326

 

GW-07-15

 

WTM

 

458799

 

5355588

 

10014

 

180

 

-50

 

30

 

0

 

422

 

422

 

GW-07-16

 

WTM

 

458799

 

5355686

 

10017

 

180

 

-50

 

31

 

0

 

551

 

551

 

GW-08-17

 

WTM

 

458945

 

5355415

 

10012

 

180

 

-50

 

28

 

0

 

182

 

182

 

GW-08-18

 

WTM

 

458997

 

5355419

 

10012

 

180

 

-50

 

29

 

0

 

200

 

200

 

GW-08-18A

 

WTM

 

458997

 

5355419

 

10012

 

180

 

-50

 

29

 

0

 

121

 

121

 

GW-08-19

 

WTM

 

458844

 

5355383

 

10015

 

180

 

-50

 

32

 

0

 

206

 

206

 

GW-08-20

 

WTM

 

459716

 

5355567

 

10012

 

180

 

-45

 

44

 

0

 

452

 

452

 

GW-08-21

 

WTM

 

459716

 

5355632

 

10014

 

180

 

-45

 

45

 

0

 

500

 

500

 

GW-08-22

 

WTM

 

459444

 

5355712

 

10009

 

180

 

-53

 

42

 

0

 

452

 

452

 

GW-08-23

 

WTM

 

459483

 

5355683

 

10009

 

180

 

-60

 

26

 

0

 

443

 

443

 

GW-08-24

 

WTM

 

459409

 

5355648

 

10009

 

180

 

-60

 

33

 

0

 

410

 

410

 

GW-08-25

 

WTM

 

459410

 

5355719

 

10009

 

180

 

-60

 

36

 

0

 

444

 

444

 

GW-08-26

 

WTM

 

459392

 

5355595

 

10007

 

180

 

-45

 

21

 

0

 

320

 

320

 

GW-08-27

 

WTM

 

459391

 

5355642

 

10011

 

180

 

-45

 

40

 

0

 

330

 

330

 

GW-08-28

 

WTM

 

459392

 

5355709

 

10009

 

180

 

-45

 

45

 

0

 

452

 

452

 

GW-08-29

 

WTM

 

459418

 

5355715

 

10009

 

180

 

-60

 

44

 

0

 

389

 

389

 

GW-08-30

 

WTM

 

459481

 

5355757

 

10007

 

180

 

-60

 

49

 

0

 

200

 

200

 

GW-08-31

 

WTM

 

459493

 

5355755

 

10007

 

180

 

-60

 

46

 

0

 

524

 

524

 

GW-08-32

 

WTM

 

459289

 

5355642

 

10010

 

180

 

-55

 

38

 

0

 

455

 

455

 

GW-08-33

 

WTM

 

459288

 

5355700

 

10007

 

180

 

-55

 

24

 

0

 

488

 

488

 

GW-08-34

 

WTM

 

459289

 

5355761

 

10009

 

180

 

-55

 

21

 

0

 

551

 

551

 

GW-08-35

 

WTM

 

458211

 

5355329

 

10020

 

180

 

-45

 

19

 

0

 

263

 

263

 

GW-08-36

 

WTM

 

458110

 

5355333

 

10021

 

180

 

-45

 

25

 

0

 

250

 

250

 

GW-08-37

 

WTM

 

458159

 

5355437

 

10019

 

180

 

-45

 

39

 

0

 

326

 

326

 

GW-08-38

 

WTM

 

458057

 

5355336

 

10024

 

180

 

-45

 

38

 

0

 

251

 

251

 

GW-08-39

 

WTM

 

458006

 

5355347

 

10027

 

180

 

-45

 

46

 

0

 

269

 

269

 

 

166



 

HOLE-ID

 

Operator

 

Easting
NAD83

 

Northing
NAD83

 

Elevation
(mine grid)

 

AZIMUTH

 

DIP

 

CASING
(m)

 

START
(m)

 

EOH
(m)

 

Total Drilled
(m)

 

GW-08-40

 

WTM

 

458057

 

5355436

 

10026

 

180

 

-45

 

53

 

0

 

363

 

363

 

GW-08-41

 

WTM

 

459717

 

5355710

 

10014

 

180

 

-45

 

36

 

0

 

350

 

350

 

GW-08-42

 

WTM

 

459764

 

5355532

 

10016

 

180

 

-45

 

52

 

0

 

230

 

230

 

GW-08-43

 

WTM

 

459716

 

5355602

 

10012

 

180

 

-45

 

51

 

0

 

275

 

275

 

GW-08-44

 

WTM

 

459591

 

5355615

 

10006

 

180

 

-60

 

7

 

0

 

581

 

581

 

GW-08-45

 

WTM

 

459589

 

5355563

 

10009

 

180

 

-60

 

15

 

0

 

554

 

554

 

GW-09-46

 

WTM

 

459591

 

5355512

 

10008

 

178

 

-60

 

21

 

0

 

497

 

497

 

GW-09-47

 

WTM

 

459594

 

5355629

 

10007

 

178

 

-73

 

9

 

0

 

677

 

677

 

GW-09-48

 

WTM

 

459591

 

5355462

 

10010

 

178

 

-60

 

18

 

0

 

281

 

281

 

GW-09-49

 

WTM

 

459716

 

5355763

 

10009

 

178

 

-55

 

42

 

0

 

593

 

593

 

GW-09-50

 

WTM

 

459293

 

5355395

 

10008

 

178

 

-45

 

26

 

0

 

200

 

200

 

GW-09-51

 

WTM

 

459296

 

5355399

 

10009

 

178

 

-75

 

21

 

0

 

152

 

152

 

GW-09-52

 

WTM

 

459342

 

5355634

 

10011

 

178

 

-68

 

33

 

0

 

521

 

521

 

GW-09-53

 

WTM

 

459342

 

5355666

 

10009

 

180

 

-75

 

30

 

0

 

608

 

608

 

GW-09-54

 

WTM

 

459331

 

5355664

 

10007

 

195

 

-90

 

27

 

0

 

837

 

837

 

KG-96-01

 

Band-Ore

 

458749

 

5356888

 

10000

 

160

 

-45

 

30

 

0

 

167

 

167

 

KG-96-02

 

Band-Ore

 

458949

 

5356788

 

10000

 

160

 

-45

 

26

 

0

 

206

 

206

 

KZ-05-01

 

Band-Ore

 

460680

 

5355491

 

10010

 

90

 

-47

 

27

 

0

 

200

 

200

 

KZ-05-02

 

Band-Ore

 

460670

 

5355517

 

10010

 

90

 

-45

 

24

 

0

 

228

 

228

 

KZ-05-03

 

Band-Ore

 

460666

 

5355466

 

10009

 

90

 

-45

 

24

 

0

 

220

 

220

 

NW-05-01

 

Band-Ore

 

459974

 

5355355

 

10015

 

90

 

-45

 

21

 

0

 

227

 

227

 

NW-05-02

 

Band-Ore

 

459975

 

5355404

 

10014

 

90

 

-45

 

17

 

0

 

215

 

215

 

NZ-05-01

 

Band-Ore

 

460951

 

5355215

 

10016

 

90

 

-45

 

39

 

0

 

125

 

125

 

NZ-05-02

 

Band-Ore

 

460952

 

5355215

 

10016

 

90

 

-68

 

30

 

0

 

146

 

146

 

NZ-05-03

 

Band-Ore

 

460952

 

5355190

 

10016

 

90

 

-45

 

42

 

0

 

125

 

125

 

NZ-05-04

 

Band-Ore

 

460951

 

5355190

 

10016

 

90

 

-68

 

36

 

0

 

161

 

161

 

NZ-05-05

 

Band-Ore

 

460951

 

5355240

 

10016

 

90

 

-45

 

33

 

0

 

101

 

101

 

NZ-05-06

 

Band-Ore

 

460951

 

5355240

 

10016

 

90

 

-68

 

24

 

0

 

171

 

171

 

NZ-05-07

 

Band-Ore

 

460951

 

5355265

 

10015

 

90

 

-45

 

36

 

0

 

110

 

110

 

NZ-05-08

 

Band-Ore

 

460954

 

5355165

 

10016

 

90

 

-45

 

44

 

0

 

167

 

167

 

NZ-05-09

 

Band-Ore

 

460825

 

5355238

 

10014

 

90

 

-50

 

35

 

0

 

183

 

183

 

NZ-05-10

 

Band-Ore

 

460990

 

5355165

 

10017

 

90

 

-47

 

36

 

0

 

125

 

125

 

NZ-05-11

 

Band-Ore

 

460919

 

5355165

 

10016

 

90

 

-45

 

45

 

0

 

200

 

200

 

NZ-05-12

 

Band-Ore

 

460919

 

5355165

 

10016

 

90

 

-65

 

35

 

0

 

197

 

197

 

NZ-05-13

 

Band-Ore

 

460955

 

5355140

 

10017

 

90

 

-45

 

42

 

0

 

146

 

146

 

RP-09-01

 

WTM

 

459956

 

5356430

 

10010

 

178

 

-50

 

37

 

0

 

287

 

287

 

RP-09-02

 

WTM

 

459956

 

5356429

 

10010

 

140

 

-50

 

39

 

0

 

153

 

153

 

RP-09-03

 

WTM

 

459963

 

5356432

 

10010

 

220

 

-50

 

39

 

0

 

653

 

653

 

RP-09-04

 

WTM

 

459955

 

5356484

 

10007

 

180

 

-50

 

36

 

0

 

36

 

36

 

RP-09-04A

 

WTM

 

459955

 

5356479

 

10007

 

180

 

-50

 

33

 

0

 

33

 

33

 

RP-09-04B

 

WTM

 

459955

 

5356479

 

10007

 

180

 

-50

 

51

 

0

 

51

 

51

 

T-01

 

Esso

 

458883

 

5354729

 

10011

 

180

 

-45

 

11

 

0

 

198

 

198

 

T-02

 

Esso

 

458868

 

5354898

 

10012

 

180

 

-45

 

16

 

0

 

227

 

227

 

T-03

 

Esso

 

459549

 

5355513

 

10008

 

180

 

-45

 

34

 

0

 

78

 

78

 

T-04

 

Esso

 

459527

 

5355634

 

10015

 

180

 

-45

 

16

 

0

 

305

 

305

 

T-05

 

Esso

 

459294

 

5355510

 

10009

 

180

 

-45

 

23

 

0

 

234

 

234

 

T-06

 

Esso

 

460518

 

5355803

 

10013

 

180

 

-45

 

18

 

0

 

203

 

203

 

T-07

 

Esso

 

460509

 

5355688

 

10000

 

180

 

-45

 

11

 

0

 

249

 

249

 

T-08

 

Esso

 

462300

 

5356778

 

10000

 

180

 

-45

 

N/A

 

0

 

170

 

170

 

T-09R

 

Esso

 

460969

 

5355481

 

10000

 

180

 

-45

 

28

 

0

 

252

 

252

 

T-10

 

Esso

 

460629

 

5355338

 

10000

 

360

 

-45

 

20

 

0

 

447

 

447

 

T-11R

 

Esso

 

460733

 

5355577

 

10010

 

180

 

-50

 

25

 

0

 

462

 

462

 

T-12

 

Esso

 

460740

 

5355543

 

10011

 

180

 

-50

 

26

 

0

 

124

 

124

 

T-13

 

Esso

 

460707

 

5355568

 

10010

 

160

 

-50

 

23

 

0

 

154

 

154

 

T-14E

 

Esso/Band-Ore

 

460670

 

5355536

 

10009

 

160

 

-52

 

24

 

0

 

458

 

458

 

T-15

 

Esso

 

460780

 

5355545

 

10011

 

180

 

-45

 

32

 

0

 

160

 

160

 

T-16

 

Esso

 

460780

 

5355584

 

10011

 

180

 

-45

 

36

 

0

 

148

 

148

 

 

167



 

HOLE-ID

 

Operator

 

Easting
NAD83

 

Northing
NAD83

 

Elevation
(mine grid)

 

AZIMUTH

 

DIP

 

CASING
(m)

 

START
(m)

 

EOH
(m)

 

Total Drilled
(m)

 

T-17

 

Esso

 

460725

 

5355641

 

10010

 

180

 

-50

 

30

 

0

 

230

 

230

 

T-18E

 

Esso/Band-Ore

 

460965

 

5355567

 

10012

 

180

 

-45

 

55

 

0

 

527

 

527

 

T-19

 

Esso

 

460907

 

5355551

 

10013

 

184

 

-45

 

37

 

0

 

304

 

304

 

T-20

 

Esso

 

461109

 

5355563

 

10000

 

180

 

-45

 

32

 

0

 

315

 

315

 

T-21E

 

Esso/Band-Ore

 

461212

 

5355516

 

10000

 

180

 

-45

 

36

 

0

 

545

 

545

 

T-22R

 

Esso

 

461333

 

5355472

 

10015

 

180

 

-45

 

29

 

0

 

252

 

252

 

T-23E

 

Esso/Band-Ore

 

461444

 

5355487

 

10013

 

175

 

-46

 

37

 

0

 

557

 

557

 

T-24R

 

Esso

 

461389

 

5355287

 

10023

 

0

 

-45

 

22

 

0

 

282

 

282

 

T-25R

 

Esso

 

461574

 

5355464

 

10016

 

180

 

-45

 

33

 

0

 

182

 

182

 

T-26

 

Esso

 

461709

 

5355538

 

10007

 

180

 

-45

 

45

 

0

 

337

 

337

 

T-27

 

Esso

 

461668

 

5355426

 

10019

 

0

 

-45

 

46

 

0

 

234

 

234

 

T-28

 

Esso

 

460764

 

5355528

 

10011

 

180

 

-45

 

28

 

0

 

97

 

97

 

T-29

 

Esso

 

460767

 

5355532

 

10012

 

180

 

-65

 

22

 

0

 

149

 

149

 

T-30

 

Esso

 

460846

 

5355543

 

10012

 

180

 

-57

 

37

 

0

 

182

 

182

 

T-31

 

Esso

 

460846

 

5355543

 

10012

 

180

 

-45

 

40

 

0

 

145

 

145

 

T-32

 

Esso

 

460449

 

5355713

 

10006

 

180

 

-45

 

18

 

0

 

234

 

234

 

T-33

 

Esso

 

460449

 

5355698

 

10006

 

0

 

-45

 

16

 

0

 

145

 

145

 

T-34

 

Esso

 

461769

 

5356313

 

10010

 

180

 

-45

 

34

 

0

 

150

 

150

 

T-35

 

Esso

 

463089

 

5356138

 

10000

 

180

 

-45

 

41

 

0

 

205

 

205

 

T-36R

 

Esso

 

462809

 

5355118

 

10008

 

180

 

-45

 

15

 

0

 

197

 

197

 

T-37R

 

Esso

 

462829

 

5355043

 

10012

 

180

 

-45

 

13

 

0

 

112

 

112

 

T-38

 

Esso

 

462789

 

5355043

 

10012

 

180

 

-45

 

25

 

0

 

42

 

42

 

T-39

 

Esso

 

460769

 

5355528

 

10011

 

180

 

-85

 

18

 

0

 

75

 

75

 

T-40

 

Esso

 

460762

 

5355495

 

10011

 

180

 

-85

 

21

 

0

 

64

 

64

 

T-41

 

Esso

 

460729

 

5355518

 

10010

 

0

 

-90

 

21

 

0

 

62

 

62

 

T-42

 

Esso

 

459549

 

5355733

 

10008

 

360

 

-45

 

14

 

0

 

195

 

195

 

T-43R

 

Esso

 

459069

 

5356153

 

10000

 

0

 

-45

 

27

 

0

 

189

 

189

 

T-44

 

Esso

 

459069

 

5356723

 

10000

 

0

 

-45

 

37

 

0

 

184

 

184

 

T-45

 

Esso

 

460806

 

5355444

 

10012

 

0

 

-45

 

25

 

0

 

109

 

109

 

T-46

 

Esso

 

460744

 

5355460

 

10011

 

0

 

-60

 

19

 

0

 

145

 

145

 

T-47

 

Esso

 

460785

 

5355385

 

10012

 

360

 

-70

 

26

 

0

 

224

 

224

 

T-48

 

Esso

 

460785

 

5355385

 

10012

 

0

 

-65

 

20

 

0

 

263

 

263

 

T-49

 

Esso

 

460726

 

5355575

 

10010

 

180

 

-50

 

25

 

0

 

160

 

160

 

T-50

 

Esso

 

460726

 

5355575

 

10010

 

180

 

-65

 

23

 

0

 

203

 

203

 

T-51

 

Esso

 

460718

 

5355672

 

10018

 

190

 

-50

 

28

 

0

 

230

 

230

 

T-52

 

Esso

 

460690

 

5355642

 

10010

 

181

 

-57

 

26

 

0

 

230

 

230

 

T-53

 

Esso

 

460943

 

5355480

 

10014

 

190

 

-50

 

23

 

0

 

108

 

108

 

T-54

 

Esso

 

460943

 

5355480

 

10014

 

190

 

-65

 

19

 

0

 

136

 

136

 

T-55

 

Esso

 

461019

 

5355453

 

10013

 

180

 

-50

 

30

 

0

 

181

 

181

 

TB-09-01

 

WTM

 

461744

 

5354877

 

10029

 

190

 

-51

 

10

 

0

 

401

 

401

 

TB-09-03

 

WTM

 

463149

 

5354681

 

10011

 

188

 

-50

 

1

 

0

 

398

 

398

 

TB-09-04

 

WTM

 

463147

 

5354881

 

10010

 

191

 

-58

 

4

 

0

 

674

 

674

 

TC-93-01

 

Band-Ore?

 

458944

 

5355382

 

10012

 

180

 

-45

 

34

 

0

 

155

 

155

 

TH-10-01

 

LSG

 

461850

 

5355175

 

10021

 

180

 

-50

 

25

 

0

 

267

 

267

 

TH-10-02

 

LSG

 

461852

 

5355232

 

10019

 

180

 

-50

 

27

 

0

 

336

 

336

 

TH-10-03

 

LSG

 

461820

 

5355271

 

10019

 

180

 

-50

 

30

 

0

 

396

 

396

 

TH-10-04

 

LSG

 

461468

 

5355451

 

10015

 

175

 

-65

 

31

 

0

 

648

 

648

 

TH-10-05

 

LSG

 

461820

 

5355271

 

10019

 

180

 

-45

 

27

 

0

 

351

 

351

 

TH-10-06

 

LSG

 

459417

 

5355534

 

10014

 

180

 

-53

 

20

 

0

 

276

 

276

 

TH-10-07

 

LSG

 

461469

 

5355493

 

10013

 

175

 

-65

 

26

 

0

 

196

 

196

 

TH-10-08

 

LSG

 

461882

 

5355133

 

10022

 

180

 

-45

 

27

 

0

 

174

 

174

 

TH-10-09

 

LSG

 

461472

 

5355504

 

10017

 

175

 

-67

 

25

 

0

 

676

 

676

 

TH-10-10

 

LSG

 

459716

 

5355499

 

10019

 

180

 

-60

 

33

 

0

 

181

 

181

 

TH-10-11

 

LSG

 

461894

 

5355125

 

10023

 

180

 

-45

 

27

 

0

 

180

 

180

 

TH-10-12

 

LSG

 

459541

 

5355621

 

10012

 

180

 

-45

 

33

 

0

 

325

 

325

 

TH-10-13

 

LSG

 

461822

 

5355310

 

10018

 

180

 

-55

 

26

 

0

 

396

 

396

 

TH-10-14

 

LSG

 

461922

 

5355145

 

10021

 

180

 

-45

 

27

 

0

 

258

 

258

 

 

168



 

HOLE-ID

 

Operator

 

Easting
NAD83

 

Northing
NAD83

 

Elevation
(mine grid)

 

AZIMUTH

 

DIP

 

CASING
(m)

 

START
(m)

 

EOH
(m)

 

Total Drilled
(m)

 

TH-10-15

 

LSG

 

461919

 

5355042

 

10024

 

180

 

-45

 

24

 

0

 

87

 

87

 

TH-10-16

 

LSG

 

459337

 

5355657

 

10015

 

189

 

-67

 

36

 

0

 

48

 

48

 

TH-10-17

 

LSG

 

461994

 

5355150

 

10021

 

180

 

-55

 

19

 

0

 

276

 

276

 

TH-10-18

 

LSG

 

459337

 

5355657

 

10015

 

189

 

-67

 

31

 

0

 

450

 

450

 

TH-10-19

 

LSG

 

461026

 

5355284

 

10015

 

180

 

-47

 

30

 

0

 

300

 

300

 

TH-10-20

 

LSG

 

461024

 

5355400

 

10014

 

180

 

-47

 

24

 

0

 

384

 

384

 

TH-10-21

 

LSG

 

461021

 

5355220

 

10016

 

180

 

-47

 

33

 

0

 

225

 

225

 

TH-10-22

 

LSG

 

461842

 

5355361

 

10015

 

180

 

-58

 

34

 

0

 

484

 

484

 

TH-10-23

 

LSG

 

460948

 

5355198

 

10016

 

180

 

-47

 

45

 

0

 

186

 

186

 

TH-10-24

 

LSG

 

460951

 

5355470

 

10013

 

180

 

-47

 

21

 

0

 

375

 

375

 

TH-10-25

 

LSG

 

460950

 

5355314

 

10014

 

180

 

-57

 

34

 

0

 

327

 

327

 

TH-10-26

 

LSG

 

461464

 

5355605

 

10010

 

175

 

-67

 

42

 

0

 

850

 

850

 

TH-10-26A

 

LSG

 

461464

 

5355605

 

10010

 

175

 

-67

 

 

 

385

 

541

 

156

 

TH-10-26B

 

LSG

 

461464

 

5355605

 

10010

 

175

 

-67

 

 

 

375

 

852

 

477

 

TH-10-26C

 

LSG

 

461464

 

5355605

 

10010

 

175

 

-67

 

 

 

367

 

979

 

612

 

TH-10-27

 

LSG

 

460950

 

5355538

 

10012

 

180

 

-47

 

40

 

0

 

552

 

552

 

TH-10-28

 

LSG

 

461570

 

5355411

 

10019

 

180

 

-57

 

41

 

0

 

534

 

534

 

TH-10-29

 

LSG

 

460921

 

5355402

 

10013

 

180

 

-47

 

38

 

0

 

358

 

358

 

TH-10-30

 

LSG

 

461821

 

5355207

 

10021

 

180

 

-49

 

38

 

0

 

327

 

327

 

TH-10-31

 

LSG

 

461406

 

5355606

 

10010

 

175

 

-67

 

33

 

0

 

852

 

852

 

TH-10-32

 

LSG

 

460896

 

5355348

 

10014

 

180

 

-47

 

36

 

0

 

343

 

343

 

TH-10-33

 

LSG

 

461585

 

5355251

 

10027

 

180

 

-47

 

42

 

0

 

402

 

402

 

TH-10-34

 

LSG

 

462002

 

5355604

 

10011

 

175

 

-67

 

34

 

0

 

846

 

846

 

TH-10-35

 

LSG

 

460921

 

5355400

 

10014

 

178

 

-60

 

31

 

0

 

337

 

337

 

TH-10-36

 

LSG

 

461616

 

5355151

 

10029

 

178

 

-45

 

39

 

0

 

211

 

211

 

TH-10-37

 

LSG

 

460924

 

5355602

 

10011

 

180

 

-52

 

45

 

0

 

112

 

112

 

TH-10-38

 

LSG

 

461617

 

5355243

 

10027

 

179

 

-47

 

41

 

0

 

327

 

327

 

TH-10-39

 

LSG

 

460924

 

5355602

 

10011

 

180

 

-52

 

57

 

0

 

450

 

450

 

TH-10-40

 

LSG

 

461666

 

5355173

 

10027

 

180

 

-50

 

41

 

0

 

201

 

201

 

TH-10-41

 

LSG

 

461659

 

5355273

 

10025

 

180

 

-50

 

36

 

0

 

387

 

387

 

TH-10-42

 

LSG

 

460959

 

5355463

 

10013

 

178

 

-45

 

45

 

0

 

351

 

351

 

TH-10-43

 

LSG

 

461849

 

5355611

 

10012

 

175

 

-67

 

31

 

0

 

849

 

849

 

TH-10-44

 

LSG

 

461658

 

5355223

 

10026

 

180

 

-45

 

33

 

0

 

321

 

321

 

TH-10-45

 

LSG

 

460936

 

5355614

 

10011

 

179

 

-51

 

57

 

0

 

450

 

450

 

TH-10-46

 

LSG

 

461680

 

5355152

 

10024

 

180

 

-45

 

33

 

0

 

201

 

201

 

TH-10-47

 

LSG

 

461703

 

5355093

 

10027

 

180

 

-45

 

20

 

0

 

150

 

150

 

TH-10-48

 

LSG

 

460884

 

5355475

 

10013

 

180

 

-50

 

61

 

0

 

300

 

300

 

TH-10-49

 

LSG

 

461699

 

5355219

 

10024

 

180

 

-45

 

27

 

0

 

273

 

273

 

TH-10-50

 

LSG

 

460879

 

5355556

 

10012

 

180

 

-50

 

42

 

0

 

365

 

365

 

TH-10-51

 

LSG

 

461720

 

5355127

 

10026

 

180

 

-50

 

24

 

0

 

210

 

210

 

TH-10-52

 

LSG

 

461725

 

5355248

 

10023

 

180

 

-50

 

15

 

0

 

327

 

327

 

TH-10-53

 

LSG

 

461698

 

5355596

 

10010

 

175

 

-67

 

25

 

0

 

850

 

850

 

TH-10-53A

 

LSG

 

461698

 

5355596

 

10010

 

175

 

-67

 

 

 

195

 

842

 

647

 

TH-10-54

 

LSG

 

460980

 

5355601

 

10011

 

180

 

-50

 

54

 

0

 

72

 

72

 

TH-10-55

 

LSG

 

460980

 

5355601

 

10011

 

180

 

-50

 

54

 

0

 

393

 

393

 

TH-10-56

 

LSG

 

461783

 

5355210

 

10022

 

179

 

-45

 

18

 

0

 

276

 

276

 

TH-10-57

 

LSG

 

461781

 

5355168

 

10023

 

180

 

-45

 

27

 

0

 

225

 

225

 

TH-10-58

 

LSG

 

460684

 

5355597

 

10009

 

180

 

-47

 

48

 

0

 

225

 

225

 

TH-10-59

 

LSG

 

461884

 

5355312

 

10016

 

179

 

-48

 

36

 

0

 

399

 

399

 

TH-10-60

 

LSG

 

460704

 

5355599

 

10009

 

180

 

-47

 

45

 

0

 

225

 

225

 

TH-10-61

 

LSG

 

460722

 

5355470

 

10010

 

180

 

-45

 

22

 

0

 

147

 

147

 

TH-10-62

 

LSG

 

460739

 

5355510

 

10010

 

180

 

-45

 

28

 

0

 

150

 

150

 

TH-10-63

 

LSG

 

460741

 

5355627

 

10009

 

180

 

-45

 

31

 

0

 

201

 

201

 

TH-10-64

 

LSG

 

460761

 

5355474

 

10011

 

180

 

-45

 

25

 

0

 

126

 

126

 

TH-10-65

 

LSG

 

461518

 

5355603

 

10010

 

179

 

-66

 

64

 

0

 

980

 

980

 

TH-10-65A

 

LSG

 

461518

 

5355603

 

10010

 

179

 

-66

 

 

 

320

 

975

 

655

 

TH-10-65B

 

LSG

 

461518

 

5355603

 

10010

 

179

 

-66

 

 

 

192

 

941

 

749

 

 

169



 

HOLE-ID

 

Operator

 

Easting
NAD83

 

Northing
NAD83

 

Elevation
(mine grid)

 

AZIMUTH

 

DIP

 

CASING
(m)

 

START
(m)

 

EOH
(m)

 

Total Drilled
(m)

 

TH-10-66

 

LSG

 

460786

 

5355499

 

10012

 

180

 

-45

 

22

 

0

 

162

 

162

 

TH-10-67

 

LSG

 

459098

 

5355623

 

10010

 

177

 

-60

 

22

 

0

 

33

 

33

 

TH-10-68

 

LSG

 

459098

 

5355623

 

10010

 

177

 

-60

 

19

 

0

 

33

 

33

 

TH-10-69

 

LSG

 

459098

 

5355623

 

10010

 

177

 

-60

 

25

 

0

 

660

 

660

 

TH-10-70

 

LSG

 

458881

 

5355435

 

10012

 

180

 

-50

 

31

 

0

 

265

 

265

 

TH-11-71

 

LSG

 

461701

 

5355356

 

10022

 

180

 

-50

 

43

 

0

 

500

 

500

 

TH-11-72

 

LSG

 

461758

 

5355184

 

10024

 

178

 

-50

 

24

 

0

 

366

 

366

 

TH-11-73

 

LSG

 

462041

 

5355041

 

10023

 

180

 

-48

 

35

 

0

 

300

 

300

 

TH-11-74

 

LSG

 

462042

 

5355199

 

10016

 

186

 

-48

 

22

 

0

 

428

 

428

 

TH-11-75

 

LSG

 

461601

 

5355597

 

10010

 

180

 

-68

 

31

 

0

 

1040

 

1040

 

TH-11-75A

 

LSG

 

461601

 

5355597

 

10010

 

180

 

-68

 

 

 

295

 

980

 

685

 

TH-11-76

 

LSG

 

461759

 

5355229

 

10023

 

180

 

-50

 

15

 

0

 

351

 

351

 

TH-11-77

 

LSG

 

461759

 

5355360

 

10020

 

180

 

-50

 

39

 

0

 

438

 

438

 

TH-11-78

 

LSG

 

461759

 

5355477

 

10014

 

178

 

-50

 

39

 

0

 

519

 

519

 

TH-11-79

 

LSG

 

461760

 

5355623

 

10011

 

176

 

-50

 

27

 

0

 

710

 

710

 

TH-11-80

 

LSG

 

461690

 

5355596

 

10011

 

176

 

-56

 

35

 

0

 

809

 

809

 

TH-11-81

 

LSG

 

462082

 

5355148

 

10018

 

176

 

-52

 

28

 

0

 

347

 

347

 

TH-11-82

 

LSG

 

462080

 

5355270

 

10014

 

176

 

-54

 

49

 

0

 

392

 

392

 

TH-11-83

 

LSG

 

461690

 

5355596

 

10011

 

176

 

-50

 

37

 

0

 

836

 

836

 

TH-11-84

 

LSG

 

461863

 

5355427

 

10013

 

176

 

-50

 

33

 

0

 

558

 

558

 

TH-11-85

 

LSG

 

462237

 

5355160

 

10018

 

176

 

-52

 

40

 

0

 

305

 

305

 

TH-11-86

 

LSG

 

462241

 

5355259

 

10014

 

176

 

-54

 

28

 

0

 

401

 

401

 

TH-11-87

 

LSG

 

461699

 

5355110

 

10027

 

178

 

-52

 

37

 

0

 

230

 

230

 

TH-11-88

 

LSG

 

461702

 

5355166

 

10025

 

178

 

-52

 

44

 

0

 

269

 

269

 

TH-11-89

 

LSG

 

461460

 

5355975

 

10010

 

175

 

-67

 

31

 

0

 

143

 

143

 

TH-11-90

 

LSG

 

461460

 

5355975

 

10010

 

175

 

-70

 

37

 

0

 

83

 

83

 

TH-11-91

 

LSG

 

461460

 

5355975

 

10010

 

173

 

-67

 

35

 

0

 

224

 

224

 

TH-11-92

 

LSG

 

461639

 

5355171

 

10028

 

178

 

-52

 

52

 

0

 

278

 

278

 

TH-11-93

 

LSG

 

462157

 

5355037

 

10022

 

178

 

-54

 

22

 

0

 

207

 

207

 

TH-11-94

 

LSG

 

461446

 

5355976

 

10011

 

169

 

-67

 

38

 

0

 

857

 

857

 

TH-11-94A

 

LSG

 

461446

 

5355976

 

10011

 

171

 

-68

 

 

 

583

 

1364

 

781

 

TH-11-95

 

LSG

 

461540

 

5355265

 

10027

 

178

 

-54

 

19

 

0

 

365

 

365

 

TH-11-96

 

LSG

 

462162

 

5355123

 

10019

 

178

 

-54

 

28

 

0

 

272

 

272

 

TH-11-97

 

LSG

 

461499

 

5355328

 

10023

 

176

 

-55

 

13

 

0

 

470

 

470

 

TH-11-98

 

LSG

 

461381

 

5355525

 

10011

 

175

 

-67

 

28

 

0

 

762

 

762

 

TH-11-99

 

LSG

 

461481

 

5355346

 

10021

 

176

 

-55

 

14

 

0

 

500

 

500

 

TH-11-100

 

LSG

 

460741

 

5355510

 

10011

 

178

 

-64

 

19

 

0

 

131

 

131

 

TH-11-101

 

LSG

 

460786

 

5355499

 

10011

 

178

 

-66

 

20

 

0

 

201

 

201

 

TH-11-102

 

LSG

 

461562

 

5355548

 

10011

 

174

 

-56

 

31

 

0

 

782

 

782

 

TH-11-103

 

LSG

 

461019

 

5355183

 

10017

 

180

 

-54

 

34

 

0

 

200

 

200

 

TH-11-104

 

LSG

 

461019

 

5355163

 

10017

 

180

 

-54

 

31

 

0

 

170

 

170

 

TH-11-105

 

LSG

 

461121

 

5355236

 

10018

 

176

 

-52

 

22

 

0

 

350

 

350

 

TH-11-106

 

LSG

 

460950

 

5355399

 

10014

 

178

 

-55

 

25

 

0

 

251

 

251

 

TH-11-107

 

LSG

 

461579

 

5355326

 

10023

 

178

 

-54

 

16

 

0

 

504

 

504

 

TH-11-108

 

LSG

 

461800

 

5355155

 

10023

 

178

 

-55

 

22

 

0

 

254

 

254

 

TH-11-109

 

LSG

 

461381

 

5355409

 

10017

 

175

 

-67

 

19

 

0

 

680

 

680

 

TH-11-110

 

LSG

 

461803

 

5355256

 

10020

 

178

 

-55

 

14

 

0

 

411

 

411

 

TH-11-111

 

LSG

 

462160

 

5355229

 

10014

 

177

 

-54

 

30

 

0

 

357

 

357

 

TH-11-112

 

LSG

 

462303

 

5355201

 

10015

 

177

 

-54

 

27

 

0

 

358

 

358

 

TH-11-113

 

LSG

 

461859

 

5355156

 

10021

 

180

 

-55

 

20

 

0

 

230

 

230

 

TH-11-114

 

LSG

 

462302

 

5355282

 

10012

 

176

 

-54

 

30

 

0

 

420

 

420

 

TH-11-115

 

LSG

 

461382

 

5355318

 

10023

 

175

 

-67

 

13

 

0

 

644

 

644

 

TH-11-116

 

LSG

 

462124

 

5355124

 

10018

 

176

 

-52

 

25

 

0

 

251

 

251

 

TH-11-117

 

LSG

 

462217

 

5355045

 

10023

 

177

 

-54

 

10

 

0

 

206

 

206

 

TH-11-118

 

LSG

 

462117

 

5355217

 

10015

 

176

 

-52

 

25

 

0

 

344

 

344

 

TH-11-119

 

LSG

 

462120

 

5355297

 

10013

 

176

 

-52

 

46

 

0

 

515

 

515

 

TH-11-120

 

LSG

 

461380

 

5355525

 

10020

 

175

 

-73

 

28

 

0

 

843

 

843

 

 

170



 

HOLE-ID

 

Operator

 

Easting
NAD83

 

Northing
NAD83

 

Elevation
(mine grid)

 

AZIMUTH

 

DIP

 

CASING
(m)

 

START
(m)

 

EOH
(m)

 

Total Drilled
(m)

 

TH-11-121

 

LSG

 

462160

 

5355327

 

10013

 

177

 

-56

 

76

 

0

 

530

 

530

 

TH-11-122

 

LSG

 

462160

 

5355430

 

10014

 

177

 

-54

 

55

 

0

 

55

 

55

 

TH-11-123

 

LSG

 

462159

 

5355346

 

10013

 

177

 

-64

 

62

 

0

 

524

 

524

 

TH-11-124

 

LSG

 

461301

 

5355526

 

10012

 

177

 

-66

 

25

 

0

 

837

 

837

 

TH-11-124A

 

LSG

 

461301

 

5355526

 

10012

 

177

 

-66

 

 

 

245

 

765

 

520

 

TH-11-125

 

LSG

 

462120

 

5355299

 

10013

 

177

 

-65

 

43

 

0

 

575

 

575

 

TH-11-126

 

LSG

 

462701

 

5355202

 

10012

 

177

 

-60

 

34

 

0

 

533

 

533

 

TH-11-127

 

LSG

 

462223

 

5355347

 

10013

 

177

 

-66

 

128

 

0

 

128

 

128

 

TH-11-128

 

LSG

 

462551

 

5355220

 

10013

 

177

 

-60

 

43

 

0

 

461

 

461

 

TH-11-129

 

LSG

 

462223

 

5355298

 

10013

 

177

 

-60

 

73

 

0

 

542

 

542

 

TH-11-130

 

LSG

 

463029

 

5355246

 

10011

 

176

 

-54

 

31

 

0

 

519

 

519

 

TH-11-131

 

LSG

 

462700

 

5355268

 

10012

 

177

 

-60

 

31

 

0

 

650

 

650

 

TH-95-01

 

Band-Ore

 

459751

 

5355734

 

10014

 

180

 

-50

 

37

 

0

 

191

 

191

 

TH-95-02

 

Band-Ore

 

459823

 

5355605

 

10016

 

180

 

-50

 

44

 

0

 

305

 

305

 

TH-95-03

 

Band-Ore

 

459753

 

5355864

 

10005

 

180

 

-50

 

40

 

0

 

257

 

257

 

TH-95-04

 

Band-Ore

 

458594

 

5355283

 

10015

 

180

 

-50

 

23

 

0

 

156

 

156

 

TH-95-05

 

Band-Ore

 

460721

 

5355513

 

10011

 

180

 

-45

 

30

 

0

 

86

 

86

 

TH-95-06

 

Band-Ore

 

460721

 

5355512

 

10010

 

180

 

-62

 

20

 

0

 

149

 

149

 

TH-95-07

 

Band-Ore

 

460753

 

5355540

 

10011

 

180

 

-55

 

24

 

0

 

138

 

138

 

TH-95-08

 

Band-Ore

 

460847

 

5355283

 

10014

 

0

 

-45

 

31

 

0

 

410

 

410

 

TH-96-09E

 

Band-Ore

 

460906

 

5355414

 

10013

 

187

 

-48

 

30

 

0

 

338

 

338

 

TH-96-10E

 

Band-Ore

 

460750

 

5355707

 

10010

 

185

 

-48

 

33

 

0

 

740

 

740

 

TH-96-11

 

Band-Ore

 

458949

 

5355530

 

10012

 

180

 

-45

 

29

 

0

 

216

 

216

 

TH-96-12

 

Band-Ore

 

460910

 

5355288

 

10015

 

180

 

-60

 

21

 

0

 

230

 

230

 

TH-96-13

 

Band-Ore

 

460145

 

5355644

 

10009

 

180

 

-45

 

30

 

0

 

100

 

100

 

TH-96-14

 

Band-Ore

 

460966

 

5355293

 

10016

 

180

 

-45

 

30

 

0

 

362

 

362

 

TH-96-15E

 

Band-Ore

 

460910

 

5355288

 

10015

 

180

 

-45

 

24

 

0

 

272

 

272

 

TH-96-16

 

Band-Ore

 

460911

 

5355313

 

10014

 

180

 

-58

 

24

 

0

 

287

 

287

 

TH-96-17

 

Band-Ore

 

460966

 

5355317

 

10016

 

180

 

-45

 

40

 

0

 

257

 

257

 

TH-96-18

 

Band-Ore

 

460936

 

5355311

 

10015

 

183

 

-45

 

30

 

0

 

302

 

302

 

TH-96-19

 

Band-Ore

 

460988

 

5355311

 

10015

 

185

 

-45

 

27

 

0

 

245

 

245

 

TH-96-20

 

Band-Ore

 

460869

 

5355410

 

10013

 

180

 

-45

 

27

 

0

 

263

 

263

 

TH-96-21

 

Band-Ore

 

461012

 

5355314

 

10015

 

180

 

-45

 

28

 

0

 

272

 

272

 

TH-96-22

 

Band-Ore

 

460987

 

5355285

 

10015

 

180

 

-45

 

36

 

0

 

230

 

230

 

TH-96-23

 

Band-Ore

 

461038

 

5355312

 

10016

 

180

 

-45

 

37

 

0

 

318

 

318

 

TH-96-24

 

Band-Ore

 

461039

 

5355286

 

10016

 

180

 

-45

 

33

 

0

 

347

 

347

 

TH-96-25

 

Band-Ore

 

460857

 

5355364

 

10013

 

180

 

-45

 

27

 

0

 

308

 

308

 

TH-96-26

 

Band-Ore

 

460769

 

5355210

 

10013

 

180

 

-45

 

28

 

0

 

239

 

239

 

TH-96-27

 

Band-Ore

 

460883

 

5355286

 

10014

 

180

 

-45

 

24

 

0

 

248

 

248

 

TH-96-28E

 

Band-Ore

 

460883

 

5355286

 

10014

 

180

 

-60

 

18

 

0

 

254

 

254

 

TH-96-29

 

Band-Ore

 

460662

 

5355126

 

10012

 

180

 

-45

 

19

 

0

 

215

 

215

 

TH-96-30

 

Band-Ore

 

460984

 

5355260

 

10016

 

180

 

-45

 

35

 

0

 

248

 

248

 

TH-96-31

 

Band-Ore

 

460982

 

5355234

 

10016

 

184

 

-45

 

48

 

0

 

245

 

245

 

TH-96-32

 

Band-Ore

 

461013

 

5355284

 

10016

 

180

 

-45

 

30

 

0

 

251

 

251

 

TH-96-33

 

Band-Ore

 

460728

 

5355548

 

10011

 

180

 

-45

 

13

 

0

 

182

 

182

 

TH-96-35

 

Band-Ore

 

460980

 

5355145

 

10018

 

360

 

-50

 

47

 

0

 

290

 

290

 

TH-96-36

 

Band-Ore

 

461011

 

5355259

 

10016

 

180

 

-45

 

37

 

0

 

242

 

242

 

TH-96-37

 

Band-Ore

 

461046

 

5355097

 

10020

 

358

 

-45

 

33

 

0

 

296

 

296

 

TH-96-38

 

Band-Ore

 

461048

 

5355070

 

10019

 

360

 

-45

 

32

 

0

 

212

 

212

 

TH-96-39

 

Band-Ore

 

461010

 

5355233

 

10017

 

180

 

-45

 

39

 

0

 

200

 

200

 

TH-96-40

 

Band-Ore

 

461010

 

5355238

 

10016

 

180

 

-90

 

28

 

0

 

77

 

77

 

TH-96-41

 

Band-Ore

 

461049

 

5355046

 

10021

 

360

 

-45

 

32

 

0

 

368

 

368

 

TH-96-42

 

Band-Ore

 

460936

 

5355286

 

10015

 

180

 

-45

 

29

 

0

 

230

 

230

 

TH-96-43

 

Band-Ore

 

461041

 

5355244

 

10017

 

180

 

-45

 

32

 

0

 

245

 

245

 

TH-96-44

 

Band-Ore

 

460936

 

5355260

 

10015

 

184

 

-45

 

30

 

0

 

239

 

239

 

TH-96-45

 

Band-Ore

 

460990

 

5355335

 

10016

 

183

 

-47

 

30

 

0

 

322

 

322

 

TH-96-46

 

Band-Ore

 

461043

 

5355220

 

10018

 

176

 

-47

 

33

 

0

 

254

 

254

 

 

171



 

HOLE-ID

 

Operator

 

Easting
NAD83

 

Northing
NAD83

 

Elevation
(mine grid)

 

AZIMUTH

 

DIP

 

CASING
(m)

 

START
(m)

 

EOH
(m)

 

Total Drilled
(m)

 

TH-96-47

 

Band-Ore

 

460991

 

5355361

 

10015

 

184

 

-45

 

33

 

0

 

317

 

317

 

TH-96-48

 

Band-Ore

 

461076

 

5355045

 

10020

 

357

 

-45

 

29

 

0

 

299

 

299

 

TH-96-49

 

Band-Ore

 

461009

 

5355208

 

10017

 

182

 

-46

 

36

 

0

 

188

 

188

 

TH-96-50

 

Band-Ore

 

461077

 

5355070

 

10020

 

360

 

-45

 

31

 

0

 

221

 

221

 

TH-96-51

 

Band-Ore

 

461016

 

5355337

 

10016

 

180

 

-45

 

30

 

0

 

320

 

320

 

TH-96-52

 

Band-Ore

 

461101

 

5355045

 

10020

 

357

 

-44

 

26

 

0

 

374

 

374

 

TH-96-53

 

Band-Ore

 

461007

 

5355172

 

10017

 

182

 

-48

 

39

 

0

 

161

 

161

 

TH-96-54

 

Band-Ore

 

460981

 

5355209

 

10016

 

180

 

-45

 

45

 

0

 

182

 

182

 

TH-96-55

 

Band-Ore

 

461009

 

5355135

 

10018

 

180

 

-45

 

36

 

0

 

137

 

137

 

TH-96-56

 

Band-Ore

 

460981

 

5355178

 

10018

 

184

 

-47

 

47

 

0

 

163

 

163

 

TH-96-57

 

Band-Ore

 

460976

 

5355133

 

10017

 

180

 

-45

 

45

 

0

 

131

 

131

 

TH-96-58

 

Band-Ore

 

461126

 

5355047

 

10021

 

360

 

-46

 

21

 

0

 

404

 

404

 

TH-96-59

 

Band-Ore

 

461057

 

5355165

 

10018

 

180

 

-45

 

30

 

0

 

200

 

200

 

TH-96-60

 

Band-Ore

 

461137

 

5355373

 

10016

 

180

 

-45

 

35

 

0

 

392

 

392

 

TH-96-61

 

Band-Ore

 

460962

 

5355265

 

10015

 

180

 

-45

 

34

 

0

 

221

 

221

 

TH-96-62

 

Band-Ore

 

461166

 

5355377

 

10017

 

180

 

-49

 

32

 

0

 

423

 

423

 

TH-96-63

 

Band-Ore

 

460962

 

5355238

 

10016

 

180

 

-45

 

40

 

0

 

200

 

200

 

TH-96-64

 

Band-Ore

 

461113

 

5355323

 

10016

 

178

 

-48

 

33

 

0

 

302

 

302

 

TH-96-65

 

Band-Ore

 

461187

 

5355371

 

10017

 

180

 

-45

 

41

 

0

 

461

 

461

 

TH-96-66

 

Band-Ore

 

461139

 

5355325

 

10017

 

180

 

-45

 

34

 

0

 

335

 

335

 

TH-96-67

 

Band-Ore

 

461184

 

5355422

 

10016

 

180

 

-50

 

36

 

0

 

500

 

500

 

TH-96-68

 

Band-Ore

 

461164

 

5355328

 

10017

 

180

 

-45

 

30

 

0

 

353

 

353

 

TH-96-69

 

Band-Ore

 

461086

 

5355371

 

10016

 

172

 

-48

 

30

 

0

 

401

 

401

 

TH-96-70

 

Band-Ore

 

461214

 

5355326

 

10019

 

180

 

-45

 

33

 

0

 

395

 

395

 

TH-96-71

 

Band-Ore

 

461158

 

5355268

 

10019

 

175

 

-46

 

35

 

0

 

362

 

362

 

TH-96-72

 

Band-Ore

 

460806

 

5355457

 

10012

 

190

 

-50

 

36

 

0

 

335

 

335

 

TH-96-73

 

Band-Ore

 

461087

 

5355325

 

10016

 

180

 

-45

 

36

 

0

 

398

 

398

 

TH-96-74

 

Band-Ore

 

461079

 

5355217

 

10018

 

200

 

-49

 

27

 

0

 

230

 

230

 

TH-96-75

 

Band-Ore

 

460959

 

5355364

 

10014

 

180

 

-45

 

30

 

0

 

318

 

318

 

TH-96-76

 

Band-Ore

 

461219

 

5355275

 

10020

 

173

 

-48

 

23

 

0

 

299

 

299

 

TH-96-77

 

Band-Ore

 

460805

 

5355400

 

10012

 

185

 

-46

 

29

 

0

 

352

 

352

 

TH-96-78

 

Band-Ore

 

461220

 

5355195

 

10022

 

180

 

-45

 

17

 

0

 

254

 

254

 

TH-96-79

 

Band-Ore

 

461220

 

5355146

 

10025

 

180

 

-45

 

15

 

0

 

176

 

176

 

TH-96-80

 

Band-Ore

 

461245

 

5355197

 

10024

 

180

 

-45

 

18

 

0

 

248

 

248

 

TH-96-81

 

Band-Ore

 

461221

 

5355095

 

10025

 

180

 

-45

 

26

 

0

 

125

 

125

 

TH-96-82

 

Band-Ore

 

461245

 

5355143

 

10025

 

180

 

-47

 

18

 

0

 

179

 

179

 

TH-96-83

 

Band-Ore

 

461269

 

5355195

 

10025

 

179

 

-46

 

17

 

0

 

251

 

251

 

TH-96-84

 

Band-Ore

 

461295

 

5355195

 

10025

 

179

 

-45

 

18

 

0

 

254

 

254

 

TH-96-85

 

Band-Ore

 

461272

 

5355145

 

10025

 

180

 

-46

 

18

 

0

 

176

 

176

 

TH-96-86

 

Band-Ore

 

461299

 

5355145

 

10026

 

177

 

-42

 

21

 

0

 

209

 

209

 

TH-96-87

 

Band-Ore

 

460883

 

5355365

 

10013

 

180

 

-45

 

30

 

0

 

294

 

294

 

TH-96-88

 

Band-Ore

 

460882

 

5355413

 

10013

 

180

 

-45

 

30

 

0

 

343

 

343

 

TH-96-89

 

Band-Ore

 

461324

 

5355144

 

10027

 

180

 

-48

 

15

 

0

 

206

 

206

 

TH-96-90

 

Band-Ore

 

460857

 

5355410

 

10013

 

180

 

-45

 

29

 

0

 

286

 

286

 

TH-96-91

 

Band-Ore

 

461195

 

5355195

 

10021

 

180

 

-45

 

22

 

0

 

235

 

235

 

TH-96-92

 

Band-Ore

 

461324

 

5355119

 

10027

 

181

 

-47

 

15

 

0

 

146

 

146

 

TH-96-93

 

Band-Ore

 

461344

 

5355147

 

10027

 

180

 

-47

 

17

 

0

 

182

 

182

 

TH-96-94

 

Band-Ore

 

461170

 

5355193

 

10020

 

180

 

-45

 

21

 

0

 

233

 

233

 

TH-96-95

 

Band-Ore

 

461319

 

5355198

 

10025

 

183

 

-45

 

16

 

0

 

242

 

242

 

TH-96-96

 

Band-Ore

 

461345

 

5355196

 

10026

 

180

 

-46

 

17

 

0

 

290

 

290

 

TH-96-97

 

Band-Ore

 

461345

 

5355121

 

10028

 

180

 

-48

 

15

 

0

 

170

 

170

 

TH-96-98

 

Band-Ore

 

461346

 

5355247

 

10024

 

180

 

-46

 

19

 

0

 

293

 

293

 

TH-96-99

 

Band-Ore

 

461943

 

5355205

 

10018

 

181

 

-46

 

24

 

0

 

302

 

302

 

TH-96-100

 

Band-Ore

 

461941

 

5355357

 

10014

 

179

 

-45

 

34

 

0

 

311

 

311

 

TH-96-101

 

Band-Ore

 

461945

 

5355058

 

10024

 

180

 

-45

 

23

 

0

 

209

 

209

 

TH-96-102

 

Band-Ore

 

461369

 

5355196

 

10026

 

180

 

-45

 

17

 

0

 

251

 

251

 

TH-96-103

 

Band-Ore

 

461394

 

5355196

 

10027

 

183

 

-45

 

18

 

0

 

263

 

263

 

 

172



 

HOLE-ID

 

Operator

 

Easting
NAD83

 

Northing
NAD83

 

Elevation
(mine grid)

 

AZIMUTH

 

DIP

 

CASING
(m)

 

START
(m)

 

EOH
(m)

 

Total Drilled
(m)

 

TH-96-104

 

Band-Ore

 

461345

 

5355096

 

10028

 

180

 

-45

 

15

 

0

 

128

 

128

 

TH-96-105

 

Band-Ore

 

461395

 

5355145

 

10028

 

175

 

-45

 

14

 

0

 

179

 

179

 

TH-96-106

 

Band-Ore

 

461444

 

5355198

 

10028

 

180

 

-45

 

20

 

0

 

281

 

281

 

TH-96-107

 

Band-Ore

 

461370

 

5355148

 

10027

 

180

 

-45

 

19

 

0

 

185

 

185

 

TH-96-108

 

Band-Ore

 

461444

 

5355149

 

10029

 

180

 

-45

 

15

 

0

 

203

 

203

 

TH-96-109

 

Band-Ore

 

461443

 

5355297

 

10025

 

180

 

-45

 

20

 

0

 

302

 

302

 

TH-96-110

 

Band-Ore

 

461468

 

5355199

 

10029

 

180

 

-45

 

18

 

0

 

293

 

293

 

TH-96-111

 

Band-Ore

 

461468

 

5355297

 

10026

 

180

 

-45

 

18

 

0

 

411

 

411

 

TH-96-112

 

Band-Ore

 

461492

 

5355297

 

10025

 

181

 

-47

 

15

 

0

 

458

 

458

 

TH-96-113

 

Band-Ore

 

461493

 

5355201

 

10029

 

180

 

-47

 

19

 

0

 

275

 

275

 

TH-96-114

 

Band-Ore

 

460645

 

5355383

 

10010

 

180

 

-45

 

25

 

0

 

430

 

430

 

TH-96-115

 

Band-Ore

 

460844

 

5355438

 

10013

 

180

 

-50

 

29

 

0

 

476

 

476

 

TH-96-116

 

Band-Ore

 

460744

 

5355460

 

10011

 

181

 

-49

 

21

 

0

 

449

 

449

 

TH-96-117

 

Band-Ore

 

460597

 

5355388

 

10010

 

181

 

-47

 

24

 

0

 

305

 

305

 

TH-96-118

 

Band-Ore

 

460593

 

5355484

 

10009

 

180

 

-46

 

30

 

0

 

416

 

416

 

TH-96-119

 

Band-Ore

 

460894

 

5355437

 

10013

 

174

 

-49

 

24

 

0

 

422

 

422

 

TH-96-120

 

Band-Ore

 

461748

 

5356438

 

10011

 

184

 

-50

 

23

 

0

 

248

 

248

 

TH-96-121

 

Band-Ore

 

460723

 

5355524

 

10011

 

190

 

-45

 

25

 

0

 

488

 

488

 

TH-96-122

 

Band-Ore

 

462842

 

5355176

 

10012

 

180

 

-48

 

36

 

0

 

335

 

335

 

TH-96-123

 

Band-Ore

 

461146

 

5355195

 

10019

 

180

 

-45

 

21

 

0

 

284

 

284

 

TH-96-124

 

Band-Ore

 

460960

 

5355414

 

10014

 

180

 

-45

 

27

 

0

 

395

 

395

 

TH-96-126

 

Band-Ore

 

460963

 

5355598

 

10012

 

180

 

-50

 

54

 

0

 

719

 

719

 

TH-96-127

 

Band-Ore

 

462845

 

5354976

 

10012

 

180

 

-45

 

9

 

0

 

305

 

305

 

TH-97-128

 

Band-Ore

 

461299

 

5355116

 

10026

 

185

 

-45

 

17

 

0

 

249

 

249

 

TH-97-129

 

Band-Ore

 

461296

 

5355166

 

10025

 

180

 

-45

 

15

 

0

 

218

 

218

 

TH-97-130

 

Band-Ore

 

462846

 

5354923

 

10012

 

183

 

-45

 

6

 

0

 

245

 

245

 

TH-97-131

 

Band-Ore

 

461319

 

5355247

 

10025

 

182

 

-51

 

21

 

0

 

335

 

335

 

TH-97-132

 

Band-Ore

 

461545

 

5355306

 

10026

 

180

 

-50

 

16

 

0

 

401

 

401

 

TH-97-133

 

Band-Ore

 

461096

 

5355190

 

10018

 

181

 

-45

 

27

 

0

 

230

 

230

 

TH-97-134

 

Band-Ore

 

461096

 

5355144

 

10021

 

180

 

-45

 

32

 

0

 

161

 

161

 

TH-97-135

 

Band-Ore

 

461086

 

5355426

 

10015

 

180

 

-52

 

27

 

0

 

503

 

503

 

TH-97-136

 

Band-Ore

 

461145

 

5355243

 

10018

 

180

 

-45

 

26

 

0

 

302

 

302

 

TH-97-137

 

Band-Ore

 

461146

 

5355143

 

10020

 

180

 

-45

 

31

 

0

 

230

 

230

 

TH-97-138

 

Band-Ore

 

461146

 

5355093

 

10021

 

183

 

-47

 

20

 

0

 

161

 

161

 

TH-97-139

 

Band-Ore

 

461171

 

5355143

 

10021

 

180

 

-45

 

27

 

0

 

179

 

179

 

TH-97-140

 

Band-Ore

 

461171

 

5355092

 

10022

 

180

 

-45

 

26

 

0

 

135

 

135

 

TH-97-141

 

Band-Ore

 

461543

 

5355203

 

10030

 

182

 

-46

 

21

 

0

 

278

 

278

 

TH-97-142

 

Band-Ore

 

461545

 

5355100

 

10031

 

180

 

-45

 

18

 

0

 

191

 

191

 

TH-97-143

 

Band-Ore

 

461095

 

5355241

 

10017

 

180

 

-45

 

37

 

0

 

293

 

293

 

TH-97-144

 

Band-Ore

 

461594

 

5355202

 

10029

 

180

 

-45

 

24

 

0

 

305

 

305

 

TH-97-145

 

Band-Ore

 

461595

 

5355101

 

10031

 

179

 

-47

 

16

 

0

 

224

 

224

 

TH-97-146

 

Band-Ore

 

461594

 

5355302

 

10025

 

181

 

-48

 

18

 

0

 

419

 

419

 

TH-97-147

 

Band-Ore

 

461071

 

5355189

 

10018

 

180

 

-48

 

33

 

0

 

95

 

95

 

TH-97-148

 

Band-Ore

 

461071

 

5355189

 

10018

 

180

 

-49

 

27

 

0

 

149

 

149

 

TH-97-149

 

Band-Ore

 

461070

 

5355236

 

10017

 

184

 

-48

 

24

 

0

 

263

 

263

 

TH-97-150

 

Band-Ore

 

461168

 

5355231

 

10019

 

180

 

-45

 

35

 

0

 

371

 

371

 

TH-97-151

 

Band-Ore

 

461168

 

5355353

 

10017

 

180

 

-50

 

34

 

0

 

458

 

458

 

TH-97-152

 

Band-Ore

 

461748

 

5356588

 

10011

 

180

 

-49

 

21

 

0

 

119

 

119

 

TH-97-153

 

Band-Ore

 

461244

 

5355238

 

10022

 

180

 

-45

 

20

 

0

 

290

 

290

 

TH-97-154

 

Band-Ore

 

461737

 

5356244

 

10011

 

181

 

-50

 

24

 

0

 

179

 

179

 

TH-97-155

 

Band-Ore

 

461646

 

5355123

 

10029

 

180

 

-45

 

21

 

0

 

191

 

191

 

TH-97-156

 

Band-Ore

 

461748

 

5356398

 

10011

 

360

 

-45

 

25

 

0

 

131

 

131

 

TH-97-157

 

Band-Ore

 

461944

 

5355109

 

10022

 

182

 

-45

 

18

 

0

 

269

 

269

 

TH-97-158

 

Band-Ore

 

461645

 

5355202

 

10026

 

177

 

-46

 

27

 

0

 

326

 

326

 

TH-97-159

 

Band-Ore

 

461015

 

5355362

 

10015

 

179

 

-46

 

31

 

0

 

340

 

340

 

TH-97-160

 

Band-Ore

 

461062

 

5355321

 

10016

 

187

 

-46

 

36

 

0

 

371

 

371

 

TH-97-161

 

Band-Ore

 

461972

 

5355058

 

10023

 

180

 

-45

 

22

 

0

 

218

 

218

 

 

173



 

HOLE-ID

 

Operator

 

Easting
NAD83

 

Northing
NAD83

 

Elevation
(mine grid)

 

AZIMUTH

 

DIP

 

CASING
(m)

 

START
(m)

 

EOH
(m)

 

Total Drilled
(m)

 

TH-97-162

 

Band-Ore

 

461670

 

5355202

 

10026

 

178

 

-47

 

21

 

0

 

309

 

309

 

TH-97-163

 

Band-Ore

 

461920

 

5355057

 

10024

 

178

 

-45

 

24

 

0

 

155

 

155

 

TH-97-164

 

Band-Ore

 

461043

 

5355341

 

10016

 

180

 

-48

 

33

 

0

 

347

 

347

 

TH-97-165

 

Band-Ore

 

461945

 

5355033

 

10024

 

185

 

-50

 

20

 

0

 

93

 

93

 

TH-97-166

 

Band-Ore

 

461246

 

5355117

 

10025

 

183

 

-48

 

17

 

0

 

155

 

155

 

TH-97-167

 

Band-Ore

 

461895

 

5355057

 

10024

 

177

 

-46

 

26

 

0

 

200

 

200

 

TH-97-168

 

Band-Ore

 

461945

 

5355084

 

10023

 

180

 

-45

 

22

 

0

 

137

 

137

 

TH-97-169

 

Band-Ore

 

461273

 

5355118

 

10026

 

180

 

-45

 

21

 

0

 

158

 

158

 

TH-97-170

 

Band-Ore

 

461087

 

5355396

 

10015

 

185

 

-50

 

33

 

0

 

452

 

452

 

TH-97-171

 

Band-Ore

 

461994

 

5355108

 

10021

 

181

 

-47

 

15

 

0

 

251

 

251

 

TH-97-172

 

Band-Ore

 

461219

 

5355228

 

10021

 

182

 

-49

 

16

 

0

 

284

 

284

 

TH-97-173

 

Band-Ore

 

461195

 

5355142

 

10023

 

183

 

-45

 

15

 

0

 

179

 

179

 

TH-97-174

 

Band-Ore

 

461246

 

5355092

 

10026

 

178

 

-49

 

22

 

0

 

128

 

128

 

TH-97-175

 

Band-Ore

 

461994

 

5355055

 

10024

 

180

 

-45

 

25

 

0

 

152

 

152

 

TH-97-176

 

Band-Ore

 

461994

 

5355031

 

10024

 

180

 

-48

 

19

 

0

 

101

 

101

 

TH-97-177

 

Band-Ore

 

461171

 

5355043

 

10023

 

182

 

-45

 

24

 

0

 

92

 

92

 

TH-97-178

 

Band-Ore

 

461133

 

5355269

 

10018

 

180

 

-62

 

24

 

0

 

357

 

357

 

TH-97-179

 

Band-Ore

 

461343

 

5355306

 

10021

 

186

 

-45

 

17

 

0

 

374

 

374

 

TH-97-180

 

Band-Ore

 

462019

 

5355058

 

10023

 

183

 

-45

 

12

 

0

 

152

 

152

 

TH-97-181

 

Band-Ore

 

462019

 

5355036

 

10024

 

180

 

-45

 

15

 

0

 

101

 

101

 

TH-97-182

 

Band-Ore

 

461086

 

5355426

 

10014

 

179

 

-67

 

21

 

0

 

542

 

542

 

TH-97-183

 

Band-Ore

 

461843

 

5355310

 

10016

 

178

 

-48

 

27

 

0

 

452

 

452

 

TH-97-184

 

Band-Ore

 

461120

 

5355192

 

10019

 

178

 

-52

 

18

 

0

 

245

 

245

 

TH-97-185

 

Band-Ore

 

461294

 

5355248

 

10024

 

178

 

-45

 

18

 

0

 

302

 

302

 

TH-97-186

 

Band-Ore

 

461920

 

5355105

 

10023

 

178

 

-45

 

25

 

0

 

170

 

170

 

TH-97-187

 

Band-Ore

 

461122

 

5355161

 

10019

 

178

 

-52

 

17

 

0

 

242

 

242

 

TH-97-188

 

Band-Ore

 

461113

 

5355348

 

10016

 

179

 

-47

 

36

 

0

 

401

 

401

 

TH-97-189

 

Band-Ore

 

461274

 

5355084

 

10026

 

171

 

-46

 

23

 

0

 

125

 

125

 

TH-97-190

 

Band-Ore

 

461920

 

5355027

 

10025

 

178

 

-45

 

18

 

0

 

101

 

101

 

TH-97-191

 

Band-Ore

 

461442

 

5355374

 

10020

 

180

 

-45

 

23

 

0

 

500

 

500

 

TH-97-192

 

Band-Ore

 

460844

 

5355303

 

10014

 

182

 

-48

 

27

 

0

 

286

 

286

 

TH-97-193

 

Band-Ore

 

461896

 

5355034

 

10025

 

178

 

-45

 

20

 

0

 

104

 

104

 

TH-97-194

 

Band-Ore

 

461895

 

5355107

 

10024

 

178

 

-45

 

28

 

0

 

186

 

186

 

TH-97-195

 

Band-Ore

 

461643

 

5355303

 

10024

 

180

 

-45

 

25

 

0

 

431

 

431

 

TH-97-196

 

Band-Ore

 

461921

 

5355081

 

10024

 

178

 

-45

 

25

 

0

 

140

 

140

 

TH-97-197

 

Band-Ore

 

461905

 

5355076

 

10023

 

178

 

-45

 

25

 

0

 

140

 

140

 

TH-97-198

 

Band-Ore

 

462847

 

5354826

 

10013

 

180

 

-45

 

4

 

0

 

305

 

305

 

TH-97-199

 

Band-Ore

 

462845

 

5355028

 

10012

 

180

 

-48

 

13

 

0

 

353

 

353

 

TH-97-200

 

Band-Ore

 

460869

 

5355292

 

10014

 

175

 

-46

 

25

 

0

 

230

 

230

 

TH-97-201

 

Band-Ore

 

461492

 

5355250

 

10027

 

180

 

-45

 

24

 

0

 

326

 

326

 

TH-97-202

 

Band-Ore

 

460870

 

5355261

 

10015

 

178

 

-45

 

33

 

0

 

203

 

203

 

TH-97-203

 

Band-Ore

 

460870

 

5355229

 

10015

 

178

 

-45

 

30

 

0

 

170

 

170

 

TH-97-204

 

Band-Ore

 

461491

 

5355338

 

10025

 

178

 

-48

 

15

 

0

 

470

 

470

 

TH-97-205

 

Band-Ore

 

460869

 

5355410

 

10013

 

178

 

-58

 

25

 

0

 

410

 

410

 

TH-97-206

 

Band-Ore

 

462845

 

5355028

 

10011

 

178

 

-55

 

12

 

0

 

377

 

377

 

TH-97-207

 

Band-Ore

 

463150

 

5354885

 

10010

 

180

 

-43

 

6

 

0

 

350

 

350

 

TH-97-208

 

Band-Ore

 

460498

 

5355331

 

10005

 

180

 

-48

 

13

 

0

 

298

 

298

 

TH-97-209

 

Band-Ore

 

461543

 

5355251

 

10027

 

180

 

-48

 

18

 

0

 

335

 

335

 

TH-97-210

 

Band-Ore

 

461446

 

5355248

 

10028

 

180

 

-48

 

16

 

0

 

344

 

344

 

TH-97-211

 

Band-Ore

 

463143

 

5355107

 

10009

 

180

 

-45

 

22

 

0

 

302

 

302

 

TH-97-212

 

Band-Ore

 

460498

 

5355272

 

10009

 

180

 

-48

 

14

 

0

 

205

 

205

 

TH-97-213

 

Band-Ore

 

461243

 

5355324

 

10021

 

180

 

-50

 

30

 

0

 

377

 

377

 

TH-97-214

 

Band-Ore

 

463196

 

5355033

 

10008

 

183

 

-45

 

16

 

0

 

323

 

323

 

TH-97-215

 

Band-Ore

 

461096

 

5355197

 

10019

 

179

 

-70

 

21

 

0

 

332

 

332

 

TH-97-216

 

Band-Ore

 

460497

 

5355402

 

10007

 

180

 

-49

 

15

 

0

 

299

 

299

 

TH-97-217

 

Band-Ore

 

463144

 

5355030

 

10008

 

180

 

-45

 

12

 

0

 

326

 

326

 

TH-97-218

 

Band-Ore

 

463142

 

5355182

 

10011

 

180

 

-51

 

34

 

0

 

374

 

374

 

 

174



 

 

 

 

 

Easting

 

Northing

 

Elevation

 

 

 

 

 

CASING

 

START

 

EOH

 

Total Drilled

 

HOLE-ID

 

Operator

 

NAD83

 

NAD83

 

(mine grid)

 

AZIMUTH

 

DIP

 

(m)

 

(m)

 

(m)

 

(m)

 

TH-97-219

 

Band-Ore

 

460498

 

5355482

 

10007

 

187

 

-49

 

15

 

0

 

406

 

406

 

TH-97-220

 

Band-Ore

 

463094

 

5355028

 

10010

 

181

 

-45

 

4

 

0

 

410

 

410

 

TH-97-221

 

Band-Ore

 

461642

 

5355354

 

10023

 

180

 

-55

 

19

 

0

 

500

 

500

 

TH-97-222

 

Band-Ore

 

461541

 

5355351

 

10022

 

184

 

-55

 

15

 

0

 

488

 

488

 

TH-97-223

 

Band-Ore

 

461494

 

5355359

 

10021

 

178

 

-55

 

15

 

0

 

494

 

494

 

TH-97-224

 

Band-Ore

 

461470

 

5355099

 

10030

 

178

 

-47

 

16

 

0

 

176

 

176

 

TH-97-225

 

Band-Ore

 

461870

 

5355107

 

10024

 

180

 

-45

 

26

 

0

 

200

 

200

 

TH-97-226

 

Band-Ore

 

461870

 

5355057

 

10024

 

180

 

-46

 

23

 

0

 

110

 

110

 

TH-97-227

 

Band-Ore

 

461871

 

5355032

 

10025

 

180

 

-46

 

19

 

0

 

80

 

80

 

TH-97-228

 

Band-Ore

 

461845

 

5355032

 

10025

 

180

 

-46

 

18

 

0

 

86

 

86

 

TH-97-229

 

Band-Ore

 

461844

 

5355057

 

10025

 

184

 

-45

 

20

 

0

 

110

 

110

 

TH-97-230

 

Band-Ore

 

461844

 

5355081

 

10024

 

180

 

-49

 

27

 

0

 

131

 

131

 

TH-97-231

 

Band-Ore

 

461540

 

5355401

 

10019

 

180

 

-55

 

28

 

0

 

536

 

536

 

TH-97-232

 

Band-Ore

 

461495

 

5355421

 

10016

 

176

 

-55

 

28

 

0

 

578

 

578

 

TH-97-233

 

Band-Ore

 

461495

 

5355421

 

10016

 

176

 

-63

 

24

 

0

 

635

 

635

 

TH-97-234

 

Band-Ore

 

461442

 

5355425

 

10016

 

175

 

-63

 

21

 

0

 

701

 

701

 

TH-97-235

 

Band-Ore

 

461645

 

5355152

 

10028

 

178

 

-45

 

24

 

0

 

251

 

251

 

TH-97-236

 

Band-Ore

 

461643

 

5355251

 

10026

 

185

 

-46

 

27

 

0

 

376

 

376

 

TH-97-237

 

Band-Ore

 

461640

 

5355402

 

10021

 

175

 

-55

 

40

 

0

 

514

 

514

 

TH-97-238

 

Band-Ore

 

461694

 

5355152

 

10026

 

178

 

-47

 

19

 

0

 

271

 

271

 

TH-97-239

 

Band-Ore

 

461693

 

5355299

 

10022

 

175

 

-45

 

25

 

0

 

402

 

402

 

TH-97-240

 

Band-Ore

 

461844

 

5355119

 

10024

 

180

 

-49

 

26

 

0

 

170

 

170

 

TH-97-241

 

Band-Ore

 

461794

 

5355117

 

10024

 

184

 

-45

 

21

 

0

 

161

 

161

 

TH-97-242

 

Band-Ore

 

461745

 

5355120

 

10025

 

184

 

-45

 

12

 

0

 

170

 

170

 

TH-97-243

 

Band-Ore

 

461895

 

5355154

 

10021

 

178

 

-45

 

24

 

0

 

209

 

209

 

TH-97-244

 

Band-Ore

 

461746

 

5355086

 

10026

 

185

 

-47

 

18

 

0

 

110

 

110

 

TH-97-245

 

Band-Ore

 

461793

 

5355066

 

10025

 

180

 

-45

 

25

 

0

 

110

 

110

 

TH-97-246

 

Band-Ore

 

462070

 

5355057

 

10022

 

180

 

-45

 

10

 

0

 

119

 

119

 

TH-97-247

 

Band-Ore

 

462119

 

5355060

 

10022

 

180

 

-45

 

7

 

0

 

122

 

122

 

TH-97-248

 

Band-Ore

 

462043

 

5355116

 

10021

 

180

 

-45

 

14

 

0

 

191

 

191

 

TH-97-249

 

Band-Ore

 

462243

 

5355122

 

10020

 

180

 

-45

 

19

 

0

 

191

 

191

 

TH-97-250

 

Band-Ore

 

462443

 

5355169

 

10015

 

180

 

-45

 

31

 

0

 

359

 

359

 

TH-97-251

 

Band-Ore

 

462543

 

5355170

 

10014

 

180

 

-45

 

33

 

0

 

272

 

272

 

TW-96-01

 

Band-Ore

 

459540

 

5355817

 

10008

 

180

 

-45

 

38

 

0

 

464

 

464

 

TW-96-02

 

Band-Ore

 

459744

 

5355767

 

10011

 

180

 

-50

 

45

 

0

 

155

 

155

 

TW-96-03

 

Band-Ore

 

459943

 

5355851

 

10011

 

180

 

-50

 

50

 

0

 

455

 

455

 

TW-96-04

 

Band-Ore

 

460244

 

5355724

 

9999

 

180

 

-45

 

14

 

0

 

392

 

392

 

TW-96-05

 

Band-Ore

 

459539

 

5355763

 

10008

 

180

 

-45

 

50

 

0

 

425

 

425

 

TW-96-06

 

Band-Ore

 

459175

 

5354211

 

10010

 

180

 

-45

 

55

 

0

 

182

 

182

 

TW-96-07

 

Band-Ore

 

459367

 

5354813

 

10007

 

180

 

-45

 

34

 

0

 

455

 

455

 

TW-96-08

 

Band-Ore

 

458157

 

5355327

 

10019

 

180

 

-45

 

19

 

0

 

362

 

362

 

TW-96-09

 

Band-Ore

 

458839

 

5356098

 

10018

 

160

 

-45

 

31

 

0

 

284

 

284

 

TW-96-10

 

Band-Ore

 

459539

 

5355712

 

10005

 

180

 

-45

 

31

 

0

 

395

 

395

 

TW-96-11

 

Band-Ore

 

459516

 

5355770

 

10008

 

180

 

-45

 

54

 

0

 

452

 

452

 

TW-96-12

 

Band-Ore

 

459541

 

5355537

 

10009

 

176

 

-45

 

16

 

0

 

269

 

269

 

TW-96-13E

 

Band-Ore

 

459566

 

5355692

 

10006

 

180

 

-60

 

21

 

0

 

641

 

641

 

TW-96-14

 

Band-Ore

 

459568

 

5355645

 

10006

 

180

 

-61

 

9

 

0

 

359

 

359

 

TW-96-15

 

Band-Ore

 

459517

 

5355665

 

10006

 

181

 

-46

 

23

 

0

 

374

 

374

 

TW-96-16

 

Band-Ore

 

459493

 

5355642

 

10006

 

178

 

-60

 

19

 

0

 

350

 

350

 

TW-96-17

 

Band-Ore

 

459566

 

5355589

 

10007

 

180

 

-60

 

11

 

0

 

341

 

341

 

TW-96-18

 

Band-Ore

 

459493

 

5355700

 

10007

 

180

 

-62

 

26

 

0

 

461

 

461

 

TW-96-19

 

Band-Ore

 

459493

 

5355591

 

10007

 

177

 

-60

 

13

 

0

 

346

 

346

 

TW-96-20E

 

Band-Ore

 

459566

 

5355538

 

10009

 

176

 

-62

 

15

 

0

 

439

 

439

 

TW-96-21

 

Band-Ore

 

459540

 

5355485

 

10006

 

180

 

-47

 

20

 

0

 

185

 

185

 

TW-96-22

 

Band-Ore

 

459545

 

5355436

 

10009

 

178

 

-48

 

20

 

0

 

119

 

119

 

TW-96-23E

 

Band-Ore

 

459565

 

5355486

 

10007

 

175

 

-62

 

18

 

0

 

341

 

341

 

TW-96-24E

 

Band-Ore

 

459565

 

5355438

 

10010

 

181

 

-61

 

18

 

0

 

230

 

230

 

 

175



 

 

 

 

 

Easting

 

Northing

 

Elevation

 

 

 

 

 

CASING

 

START

 

EOH

 

Total Drilled

 

HOLE-ID

 

Operator

 

NAD83

 

NAD83

 

(mine grid)

 

AZIMUTH

 

DIP

 

(m)

 

(m)

 

(m)

 

(m)

 

TW-96-25E

 

Band-Ore

 

459516

 

5355563

 

10008

 

176

 

-45

 

18

 

0

 

392

 

392

 

TW-96-26E

 

Band-Ore

 

459516

 

5355462

 

10007

 

178

 

-48

 

17

 

0

 

242

 

242

 

TW-96-27E

 

Band-Ore

 

459516

 

5355410

 

10010

 

180

 

-48

 

26

 

0

 

164

 

164

 

TW-96-28

 

Band-Ore

 

459491

 

5355462

 

10007

 

185

 

-49

 

18

 

0

 

128

 

128

 

TW-97-29E

 

Band-Ore

 

459491

 

5355534

 

10008

 

173

 

-62

 

17

 

0

 

347

 

347

 

TW-97-30E

 

Band-Ore

 

459491

 

5355535

 

10008

 

180

 

-45

 

22

 

0

 

347

 

347

 

TW-97-31E

 

Band-Ore

 

459615

 

5355535

 

10008

 

179

 

-45

 

29

 

0

 

428

 

428

 

TW-97-32E

 

Band-Ore

 

459615

 

5355587

 

10009

 

177

 

-60

 

13

 

0

 

466

 

466

 

TW-97-33E

 

Band-Ore

 

459615

 

5355535

 

10008

 

175

 

-60

 

26

 

0

 

509

 

509

 

TW-97-34

 

Band-Ore

 

459615

 

5355486

 

10009

 

180

 

-45

 

26

 

0

 

127

 

127

 

TW-97-35

 

Band-Ore

 

459615

 

5355436

 

10009

 

179

 

-45

 

26

 

0

 

110

 

110

 

TW-97-36E

 

Band-Ore

 

459616

 

5355636

 

10006

 

173

 

-55

 

9

 

0

 

509

 

509

 

TW-97-37E

 

Band-Ore

 

459466

 

5355535

 

10008

 

180

 

-65

 

18

 

0

 

524

 

524

 

TW-97-38E

 

Band-Ore

 

459466

 

5355536

 

10008

 

177

 

-45

 

18

 

0

 

377

 

377

 

TW-97-39

 

Band-Ore

 

459441

 

5355534

 

10007

 

182

 

-46

 

19

 

0

 

245

 

245

 

TW-97-40

 

Band-Ore

 

459441

 

5355535

 

10007

 

183

 

-62

 

16

 

0

 

252

 

252

 

TW-97-41

 

Band-Ore

 

459442

 

5355585

 

10006

 

180

 

-57

 

18

 

0

 

289

 

289

 

TW-97-42

 

Band-Ore

 

459442

 

5355636

 

10006

 

182

 

-62

 

27

 

0

 

361

 

361

 

TW-97-43E

 

Band-Ore

 

459665

 

5355535

 

10012

 

178

 

-47

 

35

 

0

 

323

 

323

 

TW-97-44

 

Band-Ore

 

459665

 

5355536

 

10012

 

178

 

-60

 

31

 

0

 

260

 

260

 

TW-97-45E

 

Band-Ore

 

459665

 

5355586

 

10013

 

180

 

-58

 

27

 

0

 

527

 

527

 

TW-97-46E

 

Band-Ore

 

459665

 

5355485

 

10010

 

179

 

-47

 

32

 

0

 

269

 

269

 

TW-97-47E

 

Band-Ore

 

459416

 

5355533

 

10007

 

181

 

-45

 

17

 

0

 

377

 

377

 

TW-97-48E

 

Band-Ore

 

459416

 

5355534

 

10007

 

180

 

-60

 

16

 

0

 

437

 

437

 

TW-97-49

 

Band-Ore

 

459665

 

5355461

 

10011

 

182

 

-46

 

30

 

0

 

120

 

120

 

TW-97-50

 

Band-Ore

 

459392

 

5355535

 

10007

 

180

 

-45

 

20

 

0

 

220

 

220

 

TW-97-51

 

Band-Ore

 

459342

 

5355534

 

10008

 

182

 

-47

 

25

 

0

 

251

 

251

 

TW-97-52E

 

Band-Ore

 

459716

 

5355487

 

10013

 

180

 

-47

 

46

 

0

 

431

 

431

 

TW-97-53

 

Band-Ore

 

459716

 

5355461

 

10011

 

183

 

-48

 

44

 

0

 

125

 

125

 

TW-97-54

 

Band-Ore

 

459293

 

5355533

 

10011

 

183

 

-45

 

26

 

0

 

406

 

406

 

TW-97-55

 

Band-Ore

 

459765

 

5355487

 

10013

 

180

 

-47

 

45

 

0

 

180

 

180

 

TW-97-56

 

Band-Ore

 

459815

 

5355487

 

10010

 

180

 

-43

 

46

 

0

 

98

 

98

 

TW-97-57E

 

Band-Ore

 

460046

 

5355537

 

10013

 

173

 

-47

 

16

 

0

 

257

 

257

 

TW-97-58

 

Band-Ore

 

459343

 

5355484

 

10009

 

178

 

-45

 

28

 

0

 

180

 

180

 

TW-97-59

 

Band-Ore

 

459342

 

5355534

 

10008

 

189

 

-60

 

19

 

0

 

290

 

290

 

TW-97-60

 

Band-Ore

 

459342

 

5355433

 

10010

 

180

 

-45

 

26

 

0

 

242

 

242

 

TW-97-61

 

Band-Ore

 

458558

 

5355215

 

10016

 

181

 

-45

 

17

 

0

 

320

 

320

 

TW-97-62

 

Band-Ore

 

458552

 

5355591

 

10018

 

178

 

-45

 

32

 

0

 

536

 

536

 

TW-97-63

 

Band-Ore

 

459416

 

5355586

 

10007

 

180

 

-60

 

16

 

0

 

308

 

308

 

TW-97-64

 

Band-Ore

 

459342

 

5355583

 

10009

 

180

 

-62

 

20

 

0

 

359

 

359

 

TW-97-65

 

Band-Ore

 

459292

 

5355582

 

10011

 

179

 

-51

 

27

 

0

 

422

 

422

 

TW-97-66

 

Band-Ore

 

459242

 

5355537

 

10013

 

180

 

-45

 

33

 

0

 

302

 

302

 

TW-97-67

 

Band-Ore

 

459242

 

5355584

 

10012

 

180

 

-50

 

31

 

0

 

452

 

452

 

TW-97-68

 

Band-Ore

 

459195

 

5355542

 

10013

 

180

 

-45

 

36

 

0

 

329

 

329

 

TW-97-69

 

Band-Ore

 

459192

 

5355583

 

10011

 

180

 

-50

 

28

 

0

 

449

 

449

 

TW-97-70

 

Band-Ore

 

459416

 

5355436

 

10007

 

180

 

-45

 

24

 

0

 

122

 

122

 

TW-97-71

 

Band-Ore

 

458563

 

5354991

 

10015

 

180

 

-45

 

27

 

0

 

350

 

350

 

TW-97-72

 

Band-Ore

 

459441

 

5355484

 

10007

 

178

 

-45

 

21

 

0

 

176

 

176

 

TW-97-73E

 

Band-Ore

 

459465

 

5355484

 

10007

 

180

 

-45

 

21

 

0

 

371

 

371

 

TW-97-74

 

Band-Ore

 

459143

 

5355538

 

10011

 

181

 

-49

 

24

 

0

 

251

 

251

 

TW-97-75

 

Band-Ore

 

459094

 

5355537

 

10012

 

180

 

-45

 

34

 

0

 

251

 

251

 

TW-97-76

 

Band-Ore

 

459464

 

5355435

 

10007

 

180

 

-45

 

25

 

0

 

122

 

122

 

TW-97-77

 

Band-Ore

 

459144

 

5355586

 

10013

 

180

 

-50

 

26

 

0

 

302

 

302

 

TW-97-78

 

Band-Ore

 

459097

 

5355587

 

10011

 

180

 

-50

 

26

 

0

 

284

 

284

 

TW-97-79

 

Band-Ore

 

458995

 

5355538

 

10013

 

180

 

-45

 

29

 

0

 

251

 

251

 

TW-97-80

 

Band-Ore

 

459044

 

5355538

 

10013

 

180

 

-45

 

28

 

0

 

251

 

251

 

TW-97-81

 

Band-Ore

 

459044

 

5355586

 

10013

 

180

 

-50

 

27

 

0

 

320

 

320

 

 

176



 

 

 

 

 

Easting

 

Northing

 

Elevation

 

 

 

 

 

CASING

 

START

 

EOH

 

Total Drilled

 

HOLE-ID

 

Operator

 

NAD83

 

NAD83

 

(mine grid)

 

AZIMUTH

 

DIP

 

(m)

 

(m)

 

(m)

 

(m)

 

TW-97-82

 

Band-Ore

 

458897

 

5355535

 

10014

 

180

 

-45

 

27

 

0

 

251

 

251

 

TW-97-83

 

Band-Ore

 

459192

 

5355538

 

10013

 

180

 

-50

 

27

 

0

 

404

 

404

 

TW-97-84

 

Band-Ore

 

458896

 

5355588

 

10014

 

180

 

-45

 

33

 

0

 

221

 

221

 

TW-97-85

 

Band-Ore

 

458849

 

5355537

 

10016

 

180

 

-45

 

30

 

0

 

251

 

251

 

TW-97-86

 

Band-Ore

 

458797

 

5355538

 

10020

 

180

 

-45

 

39

 

0

 

347

 

347

 

TW-97-87

 

Band-Ore

 

459292

 

5355585

 

10011

 

176

 

-72

 

28

 

0

 

454

 

454

 

TW-97-88

 

Band-Ore

 

459242

 

5355586

 

10012

 

176

 

-77

 

30

 

0

 

452

 

452

 

TW-97-89

 

Band-Ore

 

459368

 

5355635

 

10011

 

177

 

-80

 

30

 

0

 

556

 

556

 

TW-97-90

 

Band-Ore

 

459368

 

5355635

 

10011

 

175

 

-70

 

30

 

0

 

456

 

456

 

TW-98-91

 

Band-Ore

 

459539

 

5355815

 

10009

 

185

 

-71

 

28

 

0

 

647

 

647

 

TW-98-92

 

Band-Ore

 

459243

 

5355836

 

10010

 

180

 

-76

 

31

 

0

 

719

 

719

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Total metres drilled in 43-101 area:

 

228,045

 

 

 

 

 

 

 

 

 

Total number of diamond drill holes in 43-101 area:

 

752

 

 

 

 

 

 

 

 

 

Total number of holes intersected by the Block Models:

 

328

 

 

 

 

 

 

 

 

 

Total number of metres used in the Block Models:

 

109,282

 

 

Note:

 

·        Total metres drilled incl. 28 Band-Ore holes extended by Band-Ore (11,169m), 4 Esso holes extended by Band-Ore (921.47m), and 1 Band-Ore hole extended by WTM (111m).

·        Highlighted holes are not intersected by the block models.

 

177



 

Appendix 2

 

DIAMOND DRILL CORE SAMPLING SUMMARY

 

178



 

DIAMOND DRILL CORE SAMPLING SUMMARY

 

 

 

 

 

Number of

 

Number Assays

 

Number Assays

 

Analysis

 

Analysis

 

Analysis

 

Analysis

 

 

 

 

 

Hole

 

Samples

 

equal to or greater

 

equal to or greater

 

FA aa

 

FA g

 

metallics

 

aa

 

Assays pending

 

Operator

 

Number

 

(excl. QA/QC)

 

than 1 gpt Au

 

than 34.29 gpt Au

 

Au

 

Au

 

Au

 

As

 

(excl. QA/QC)

 

Band-Ore

 

EH-96-01

 

112

 

 

 

 

 

0

 

 

 

 

 

112

 

 

 

Band-Ore

 

EH-96-02

 

3

 

 

 

 

 

0

 

 

 

 

 

3

 

 

 

Band-Ore

 

GS-03-02

 

92

 

0

 

0

 

92

 

0

 

0

 

92

 

 

 

Band-Ore

 

GS-03-03

 

108

 

0

 

0

 

108

 

0

 

0

 

108

 

 

 

Band-Ore

 

GS-03-04

 

150

 

0

 

0

 

150

 

0

 

0

 

150

 

 

 

Band-Ore

 

GS-03-07

 

41

 

0

 

0

 

41

 

0

 

0

 

0

 

 

 

Band-Ore

 

GS-03-08

 

54

 

0

 

0

 

54

 

0

 

0

 

0

 

 

 

Band-Ore

 

GS-03-09

 

103

 

0

 

0

 

103

 

0

 

0

 

70

 

 

 

Band-Ore

 

GS-03-10

 

101

 

1

 

0

 

101

 

0

 

0

 

101

 

 

 

Band-Ore

 

GS-03-11

 

71

 

0

 

0

 

41

 

0

 

0

 

41

 

 

 

Band-Ore

 

GS-03-12

 

151

 

0

 

0

 

102

 

0

 

0

 

102

 

 

 

Band-Ore

 

GS-04-01

 

31

 

0

 

0

 

31

 

0

 

0

 

0

 

 

 

Band-Ore

 

GS-04-02

 

20

 

0

 

0

 

20

 

0

 

0

 

0

 

 

 

Band-Ore

 

GS-04-03

 

56

 

1

 

0

 

56

 

0

 

0

 

0

 

 

 

Band-Ore

 

GS-04-04

 

13

 

0

 

0

 

13

 

0

 

0

 

0

 

 

 

Band-Ore

 

GS-04-05

 

99

 

6

 

0

 

99

 

0

 

0

 

0

 

 

 

Band-Ore

 

GS-04-06E

 

318

 

8

 

0

 

318

 

0

 

0

 

0

 

 

 

Band-Ore

 

GS-05-01

 

30

 

1

 

0

 

30

 

0

 

0

 

0

 

 

 

Band-Ore

 

GS-05-02

 

69

 

0

 

0

 

69

 

0

 

0

 

0

 

 

 

Band-Ore

 

GS-05-03

 

24

 

0

 

0

 

24

 

0

 

0

 

0

 

 

 

Band-Ore

 

GS-05-04

 

44

 

0

 

0

 

44

 

0

 

0

 

0

 

 

 

Band-Ore

 

GS-05-05

 

191

 

4

 

0

 

191

 

0

 

0

 

0

 

 

 

Band-Ore

 

GS-05-06

 

206

 

5

 

0

 

206

 

0

 

0

 

0

 

 

 

Band-Ore

 

GS-05-07

 

129

 

1

 

0

 

129

 

0

 

0

 

0

 

 

 

WTM

 

GS-06-01

 

91

 

1

 

0

 

91

 

0

 

0

 

0

 

 

 

WTM

 

GS-06-02

 

178

 

2

 

0

 

178

 

0

 

0

 

0

 

 

 

WTM

 

GS-06-03

 

126

 

5

 

0

 

126

 

2

 

0

 

0

 

 

 

WTM

 

GS-06-04

 

47

 

4

 

0

 

47

 

2

 

0

 

0

 

 

 

WTM

 

GS-06-05

 

91

 

1

 

0

 

91

 

0

 

0

 

0

 

 

 

WTM

 

GS-06-06

 

111

 

2

 

0

 

111

 

1

 

0

 

0

 

 

 

WTM

 

GS-06-07

 

140

 

4

 

0

 

140

 

0

 

0

 

140

 

 

 

WTM

 

GS-07-08

 

63

 

2

 

0

 

63

 

0

 

0

 

63

 

 

 

WTM

 

GS-07-09

 

150

 

2

 

0

 

150

 

0

 

0

 

0

 

 

 

WTM

 

GS-07-10

 

79

 

2

 

0

 

79

 

1

 

0

 

0

 

 

 

WTM

 

GS-07-11

 

58

 

5

 

0

 

58

 

3

 

0

 

0

 

 

 

WTM

 

GS-07-12

 

62

 

4

 

0

 

62

 

3

 

0

 

0

 

 

 

WTM

 

GS-07-13

 

62

 

4

 

0

 

62

 

2

 

0

 

0

 

 

 

WTM

 

GS-07-14

 

65

 

3

 

1

 

65

 

1

 

0

 

0

 

 

 

WTM

 

GS-07-15

 

47

 

1

 

0

 

47

 

1

 

0

 

0

 

 

 

WTM

 

GS-07-16

 

42

 

3

 

0

 

42

 

0

 

0

 

0

 

 

 

WTM

 

GS-07-17

 

38

 

5

 

0

 

38

 

1

 

0

 

0

 

 

 

WTM

 

GS-07-18

 

28

 

2

 

0

 

28

 

0

 

0

 

0

 

 

 

WTM

 

GS-07-19

 

43

 

1

 

0

 

43

 

1

 

0

 

0

 

 

 

WTM

 

GS-07-20

 

71

 

0

 

0

 

71

 

0

 

0

 

0

 

 

 

WTM

 

GS-07-21

 

42

 

0

 

0

 

43

 

0

 

0

 

0

 

 

 

WTM

 

GS-07-22

 

25

 

0

 

0

 

25

 

0

 

0

 

0

 

 

 

WTM

 

GS-07-23

 

95

 

2

 

0

 

95

 

0

 

0

 

0

 

 

 

WTM

 

GS-07-24

 

109

 

1

 

0

 

109

 

0

 

0

 

0

 

 

 

WTM

 

GS-07-25

 

125

 

1

 

0

 

125

 

0

 

0

 

24

 

 

 

WTM

 

GS-07-26

 

164

 

10

 

0

 

164

 

0

 

0

 

21

 

 

 

WTM

 

GS-07-27

 

131

 

2

 

0

 

131

 

0

 

0

 

16

 

 

 

WTM

 

GS-07-28

 

372

 

11

 

0

 

372

 

0

 

0

 

0

 

 

 

WTM

 

GS-09-29

 

278

 

10

 

0

 

278

 

0

 

0

 

6

 

 

 

WTM

 

GS-09-30

 

163

 

13

 

0

 

163

 

0

 

5

 

4

 

 

 

WTM

 

GS-09-31

 

123

 

5

 

1

 

123

 

0

 

5

 

4

 

 

 

WTM

 

GS-09-32

 

241

 

7

 

0

 

241

 

0

 

0

 

4

 

 

 

WTM

 

GS-09-33

 

326

 

24

 

0

 

326

 

0

 

0

 

14

 

 

 

WTM

 

GS-09-34

 

152

 

2

 

0

 

152

 

0

 

0

 

0

 

 

 

WTM

 

GS-09-35

 

264

 

18

 

1

 

264

 

0

 

24

 

7

 

 

 

WTM

 

GS-09-36

 

68

 

1

 

0

 

68

 

0

 

0

 

0

 

 

 

WTM

 

GS-09-37

 

145

 

8

 

0

 

145

 

0

 

0

 

0

 

 

 

WTM

 

GS-09-38

 

211

 

7

 

0

 

211

 

0

 

0

 

0

 

 

 

WTM

 

GS-09-39

 

170

 

7

 

0

 

170

 

0

 

0

 

0

 

 

 

WTM

 

GS-09-40

 

197

 

5

 

0

 

197

 

0

 

0

 

0

 

 

 

WTM

 

GS-09-41

 

224

 

9

 

0

 

224

 

0

 

0

 

0

 

 

 

WTM

 

GS-09-42

 

96

 

4

 

0

 

96

 

0

 

0

 

0

 

 

 

WTM

 

GS-09-43

 

91

 

6

 

0

 

91

 

0

 

0

 

0

 

 

 

WTM

 

GS-09-44

 

182

 

14

 

0

 

182

 

0

 

0

 

0

 

 

 

WTM

 

GS-09-45

 

87

 

2

 

0

 

87

 

0

 

0

 

0

 

 

 

WTM

 

GS-09-46

 

265

 

7

 

0

 

265

 

0

 

0

 

0

 

 

 

WTM

 

GS-09-47

 

137

 

7

 

0

 

137

 

0

 

0

 

0

 

 

 

 

179



 

 

 

 

 

Number of

 

Number Assays

 

Number Assays

 

Analysis

 

Analysis

 

Analysis

 

Analysis

 

 

 

 

 

Hole

 

Samples

 

equal to or greater

 

equal to or greater

 

FA aa

 

FA g

 

metallics

 

aa

 

Assays pending

 

Operator

 

Number

 

(excl. QA/QC)

 

than 1 gpt Au

 

than 34.29 gpt Au

 

Au

 

Au

 

Au

 

As

 

(excl. QA/QC)

 

Band-Ore

 

GW-03-01

 

58

 

0

 

0

 

58

 

0

 

0

 

0

 

 

 

Band-Ore

 

GW-03-02

 

59

 

2

 

0

 

59

 

0

 

0

 

0

 

 

 

Band-Ore

 

GW-03-03

 

58

 

1

 

0

 

58

 

0

 

0

 

0

 

 

 

Band-Ore

 

GW-03-04

 

48

 

0

 

0

 

48

 

0

 

0

 

0

 

 

 

Band-Ore

 

GW-03-05

 

115

 

0

 

0

 

115

 

0

 

0

 

0

 

 

 

Band-Ore

 

GW-03-06

 

77

 

0

 

0

 

77

 

0

 

0

 

0

 

 

 

Band-Ore

 

GW-03-07

 

86

 

4

 

0

 

86

 

0

 

0

 

0

 

 

 

Band-Ore

 

GW-03-08

 

64

 

0

 

0

 

64

 

0

 

0

 

0

 

 

 

Band-Ore

 

GW-03-09

 

113

 

0

 

0

 

113

 

0

 

0

 

0

 

 

 

Band-Ore

 

GW-03-10

 

17

 

0

 

0

 

17

 

0

 

0

 

0

 

 

 

Band-Ore

 

GW-03-10A

 

115

 

1

 

0

 

115

 

0

 

0

 

0

 

 

 

Band-Ore

 

GW-03-11

 

22

 

2

 

0

 

22

 

0

 

0

 

0

 

 

 

Band-Ore

 

GW-03-12

 

108

 

4

 

0

 

108

 

0

 

0

 

0

 

 

 

Band-Ore

 

GW-03-13

 

118

 

4

 

0

 

118

 

0

 

0

 

0

 

 

 

Band-Ore

 

GW-03-14

 

122

 

0

 

0

 

122

 

0

 

0

 

0

 

 

 

Band-Ore

 

GW-03-15

 

0

 

0

 

0

 

0

 

0

 

0

 

0

 

 

 

Band-Ore

 

GW-03-16

 

132

 

3

 

0

 

132

 

0

 

0

 

0

 

 

 

Band-Ore

 

GW-03-17

 

135

 

4

 

0

 

123

 

0

 

0

 

0

 

 

 

Band-Ore

 

GW-03-18

 

129

 

0

 

0

 

129

 

0

 

0

 

0

 

 

 

Band-Ore

 

GW-03-19

 

100

 

1

 

0

 

100

 

0

 

0

 

0

 

 

 

Band-Ore

 

GW-03-20

 

139

 

1

 

0

 

139

 

0

 

0

 

0

 

 

 

Band-Ore

 

GW-03-21

 

209

 

2

 

0

 

209

 

0

 

0

 

0

 

 

 

Band-Ore

 

GW-03-21A

 

0

 

0

 

0

 

0

 

0

 

0

 

0

 

 

 

Band-Ore

 

GW-03-22

 

136

 

4

 

0

 

136

 

0

 

0

 

0

 

 

 

Band-Ore/WTM

 

GW-03-23E

 

193

 

1

 

0

 

193

 

0

 

0

 

0

 

 

 

Band-Ore

 

GW-03-24

 

120

 

2

 

0

 

120

 

0

 

0

 

0

 

 

 

Band-Ore

 

GW-03-25

 

0

 

0

 

0

 

0

 

0

 

0

 

0

 

 

 

Band-Ore

 

GW-03-26

 

97

 

1

 

0

 

97

 

0

 

0

 

0

 

 

 

Band-Ore

 

GW-03-27

 

115

 

4

 

0

 

115

 

0

 

0

 

0

 

 

 

Band-Ore

 

GW-03-28

 

137

 

4

 

0

 

137

 

0

 

0

 

0

 

 

 

Band-Ore

 

GW-03-29

 

139

 

13

 

0

 

139

 

0

 

0

 

0

 

 

 

Band-Ore

 

GW-03-30

 

12

 

0

 

0

 

0

 

0

 

0

 

0

 

 

 

Band-Ore

 

GW-03-31

 

187

 

0

 

0

 

187

 

0

 

0

 

0

 

 

 

Band-Ore

 

GW-03-32

 

0

 

0

 

0

 

0

 

0

 

0

 

0

 

 

 

Band-Ore

 

GW-04-01

 

136

 

13

 

0

 

136

 

0

 

0

 

0

 

 

 

Band-Ore

 

GW-04-02

 

62

 

0

 

0

 

62

 

0

 

0

 

0

 

 

 

Band-Ore

 

GW-04-03

 

66

 

1

 

0

 

66

 

0

 

0

 

0

 

 

 

Band-Ore

 

GW-04-04

 

137

 

13

 

0

 

137

 

0

 

0

 

0

 

 

 

Band-Ore

 

GW-04-05

 

111

 

4

 

0

 

111

 

0

 

0

 

0

 

 

 

Band-Ore

 

GW-04-06

 

78

 

0

 

0

 

78

 

0

 

0

 

0

 

 

 

Band-Ore

 

GW-04-07

 

83

 

6

 

0

 

83

 

0

 

0

 

0

 

 

 

Band-Ore

 

GW-04-08

 

110

 

0

 

0

 

110

 

0

 

0

 

0

 

 

 

Band-Ore

 

GW-04-09

 

129

 

2

 

0

 

129

 

0

 

0

 

0

 

 

 

Band-Ore

 

GW-04-10

 

17

 

0

 

0

 

17

 

0

 

0

 

0

 

 

 

Band-Ore

 

GW-04-11

 

163

 

15

 

0

 

163

 

0

 

0

 

0

 

 

 

Band-Ore

 

GW-04-12

 

191

 

2

 

0

 

191

 

0

 

0

 

0

 

 

 

Band-Ore

 

GW-04-13

 

88

 

0

 

0

 

87

 

0

 

0

 

0

 

 

 

Band-Ore

 

GW-04-14

 

57

 

0

 

0

 

57

 

0

 

0

 

0

 

 

 

Band-Ore

 

GW-04-15

 

82

 

0

 

0

 

82

 

0

 

0

 

0

 

 

 

Band-Ore

 

GW-04-16

 

37

 

0

 

0

 

37

 

0

 

0

 

0

 

 

 

Band-Ore

 

GW-04-17

 

70

 

0

 

0

 

68

 

0

 

0

 

0

 

 

 

Band-Ore

 

GW-04-18

 

71

 

0

 

0

 

71

 

0

 

0

 

0

 

 

 

Band-Ore

 

GW-04-19

 

296

 

4

 

0

 

296

 

0

 

0

 

0

 

 

 

Band-Ore

 

GW-04-20

 

222

 

2

 

0

 

222

 

0

 

0

 

0

 

 

 

Band-Ore

 

GW-05-01

 

8

 

0

 

0

 

8

 

0

 

0

 

0

 

 

 

Band-Ore

 

GW-05-02

 

49

 

1

 

0

 

49

 

0

 

0

 

0

 

 

 

Band-Ore

 

GW-05-03

 

285

 

1

 

0

 

285

 

0

 

0

 

0

 

 

 

Band-Ore

 

GW-05-04

 

93

 

4

 

0

 

93

 

0

 

0

 

0

 

 

 

Band-Ore

 

GW-05-05

 

86

 

4

 

0

 

86

 

0

 

0

 

0

 

 

 

WTM

 

GW-07-01

 

122

 

1

 

0

 

96

 

0

 

0

 

0

 

 

 

WTM

 

GW-07-01A

 

23

 

1

 

0

 

23

 

0

 

0

 

0

 

 

 

WTM

 

GW-07-02

 

107

 

2

 

0

 

107

 

0

 

0

 

0

 

 

 

WTM

 

GW-07-03

 

109

 

0

 

0

 

109

 

0

 

0

 

0

 

 

 

WTM

 

GW-07-04

 

54

 

0

 

0

 

54

 

0

 

0

 

0

 

 

 

WTM

 

GW-07-05

 

91

 

1

 

0

 

91

 

0

 

0

 

0

 

 

 

WTM

 

GW-07-06

 

158

 

0

 

0

 

158

 

0

 

0

 

0

 

 

 

WTM

 

GW-07-07

 

209

 

1

 

0

 

209

 

0

 

0

 

0

 

 

 

WTM

 

GW-07-08

 

212

 

2

 

0

 

212

 

0

 

0

 

0

 

 

 

WTM

 

GW-07-09

 

260

 

4

 

0

 

260

 

0

 

0

 

0

 

 

 

WTM

 

GW-07-10

 

128

 

7

 

0

 

128

 

0

 

0

 

0

 

 

 

WTM

 

GW-07-11

 

65

 

0

 

0

 

65

 

0

 

0

 

0

 

 

 

 

180



 

 

 

 

 

Number of

 

Number Assays

 

Number Assays

 

Analysis

 

Analysis

 

Analysis

 

Analysis

 

 

 

 

 

Hole

 

Samples

 

equal to or greater

 

equal to or greater

 

FA aa

 

FA g

 

metallics

 

aa

 

Assays pending

 

Operator

 

Number

 

(excl. QA/QC)

 

than 1 gpt Au

 

than 34.29 gpt Au

 

Au

 

Au

 

Au

 

As

 

(excl. QA/QC)

 

WTM

 

GW-07-12

 

97

 

3

 

0

 

97

 

0

 

0

 

0

 

 

 

WTM

 

GW-07-13

 

90

 

4

 

0

 

90

 

0

 

0

 

0

 

 

 

WTM

 

GW-07-14

 

210

 

1

 

0

 

210

 

0

 

0

 

0

 

 

 

WTM

 

GW-07-15

 

84

 

0

 

0

 

84

 

0

 

0

 

0

 

 

 

WTM

 

GW-07-16

 

344

 

4

 

0

 

344

 

0

 

0

 

0

 

 

 

WTM

 

GW-08-17

 

124

 

0

 

0

 

124

 

0

 

0

 

0

 

 

 

WTM

 

GW-08-18

 

142

 

3

 

0

 

142

 

0

 

0

 

0

 

 

 

WTM

 

GW-08-18A

 

0

 

0

 

0

 

0

 

0

 

0

 

0

 

 

 

WTM

 

GW-08-19

 

153

 

1

 

0

 

152

 

0

 

0

 

0

 

 

 

WTM

 

GW-08-20

 

252

 

16

 

0

 

252

 

1

 

0

 

0

 

 

 

WTM

 

GW-08-21

 

424

 

15

 

0

 

424

 

1

 

0

 

0

 

 

 

WTM

 

GW-08-22

 

323

 

5

 

0

 

323

 

1

 

0

 

0

 

 

 

WTM

 

GW-08-23

 

336

 

5

 

0

 

336

 

0

 

0

 

0

 

 

 

WTM

 

GW-08-24

 

274

 

11

 

0

 

274

 

0

 

0

 

0

 

 

 

WTM

 

GW-08-25

 

298

 

11

 

0

 

298

 

0

 

0

 

0

 

 

 

WTM

 

GW-08-26

 

208

 

7

 

0

 

208

 

0

 

0

 

0

 

 

 

WTM

 

GW-08-27

 

202

 

11

 

0

 

202

 

1

 

0

 

0

 

 

 

WTM

 

GW-08-28

 

229

 

6

 

0

 

229

 

1

 

0

 

0

 

 

 

WTM

 

GW-08-29

 

75

 

11

 

0

 

75

 

0

 

0

 

0

 

 

 

WTM

 

GW-08-30

 

78

 

3

 

0

 

78

 

0

 

0

 

0

 

 

 

WTM

 

GW-08-31

 

308

 

5

 

0

 

308

 

0

 

0

 

0

 

 

 

WTM

 

GW-08-32

 

213

 

3

 

0

 

213

 

0

 

0

 

0

 

 

 

WTM

 

GW-08-33

 

259

 

29

 

1

 

259

 

2

 

4

 

0

 

 

 

WTM

 

GW-08-34

 

289

 

6

 

0

 

289

 

0

 

0

 

0

 

 

 

WTM

 

GW-08-35

 

119

 

5

 

0

 

119

 

1

 

0

 

0

 

 

 

WTM

 

GW-08-36

 

122

 

4

 

0

 

122

 

0

 

0

 

0

 

 

 

WTM

 

GW-08-37

 

213

 

10

 

0

 

213

 

0

 

0

 

0

 

 

 

WTM

 

GW-08-38

 

136

 

1

 

0

 

136

 

0

 

0

 

0

 

 

 

WTM

 

GW-08-39

 

151

 

2

 

0

 

151

 

0

 

0

 

0

 

 

 

WTM

 

GW-08-40

 

174

 

2

 

0

 

174

 

0

 

0

 

0

 

 

 

WTM

 

GW-08-41

 

214

 

9

 

0

 

214

 

0

 

2

 

0

 

 

 

WTM

 

GW-08-42

 

98

 

2

 

0

 

98

 

0

 

0

 

0

 

 

 

WTM

 

GW-08-43

 

151

 

5

 

0

 

151

 

10

 

0

 

0

 

 

 

WTM

 

GW-08-44

 

198

 

19

 

0

 

198

 

25

 

5

 

0

 

 

 

WTM

 

GW-08-45

 

206

 

13

 

0

 

206

 

5

 

2

 

0

 

 

 

WTM

 

GW-09-46

 

278

 

7

 

0

 

278

 

0

 

0

 

0

 

 

 

WTM

 

GW-09-47

 

438

 

22

 

0

 

438

 

0

 

0

 

0

 

 

 

WTM

 

GW-09-48

 

140

 

15

 

0

 

140

 

0

 

0

 

0

 

 

 

WTM

 

GW-09-49

 

316

 

11

 

0

 

316

 

0

 

0

 

0

 

 

 

WTM

 

GW-09-50

 

90

 

1

 

0

 

90

 

0

 

0

 

0

 

 

 

WTM

 

GW-09-51

 

89

 

1

 

0

 

89

 

0

 

0

 

0

 

 

 

WTM

 

GW-09-52

 

293

 

14

 

0

 

293

 

0

 

0

 

0

 

 

 

WTM

 

GW-09-53

 

363

 

2

 

0

 

332

 

0

 

0

 

0

 

 

 

WTM

 

GW-09-54

 

571

 

38

 

0

 

571

 

0

 

0

 

0

 

 

 

Band-Ore

 

KG-96-01

 

20

 

0

 

0

 

4

 

0

 

0

 

20

 

 

 

Band-Ore

 

KG-96-02

 

30

 

0

 

0

 

8

 

0

 

0

 

30

 

 

 

Band-Ore

 

KZ-05-01

 

156

 

13

 

0

 

156

 

0

 

0

 

0

 

 

 

Band-Ore

 

KZ-05-02

 

138

 

14

 

0

 

138

 

0

 

0

 

0

 

 

 

Band-Ore

 

KZ-05-03

 

119

 

30

 

0

 

119

 

0

 

0

 

0

 

 

 

Band-Ore

 

NW-05-01

 

140

 

7

 

0

 

140

 

0

 

0

 

0

 

 

 

Band-Ore

 

NW-05-02

 

21

 

0

 

0

 

21

 

0

 

0

 

0

 

 

 

Band-Ore

 

NZ-05-01

 

89

 

14

 

0

 

89

 

0

 

0

 

0

 

 

 

Band-Ore

 

NZ-05-02

 

108

 

20

 

0

 

108

 

0

 

0

 

0

 

 

 

Band-Ore

 

NZ-05-03

 

86

 

15

 

0

 

86

 

0

 

0

 

0

 

 

 

Band-Ore

 

NZ-05-04

 

114

 

8

 

0

 

114

 

0

 

0

 

0

 

 

 

Band-Ore

 

NZ-05-05

 

58

 

8

 

0

 

58

 

0

 

0

 

0

 

 

 

Band-Ore

 

NZ-05-06

 

74

 

4

 

0

 

74

 

0

 

0

 

0

 

 

 

Band-Ore

 

NZ-05-07

 

61

 

2

 

0

 

61

 

0

 

0

 

0

 

 

 

Band-Ore

 

NZ-05-08

 

99

 

5

 

0

 

99

 

0

 

0

 

0

 

 

 

Band-Ore

 

NZ-05-09

 

102

 

7

 

0

 

102

 

0

 

0

 

0

 

 

 

Band-Ore

 

NZ-05-10

 

77

 

10

 

0

 

77

 

0

 

0

 

0

 

 

 

Band-Ore

 

NZ-05-11

 

64

 

6

 

0

 

64

 

0

 

0

 

0

 

 

 

Band-Ore

 

NZ-05-12

 

116

 

6

 

0

 

116

 

0

 

0

 

0

 

 

 

Band-Ore

 

NZ-05-13

 

69

 

12

 

0

 

69

 

0

 

0

 

0

 

 

 

WTM

 

RP-09-01

 

193

 

0

 

0

 

193

 

0

 

0

 

0

 

 

 

WTM

 

RP-09-02

 

103

 

0

 

0

 

103

 

0

 

0

 

0

 

 

 

WTM

 

RP-09-03

 

356

 

2

 

0

 

356

 

0

 

0

 

0

 

 

 

WTM

 

RP-09-04

 

0

 

0

 

0

 

0

 

0

 

0

 

0

 

 

 

WTM

 

RP-09-04A

 

0

 

0

 

0

 

0

 

0

 

0

 

0

 

 

 

WTM

 

RP-09-04B

 

0

 

0

 

0

 

0

 

0

 

0

 

0

 

 

 

Esso

 

T-01

 

17

 

0

 

0

 

17

 

0

 

0

 

0

 

 

 

 

181



 

 

 

 

 

Number of

 

Number Assays

 

Number Assays

 

Analysis

 

Analysis

 

Analysis

 

Analysis

 

 

 

 

 

Hole

 

Samples

 

equal to or greater

 

equal to or greater

 

FA aa

 

FA g

 

metallics

 

aa

 

Assays pending

 

Operator

 

Number

 

(excl. QA/QC)

 

than 1 gpt Au

 

than 34.29 gpt Au

 

Au

 

Au

 

Au

 

As

 

(excl. QA/QC)

 

Esso

 

T-02

 

0

 

0

 

0

 

0

 

0

 

0

 

0

 

 

 

Esso

 

T-03

 

0

 

0

 

0

 

0

 

0

 

0

 

0

 

 

 

Esso

 

T-04

 

155

 

6

 

0

 

154

 

0

 

0

 

18

 

 

 

Esso

 

T-05

 

94

 

1

 

0

 

94

 

0

 

0

 

0

 

 

 

Esso

 

T-06

 

44

 

0

 

0

 

44

 

0

 

0

 

0

 

 

 

Esso

 

T-07

 

71

 

2

 

0

 

71

 

0

 

0

 

0

 

 

 

Esso

 

T-08

 

0

 

0

 

0

 

0

 

0

 

0

 

0

 

 

 

Esso

 

T-09R

 

130

 

5

 

0

 

130

 

0

 

0

 

0

 

 

 

Esso

 

T-10

 

155

 

4

 

0

 

155

 

0

 

0

 

0

 

 

 

Esso

 

T-11R

 

222

 

14

 

0

 

222

 

0

 

0

 

0

 

 

 

Esso

 

T-12

 

69

 

10

 

0

 

69

 

0

 

0

 

0

 

 

 

Esso

 

T-13

 

92

 

10

 

0

 

92

 

0

 

0

 

0

 

 

 

Esso/Band-Ore

 

T-14E

 

235

 

8

 

0

 

235

 

0

 

0

 

165

 

 

 

Esso

 

T-15

 

92

 

13

 

0

 

92

 

0

 

0

 

0

 

 

 

Esso

 

T-16

 

41

 

0

 

0

 

41

 

0

 

0

 

0

 

 

 

Esso

 

T-17

 

144

 

4

 

0

 

143

 

0

 

0

 

0

 

 

 

Esso/Band-Ore

 

T-18E

 

288

 

15

 

0

 

288

 

0

 

0

 

159

 

 

 

Esso

 

T-19

 

158

 

23

 

0

 

146

 

0

 

0

 

0

 

 

 

Esso

 

T-20

 

105

 

6

 

0

 

105

 

0

 

0

 

0

 

 

 

Esso/Band-Ore

 

T-21E

 

281

 

6

 

0

 

280

 

0

 

0

 

147

 

 

 

Esso

 

T-22R

 

116

 

3

 

0

 

116

 

0

 

0

 

14

 

 

 

Esso/Band-Ore

 

T-23E

 

284

 

4

 

0

 

284

 

0

 

0

 

229

 

 

 

Esso

 

T-24R

 

137

 

0

 

0

 

136

 

0

 

0

 

44

 

 

 

Esso

 

T-25R

 

63

 

0

 

0

 

62

 

0

 

0

 

14

 

 

 

Esso

 

T-26

 

129

 

1

 

0

 

128

 

0

 

0

 

0

 

 

 

Esso

 

T-27

 

49

 

1

 

0

 

47

 

0

 

0

 

0

 

 

 

Esso

 

T-28

 

57

 

13

 

1

 

56

 

0

 

0

 

0

 

 

 

Esso

 

T-29

 

98

 

16

 

0

 

98

 

0

 

0

 

0

 

 

 

Esso

 

T-30

 

52

 

1

 

0

 

52

 

0

 

0

 

0

 

 

 

Esso

 

T-31

 

35

 

4

 

0

 

34

 

0

 

0

 

0

 

 

 

Esso

 

T-32

 

37

 

1

 

0

 

37

 

0

 

0

 

0

 

 

 

Esso

 

T-33

 

11

 

1

 

0

 

11

 

0

 

0

 

0

 

 

 

Esso

 

T-34

 

26

 

0

 

0

 

26

 

0

 

0

 

0

 

 

 

Esso

 

T-35

 

26

 

0

 

0

 

26

 

0

 

0

 

0

 

 

 

Esso

 

T-36R

 

98

 

3

 

0

 

98

 

0

 

0

 

78

 

 

 

Esso

 

T-37R

 

17

 

2

 

0

 

17

 

0

 

0

 

0

 

 

 

Esso

 

T-38

 

0

 

0

 

0

 

0

 

0

 

0

 

0

 

 

 

Esso

 

T-39

 

51

 

5

 

0

 

51

 

0

 

0

 

0

 

 

 

Esso

 

T-40

 

41

 

5

 

0

 

41

 

0

 

0

 

0

 

 

 

Esso

 

T-41

 

39

 

14

 

0

 

39

 

0

 

0

 

0

 

 

 

Esso

 

T-42

 

9

 

0

 

0

 

9

 

0

 

0

 

0

 

 

 

Esso

 

T-43R

 

44

 

0

 

0

 

19

 

0

 

0

 

0

 

 

 

Esso

 

T-44

 

21

 

0

 

0

 

0

 

0

 

0

 

0

 

 

 

Esso

 

T-45

 

50

 

9

 

0

 

48

 

0

 

0

 

0

 

 

 

Esso

 

T-46

 

68

 

13

 

0

 

68

 

0

 

0

 

0

 

 

 

Esso

 

T-47

 

90

 

23

 

0

 

90

 

0

 

0

 

0

 

 

 

Esso

 

T-48

 

57

 

7

 

0

 

57

 

0

 

0

 

0

 

 

 

Esso

 

T-49

 

58

 

12

 

1

 

58

 

0

 

0

 

0

 

 

 

Esso

 

T-50

 

60

 

4

 

0

 

60

 

0

 

0

 

0

 

 

 

Esso

 

T-51

 

39

 

1

 

0

 

39

 

0

 

0

 

0

 

 

 

Esso

 

T-52

 

56

 

0

 

0

 

56

 

0

 

0

 

0

 

 

 

Esso

 

T-53

 

12

 

0

 

0

 

12

 

0

 

0

 

0

 

 

 

Esso

 

T-54

 

28

 

3

 

0

 

27

 

0

 

0

 

0

 

 

 

Esso

 

T-55

 

22

 

0

 

0

 

21

 

0

 

0

 

0

 

 

 

WTM

 

TB-09-01

 

131

 

0

 

0

 

131

 

0

 

0

 

0

 

 

 

WTM

 

TB-09-03

 

222

 

2

 

0

 

222

 

0

 

0

 

0

 

 

 

WTM

 

TB-09-04

 

230

 

1

 

0

 

230

 

0

 

0

 

0

 

 

 

Band-Ore?

 

TC-93-01

 

12

 

3

 

0

 

12

 

0

 

0

 

12

 

 

 

LSG

 

TH-10-01

 

293

 

7

 

0

 

293

 

2

 

0

 

293

 

 

 

LSG

 

TH-10-02

 

389

 

5

 

0

 

386

 

1

 

3

 

389

 

 

 

LSG

 

TH-10-03

 

338

 

12

 

2

 

332

 

5

 

6

 

338

 

 

 

LSG

 

TH-10-04

 

680

 

34

 

0

 

680

 

11

 

0

 

680

 

 

 

LSG

 

TH-10-05

 

419

 

11

 

1

 

414

 

1

 

5

 

419

 

 

 

LSG

 

TH-10-06

 

298

 

18

 

2

 

288

 

5

 

10

 

298

 

 

 

LSG

 

TH-10-07

 

92

 

0

 

0

 

92

 

0

 

0

 

92

 

 

 

LSG

 

TH-10-08

 

170

 

3

 

0

 

170

 

2

 

0

 

170

 

 

 

LSG

 

TH-10-09

 

636

 

67

 

0

 

636

 

20

 

0

 

636

 

 

 

LSG

 

TH-10-10

 

155

 

5

 

0

 

155

 

3

 

0

 

155

 

 

 

LSG

 

TH-10-11

 

167

 

7

 

0

 

167

 

0

 

0

 

167

 

 

 

LSG

 

TH-10-12

 

312

 

18

 

0

 

312

 

3

 

0

 

312

 

 

 

LSG

 

TH-10-13

 

365

 

0

 

0

 

365

 

0

 

0

 

365

 

 

 

 

182



 

 

 

 

 

Number of

 

Number Assays

 

Number Assays

 

Analysis

 

Analysis

 

Analysis

 

Analysis

 

 

 

 

 

Hole

 

Samples

 

equal to or greater

 

equal to or greater

 

FA aa

 

FA g

 

metallics

 

aa

 

Assays pending

 

Operator

 

Number

 

(excl. QA/QC)

 

than 1 gpt Au

 

than 34.29 gpt Au

 

Au

 

Au

 

Au

 

As

 

(excl. QA/QC)

 

LSG

 

TH-10-14

 

153

 

4

 

0

 

153

 

1

 

0

 

153

 

 

 

LSG

 

TH-10-15

 

58

 

3

 

1

 

58

 

3

 

0

 

58

 

 

 

LSG

 

TH-10-16

 

9

 

0

 

0

 

9

 

0

 

0

 

9

 

 

 

LSG

 

TH-10-17

 

246

 

7

 

0

 

246

 

1

 

0

 

246

 

 

 

LSG

 

TH-10-18

 

281

 

22

 

0

 

281

 

5

 

0

 

281

 

 

 

LSG

 

TH-10-19

 

294

 

14

 

0

 

290

 

7

 

4

 

294

 

 

 

LSG

 

TH-10-20

 

268

 

8

 

0

 

268

 

2

 

0

 

268

 

 

 

LSG

 

TH-10-21

 

161

 

30

 

2

 

161

 

17

 

0

 

161

 

 

 

LSG

 

TH-10-22

 

268

 

4

 

0

 

268

 

1

 

0

 

268

 

 

 

LSG

 

TH-10-23

 

105

 

1

 

0

 

105

 

0

 

0

 

105

 

 

 

LSG

 

TH-10-24

 

302

 

18

 

3

 

302

 

12

 

0

 

302

 

 

 

LSG

 

TH-10-25

 

263

 

34

 

0

 

259

 

8

 

4

 

263

 

 

 

LSG

 

TH-10-26

 

631

 

21

 

1

 

621

 

4

 

10

 

631

 

 

 

LSG

 

TH-10-26A

 

85

 

1

 

0

 

85

 

0

 

0

 

85

 

 

 

LSG

 

TH-10-26B

 

377

 

20

 

1

 

364

 

3

 

13

 

377

 

 

 

LSG

 

TH-10-26C

 

616

 

31

 

0

 

616

 

8

 

0

 

616

 

 

 

LSG

 

TH-10-27

 

522

 

16

 

0

 

522

 

6

 

0

 

522

 

 

 

LSG

 

TH-10-28

 

561

 

13

 

0

 

561

 

4

 

0

 

561

 

 

 

LSG

 

TH-10-29

 

306

 

23

 

0

 

306

 

5

 

0

 

306

 

 

 

LSG

 

TH-10-30

 

331

 

4

 

1

 

321

 

0

 

10

 

331

 

 

 

LSG

 

TH-10-31

 

309

 

28

 

0

 

309

 

9

 

0

 

309

 

 

 

LSG

 

TH-10-32

 

320

 

6

 

0

 

320

 

1

 

0

 

320

 

 

 

LSG

 

TH-10-33

 

401

 

19

 

0

 

401

 

6

 

0

 

401

 

 

 

LSG

 

TH-10-34

 

236

 

6

 

0

 

236

 

1

 

0

 

236

 

 

 

LSG

 

TH-10-35

 

333

 

9

 

0

 

333

 

5

 

0

 

333

 

 

 

LSG

 

TH-10-36

 

195

 

7

 

0

 

195

 

3

 

0

 

195

 

 

 

LSG

 

TH-10-37

 

0

 

0

 

0

 

0

 

0

 

0

 

0

 

 

 

LSG

 

TH-10-38

 

272

 

8

 

0

 

272

 

5

 

0

 

272

 

 

 

LSG

 

TH-10-39

 

346

 

6

 

0

 

346

 

3

 

0

 

346

 

 

 

LSG

 

TH-10-40

 

170

 

11

 

0

 

170

 

3

 

0

 

170

 

 

 

LSG

 

TH-10-41

 

332

 

14

 

0

 

332

 

6

 

0

 

332

 

 

 

LSG

 

TH-10-42

 

322

 

21

 

1

 

322

 

8

 

0

 

322

 

 

 

LSG

 

TH-10-43

 

519

 

13

 

0

 

519

 

1

 

0

 

519

 

 

 

LSG

 

TH-10-44

 

138

 

7

 

0

 

138

 

1

 

0

 

138

 

 

 

LSG

 

TH-10-45

 

312

 

6

 

0

 

312

 

1

 

0

 

312

 

 

 

LSG

 

TH-10-46

 

160

 

11

 

0

 

160

 

5

 

0

 

160

 

 

 

LSG

 

TH-10-47

 

59

 

9

 

0

 

59

 

7

 

0

 

59

 

 

 

LSG

 

TH-10-48

 

206

 

14

 

0

 

206

 

6

 

0

 

206

 

 

 

LSG

 

TH-10-49

 

235

 

8

 

0

 

235

 

4

 

0

 

235

 

 

 

LSG

 

TH-10-50

 

219

 

5

 

0

 

219

 

1

 

0

 

219

 

 

 

LSG

 

TH-10-51

 

157

 

13

 

0

 

157

 

3

 

0

 

157

 

 

 

LSG

 

TH-10-52

 

297

 

17

 

1

 

288

 

6

 

9

 

297

 

 

 

LSG

 

TH-10-53

 

539

 

14

 

0

 

539

 

2

 

0

 

539

 

 

 

LSG

 

TH-10-53A

 

623

 

10

 

0

 

623

 

1

 

0

 

623

 

 

 

LSG

 

TH-10-54

 

0

 

0

 

0

 

0

 

0

 

0

 

0

 

 

 

LSG

 

TH-10-55

 

282

 

23

 

0

 

282

 

9

 

0

 

282

 

 

 

LSG

 

TH-10-56

 

202

 

7

 

0

 

202

 

4

 

0

 

202

 

 

 

LSG

 

TH-10-57

 

175

 

9

 

0

 

175

 

4

 

0

 

175

 

 

 

LSG

 

TH-10-58

 

199

 

8

 

0

 

199

 

0

 

0

 

199

 

 

 

LSG

 

TH-10-59

 

299

 

15

 

0

 

299

 

5

 

0

 

299

 

 

 

LSG

 

TH-10-60

 

163

 

4

 

0

 

163

 

1

 

0

 

163

 

 

 

LSG

 

TH-10-61

 

103

 

3

 

0

 

103

 

1

 

0

 

103

 

 

 

LSG

 

TH-10-62

 

128

 

24

 

0

 

128

 

12

 

0

 

128

 

 

 

LSG

 

TH-10-63

 

174

 

15

 

0

 

174

 

2

 

0

 

174

 

 

 

LSG

 

TH-10-64

 

60

 

4

 

0

 

60

 

0

 

0

 

60

 

 

 

LSG

 

TH-10-65

 

792

 

46

 

2

 

761

 

8

 

31

 

792

 

 

 

LSG

 

TH-10-65A

 

598

 

48

 

1

 

598

 

21

 

0

 

598

 

 

 

LSG

 

TH-10-65B

 

818

 

39

 

1

 

806

 

7

 

12

 

818

 

 

 

LSG

 

TH-10-66

 

97

 

8

 

0

 

97

 

2

 

0

 

97

 

 

 

LSG

 

TH-10-67

 

0

 

0

 

0

 

0

 

0

 

0

 

0

 

 

 

LSG

 

TH-10-68

 

0

 

0

 

0

 

0

 

0

 

0

 

0

 

 

 

LSG

 

TH-10-69

 

480

 

4

 

0

 

480

 

0

 

0

 

480

 

 

 

LSG

 

TH-10-70

 

238

 

1

 

0

 

238

 

0

 

0

 

238

 

 

 

LSG

 

TH-11-71

 

519

 

6

 

0

 

519

 

3

 

0

 

519

 

 

 

LSG

 

TH-11-72

 

271

 

11

 

0

 

271

 

1

 

0

 

271

 

 

 

LSG

 

TH-11-73

 

152

 

2

 

0

 

152

 

0

 

0

 

152

 

 

 

LSG

 

TH-11-74

 

407

 

11

 

0

 

407

 

0

 

0

 

407

 

 

 

LSG

 

TH-11-75

 

924

 

9

 

0

 

924

 

1

 

0

 

924

 

 

 

LSG

 

TH-11-75A

 

651

 

19

 

0

 

651

 

2

 

0

 

651

 

 

 

LSG

 

TH-11-76

 

325

 

9

 

0

 

325

 

1

 

0

 

325

 

 

 

LSG

 

TH-11-77

 

403

 

19

 

0

 

403

 

1

 

0

 

403

 

 

 

 

183



 

 

 

 

 

Number of

 

Number Assays

 

Number Assays

 

Analysis

 

Analysis

 

Analysis

 

Analysis

 

 

 

 

 

Hole

 

Samples

 

equal to or greater

 

equal to or greater

 

FA aa

 

FA g

 

metallics

 

aa

 

Assays pending

 

Operator

 

Number

 

(excl. QA/QC)

 

than 1 gpt Au

 

than 34.29 gpt Au

 

Au

 

Au

 

Au

 

As

 

(excl. QA/QC)

 

LSG

 

TH-11-78

 

460

 

11

 

0

 

460

 

1

 

0

 

460

 

 

 

LSG

 

TH-11-79

 

498

 

2

 

0

 

498

 

0

 

0

 

498

 

 

 

LSG

 

TH-11-80

 

658

 

13

 

0

 

658

 

1

 

0

 

658

 

 

 

LSG

 

TH-11-81

 

269

 

10

 

0

 

269

 

0

 

0

 

269

 

 

 

LSG

 

TH-11-82

 

302

 

12

 

0

 

302

 

0

 

0

 

302

 

 

 

LSG

 

TH-11-83

 

679

 

14

 

0

 

679

 

0

 

0

 

679

 

 

 

LSG

 

TH-11-84

 

274

 

10

 

0

 

274

 

1

 

0

 

274

 

 

 

LSG

 

TH-11-85

 

178

 

11

 

0

 

178

 

2

 

0

 

178

 

 

 

LSG

 

TH-11-86

 

374

 

12

 

0

 

374

 

0

 

0

 

374

 

 

 

LSG

 

TH-11-87

 

169

 

12

 

0

 

169

 

2

 

0

 

169

 

 

 

LSG

 

TH-11-88

 

298

 

8

 

0

 

298

 

2

 

0

 

298

 

 

 

LSG

 

TH-11-89

 

4

 

0

 

0

 

4

 

0

 

0

 

4

 

 

 

LSG

 

TH-11-90

 

0

 

0

 

0

 

0

 

0

 

0

 

0

 

 

 

LSG

 

TH-11-91

 

0

 

0

 

0

 

0

 

0

 

0

 

0

 

 

 

LSG

 

TH-11-92

 

200

 

8

 

1

 

200

 

1

 

0

 

200

 

 

 

LSG

 

TH-11-93

 

94

 

0

 

0

 

94

 

0

 

0

 

94

 

 

 

LSG

 

TH-11-94

 

97

 

0

 

0

 

97

 

0

 

0

 

97

 

 

 

LSG

 

TH-11-94A

 

493

 

14

 

0

 

493

 

1

 

0

 

493

 

 

 

LSG

 

TH-11-95

 

351

 

11

 

0

 

351

 

0

 

0

 

351

 

 

 

LSG

 

TH-11-96

 

197

 

10

 

0

 

197

 

3

 

0

 

197

 

 

 

LSG

 

TH-11-97

 

434

 

12

 

0

 

434

 

0

 

0

 

434

 

 

 

LSG

 

TH-11-98

 

654

 

19

 

0

 

654

 

2

 

0

 

654

 

 

 

LSG

 

TH-11-99

 

290

 

11

 

0

 

290

 

2

 

0

 

290

 

 

 

LSG

 

TH-11-100

 

110

 

13

 

0

 

110

 

2

 

0

 

110

 

 

 

LSG

 

TH-11-101

 

147

 

16

 

0

 

147

 

2

 

0

 

147

 

 

 

LSG

 

TH-11-102

 

544

 

8

 

0

 

544

 

0

 

0

 

544

 

 

 

LSG

 

TH-11-103

 

185

 

20

 

0

 

185

 

0

 

0

 

185

 

 

 

LSG

 

TH-11-104

 

143

 

4

 

0

 

143

 

0

 

0

 

143

 

 

 

LSG

 

TH-11-105

 

97

 

14

 

0

 

97

 

0

 

0

 

97

 

 

 

LSG

 

TH-11-106

 

226

 

9

 

0

 

226

 

1

 

0

 

226

 

 

 

LSG

 

TH-11-107

 

416

 

5

 

0

 

416

 

0

 

0

 

416

 

 

 

LSG

 

TH-11-108

 

220

 

12

 

1

 

220

 

4

 

0

 

220

 

 

 

LSG

 

TH-11-109

 

558

 

9

 

0

 

558

 

1

 

0

 

558

 

 

 

LSG

 

TH-11-110

 

370

 

13

 

0

 

370

 

1

 

0

 

370

 

 

 

LSG

 

TH-11-111

 

264

 

13

 

0

 

264

 

3

 

0

 

264

 

 

 

LSG

 

TH-11-112

 

308

 

9

 

0

 

308

 

0

 

0

 

308

 

 

 

LSG

 

TH-11-113

 

183

 

5

 

1

 

176

 

2

 

7

 

183

 

 

 

LSG

 

TH-11-114

 

333

 

9

 

0

 

333

 

0

 

0

 

333

 

 

 

LSG

 

TH-11-115

 

532

 

6

 

0

 

532

 

0

 

0

 

532

 

 

 

LSG

 

TH-11-116

 

196

 

2

 

0

 

196

 

0

 

0

 

196

 

 

 

LSG

 

TH-11-117

 

114

 

2

 

0

 

114

 

0

 

0

 

114

 

 

 

LSG

 

TH-11-118

 

348

 

8

 

1

 

343

 

0

 

5

 

348

 

 

 

LSG

 

TH-11-119

 

412

 

11

 

0

 

412

 

1

 

0

 

412

 

 

 

LSG

 

TH-11-120

 

750

 

33

 

0

 

750

 

1

 

0

 

750

 

 

 

LSG

 

TH-11-121

 

374

 

14

 

0

 

374

 

3

 

0

 

374

 

 

 

LSG

 

TH-11-122

 

0

 

0

 

0

 

0

 

0

 

0

 

0

 

 

 

LSG

 

TH-11-123

 

416

 

13

 

0

 

416

 

0

 

0

 

416

 

 

 

LSG

 

TH-11-124

 

713

 

12

 

0

 

421

 

1

 

0

 

421

 

292

 

LSG

 

TH-11-124A

 

521

 

18

 

1

 

508

 

0

 

8

 

516

 

5

 

LSG

 

TH-11-125

 

311

 

8

 

0

 

311

 

0

 

0

 

311

 

 

 

LSG

 

TH-11-126

 

427

 

10

 

0

 

427

 

0

 

0

 

427

 

 

 

LSG

 

TH-11-127

 

0

 

0

 

0

 

0

 

0

 

0

 

0

 

 

 

LSG

 

TH-11-128

 

375

 

5

 

0

 

375

 

0

 

0

 

375

 

 

 

LSG

 

TH-11-129

 

475

 

4

 

0

 

121

 

0

 

0

 

121

 

354

 

LSG

 

TH-11-130

 

316

 

3

 

0

 

160

 

0

 

0

 

160

 

156

 

LSG

 

TH-11-131

 

362

 

2

 

0

 

21

 

0

 

0

 

21

 

341

 

Band-Ore

 

TH-95-01

 

122

 

7

 

0

 

122

 

0

 

0

 

0

 

 

 

Band-Ore

 

TH-95-02

 

90

 

0

 

0

 

90

 

0

 

0

 

0

 

 

 

Band-Ore

 

TH-95-03

 

57

 

3

 

0

 

57

 

0

 

0

 

0

 

 

 

Band-Ore

 

TH-95-04

 

34

 

1

 

0

 

34

 

0

 

0

 

0

 

 

 

Band-Ore

 

TH-95-05

 

58

 

11

 

0

 

58

 

0

 

0

 

0

 

 

 

Band-Ore

 

TH-95-06

 

105

 

9

 

0

 

105

 

0

 

0

 

0

 

 

 

Band-Ore

 

TH-95-07

 

94

 

8

 

0

 

94

 

0

 

0

 

0

 

 

 

Band-Ore

 

TH-95-08

 

225

 

5

 

0

 

225

 

0

 

0

 

15

 

 

 

Band-Ore

 

TH-96-09E

 

198

 

6

 

0

 

198

 

0

 

15

 

128

 

 

 

Band-Ore

 

TH-96-10E

 

316

 

9

 

0

 

316

 

0

 

0

 

186

 

 

 

Band-Ore

 

TH-96-11

 

105

 

0

 

0

 

105

 

0

 

0

 

105

 

 

 

Band-Ore

 

TH-96-12

 

133

 

18

 

0

 

133

 

0

 

0

 

133

 

 

 

Band-Ore

 

TH-96-13

 

71

 

0

 

0

 

71

 

0

 

0

 

71

 

 

 

Band-Ore

 

TH-96-14

 

156

 

17

 

0

 

156

 

0

 

0

 

156

 

 

 

Band-Ore

 

TH-96-15E

 

71

 

3

 

0

 

71

 

0

 

0

 

71

 

 

 

 

184



 

 

 

 

 

Number of

 

Number Assays

 

Number Assays

 

Analysis

 

Analysis

 

Analysis

 

Analysis

 

 

 

 

 

Hole

 

Samples

 

equal to or greater

 

equal to or greater

 

FA aa

 

FA g

 

metallics

 

aa

 

Assays pending

 

Operator

 

Number

 

(excl. QA/QC)

 

than 1 gpt Au

 

than 34.29 gpt Au

 

Au

 

Au

 

Au

 

As

 

(excl. QA/QC)

 

Band-Ore

 

TH-96-16

 

170

 

7

 

0

 

170

 

0

 

0

 

170

 

 

 

Band-Ore

 

TH-96-17

 

143

 

17

 

0

 

143

 

0

 

0

 

143

 

 

 

Band-Ore

 

TH-96-18

 

148

 

18

 

0

 

148

 

0

 

8

 

148

 

 

 

Band-Ore

 

TH-96-19

 

154

 

23

 

0

 

154

 

0

 

0

 

154

 

 

 

Band-Ore

 

TH-96-20

 

128

 

5

 

0

 

128

 

0

 

0

 

128

 

 

 

Band-Ore

 

TH-96-21

 

108

 

23

 

0

 

108

 

0

 

0

 

108

 

 

 

Band-Ore

 

TH-96-22

 

118

 

25

 

1

 

118

 

0

 

0

 

118

 

 

 

Band-Ore

 

TH-96-23

 

164

 

4

 

0

 

164

 

0

 

0

 

164

 

 

 

Band-Ore

 

TH-96-24

 

149

 

6

 

0

 

149

 

0

 

0

 

149

 

 

 

Band-Ore

 

TH-96-25

 

144

 

5

 

0

 

144

 

0

 

0

 

144

 

 

 

Band-Ore

 

TH-96-26

 

84

 

0

 

0

 

84

 

0

 

0

 

84

 

 

 

Band-Ore

 

TH-96-27

 

130

 

9

 

0

 

130

 

0

 

0

 

130

 

 

 

Band-Ore

 

TH-96-28E

 

155

 

9

 

0

 

155

 

0

 

0

 

155

 

 

 

Band-Ore

 

TH-96-29

 

53

 

0

 

0

 

53

 

0

 

0

 

53

 

 

 

Band-Ore

 

TH-96-30

 

153

 

32

 

0

 

153

 

0

 

0

 

153

 

 

 

Band-Ore

 

TH-96-31

 

105

 

10

 

0

 

105

 

0

 

0

 

105

 

 

 

Band-Ore

 

TH-96-32

 

194

 

23

 

0

 

194

 

0

 

0

 

194

 

 

 

Band-Ore

 

TH-96-33

 

15

 

0

 

0

 

15

 

0

 

0

 

15

 

 

 

Band-Ore

 

TH-96-35

 

133

 

11

 

0

 

133

 

0

 

0

 

133

 

 

 

Band-Ore

 

TH-96-36

 

166

 

36

 

0

 

166

 

0

 

0

 

166

 

 

 

Band-Ore

 

TH-96-37

 

197

 

13

 

0

 

197

 

0

 

0

 

197

 

 

 

Band-Ore

 

TH-96-38

 

120

 

6

 

0

 

120

 

0

 

0

 

120

 

 

 

Band-Ore

 

TH-96-39

 

115

 

32

 

0

 

115

 

0

 

0

 

115

 

 

 

Band-Ore

 

TH-96-40

 

38

 

4

 

0

 

38

 

0

 

0

 

38

 

 

 

Band-Ore

 

TH-96-41

 

222

 

12

 

0

 

222

 

0

 

0

 

222

 

 

 

Band-Ore

 

TH-96-42

 

148

 

5

 

0

 

148

 

0

 

0

 

148

 

 

 

Band-Ore

 

TH-96-43

 

162

 

5

 

0

 

162

 

0

 

0

 

162

 

 

 

Band-Ore

 

TH-96-44

 

172

 

1

 

0

 

172

 

0

 

0

 

172

 

 

 

Band-Ore

 

TH-96-45

 

220

 

24

 

0

 

220

 

0

 

0

 

220

 

 

 

Band-Ore

 

TH-96-46

 

142

 

8

 

0

 

142

 

0

 

0

 

142

 

 

 

Band-Ore

 

TH-96-47

 

237

 

14

 

0

 

237

 

0

 

0

 

237

 

 

 

Band-Ore

 

TH-96-48

 

187

 

10

 

0

 

187

 

0

 

0

 

187

 

 

 

Band-Ore

 

TH-96-49

 

132

 

13

 

0

 

132

 

0

 

0

 

132

 

 

 

Band-Ore

 

TH-96-50

 

126

 

6

 

1

 

126

 

0

 

0

 

125

 

 

 

Band-Ore

 

TH-96-51

 

237

 

12

 

0

 

237

 

0

 

1

 

237

 

 

 

Band-Ore

 

TH-96-52

 

202

 

6

 

0

 

202

 

0

 

0

 

202

 

 

 

Band-Ore

 

TH-96-53

 

88

 

1

 

0

 

88

 

0

 

0

 

88

 

 

 

Band-Ore

 

TH-96-54

 

93

 

9

 

0

 

93

 

0

 

0

 

93

 

 

 

Band-Ore

 

TH-96-55

 

67

 

0

 

0

 

67

 

0

 

0

 

67

 

 

 

Band-Ore

 

TH-96-56

 

88

 

0

 

0

 

88

 

0

 

0

 

88

 

 

 

Band-Ore

 

TH-96-57

 

60

 

0

 

0

 

60

 

0

 

0

 

60

 

 

 

Band-Ore

 

TH-96-58

 

290

 

6

 

1

 

290

 

0

 

0

 

290

 

 

 

Band-Ore

 

TH-96-59

 

109

 

2

 

0

 

109

 

0

 

0

 

109

 

 

 

Band-Ore

 

TH-96-60

 

280

 

11

 

1

 

280

 

0

 

0

 

280

 

 

 

Band-Ore

 

TH-96-61

 

127

 

14

 

0

 

127

 

0

 

0

 

127

 

 

 

Band-Ore

 

TH-96-62

 

239

 

11

 

0

 

239

 

0

 

0

 

239

 

 

 

Band-Ore

 

TH-96-63

 

112

 

4

 

0

 

112

 

0

 

0

 

112

 

 

 

Band-Ore

 

TH-96-64

 

213

 

12

 

0

 

213

 

0

 

0

 

213

 

 

 

Band-Ore

 

TH-96-65

 

283

 

6

 

0

 

283

 

0

 

0

 

283

 

 

 

Band-Ore

 

TH-96-66

 

249

 

9

 

0

 

249

 

0

 

0

 

248

 

 

 

Band-Ore

 

TH-96-67

 

256

 

8

 

0

 

256

 

0

 

0

 

256

 

 

 

Band-Ore

 

TH-96-68

 

204

 

9

 

0

 

204

 

0

 

0

 

204

 

 

 

Band-Ore

 

TH-96-69

 

294

 

17

 

0

 

294

 

0

 

0

 

294

 

 

 

Band-Ore

 

TH-96-70

 

164

 

17

 

1

 

164

 

0

 

0

 

164

 

 

 

Band-Ore

 

TH-96-71

 

169

 

8

 

0

 

169

 

0

 

0

 

169

 

 

 

Band-Ore

 

TH-96-72

 

205

 

11

 

0

 

205

 

0

 

0

 

205

 

 

 

Band-Ore

 

TH-96-73

 

190

 

7

 

0

 

190

 

0

 

0

 

190

 

 

 

Band-Ore

 

TH-96-74

 

139

 

8

 

0

 

139

 

0

 

0

 

139

 

 

 

Band-Ore

 

TH-96-75

 

198

 

21

 

1

 

198

 

0

 

0

 

198

 

 

 

Band-Ore

 

TH-96-76

 

127

 

9

 

0

 

127

 

0

 

0

 

127

 

 

 

Band-Ore

 

TH-96-77

 

198

 

4

 

0

 

198

 

0

 

0

 

198

 

 

 

Band-Ore

 

TH-96-78

 

135

 

7

 

0

 

135

 

0

 

0

 

135

 

 

 

Band-Ore

 

TH-96-79

 

110

 

3

 

0

 

110

 

0

 

0

 

110

 

 

 

Band-Ore

 

TH-96-80

 

119

 

6

 

0

 

119

 

0

 

0

 

119

 

 

 

Band-Ore

 

TH-96-81

 

59

 

0

 

0

 

59

 

0

 

0

 

59

 

 

 

Band-Ore

 

TH-96-82

 

115

 

13

 

0

 

115

 

0

 

0

 

115

 

 

 

Band-Ore

 

TH-96-83

 

125

 

2

 

0

 

125

 

0

 

0

 

125

 

 

 

Band-Ore

 

TH-96-84

 

115

 

2

 

0

 

115

 

0

 

0

 

115

 

 

 

Band-Ore

 

TH-96-85

 

106

 

11

 

0

 

106

 

0

 

0

 

106

 

 

 

Band-Ore

 

TH-96-86

 

49

 

5

 

0

 

49

 

0

 

0

 

49

 

 

 

Band-Ore

 

TH-96-87

 

175

 

9

 

0

 

175

 

0

 

0

 

175

 

 

 

 

185



 

 

 

 

 

Number of

 

Number Assays

 

Number Assays

 

Analysis

 

Analysis

 

Analysis

 

Analysis

 

 

 

 

 

Hole

 

Samples

 

equal to or greater

 

equal to or greater

 

FA aa

 

FA g

 

metallics

 

aa

 

Assays pending

 

Operator

 

Number

 

(excl. QA/QC)

 

than 1 gpt Au

 

than 34.29 gpt Au

 

Au

 

Au

 

Au

 

As

 

(excl. QA/QC)

 

Band-Ore

 

TH-96-88

 

199

 

15

 

0

 

199

 

0

 

0

 

199

 

 

 

Band-Ore

 

TH-96-89

 

119

 

11

 

0

 

119

 

0

 

0

 

119

 

 

 

Band-Ore

 

TH-96-90

 

162

 

6

 

0

 

162

 

0

 

0

 

162

 

 

 

Band-Ore

 

TH-96-91

 

125

 

5

 

0

 

125

 

0

 

0

 

125

 

 

 

Band-Ore

 

TH-96-92

 

82

 

3

 

0

 

82

 

0

 

0

 

82

 

 

 

Band-Ore

 

TH-96-93

 

113

 

5

 

1

 

113

 

0

 

0

 

113

 

 

 

Band-Ore

 

TH-96-94

 

120

 

11

 

0

 

120

 

0

 

0

 

120

 

 

 

Band-Ore

 

TH-96-95

 

125

 

3

 

0

 

125

 

0

 

0

 

125

 

 

 

Band-Ore

 

TH-96-96

 

146

 

3

 

0

 

146

 

0

 

0

 

146

 

 

 

Band-Ore

 

TH-96-97

 

101

 

8

 

0

 

101

 

0

 

0

 

101

 

 

 

Band-Ore

 

TH-96-98

 

176

 

10

 

0

 

176

 

0

 

0

 

176

 

 

 

Band-Ore

 

TH-96-99

 

166

 

1

 

0

 

166

 

0

 

0

 

164

 

 

 

Band-Ore

 

TH-96-100

 

133

 

2

 

0

 

133

 

0

 

0

 

133

 

 

 

Band-Ore

 

TH-96-101

 

68

 

2

 

0

 

68

 

0

 

0

 

68

 

 

 

Band-Ore

 

TH-96-102

 

153

 

3

 

0

 

153

 

0

 

0

 

153

 

 

 

Band-Ore

 

TH-96-103

 

130

 

4

 

0

 

130

 

0

 

0

 

130

 

 

 

Band-Ore

 

TH-96-104

 

64

 

1

 

0

 

64

 

0

 

0

 

64

 

 

 

Band-Ore

 

TH-96-105

 

114

 

1

 

0

 

114

 

0

 

0

 

114

 

 

 

Band-Ore

 

TH-96-106

 

155

 

5

 

0

 

155

 

0

 

0

 

155

 

 

 

Band-Ore

 

TH-96-107

 

100

 

2

 

0

 

100

 

0

 

0

 

100

 

 

 

Band-Ore

 

TH-96-108

 

129

 

1

 

0

 

129

 

0

 

0

 

129

 

 

 

Band-Ore

 

TH-96-109

 

202

 

10

 

0

 

202

 

0

 

0

 

202

 

 

 

Band-Ore

 

TH-96-110

 

158

 

3

 

0

 

158

 

0

 

0

 

158

 

 

 

Band-Ore

 

TH-96-111

 

220

 

10

 

0

 

220

 

0

 

0

 

220

 

 

 

Band-Ore

 

TH-96-112

 

236

 

10

 

0

 

236

 

0

 

0

 

236

 

 

 

Band-Ore

 

TH-96-113

 

177

 

4

 

0

 

177

 

0

 

0

 

177

 

 

 

Band-Ore

 

TH-96-114

 

209

 

0

 

0

 

209

 

0

 

0

 

209

 

 

 

Band-Ore

 

TH-96-115

 

211

 

8

 

0

 

211

 

0

 

0

 

211

 

 

 

Band-Ore

 

TH-96-116

 

273

 

11

 

0

 

272

 

0

 

1

 

273

 

 

 

Band-Ore

 

TH-96-117

 

153

 

1

 

0

 

153

 

0

 

0

 

153

 

 

 

Band-Ore

 

TH-96-118

 

202

 

3

 

0

 

202

 

0

 

0

 

202

 

 

 

Band-Ore

 

TH-96-119

 

234

 

16

 

0

 

233

 

0

 

1

 

234

 

 

 

Band-Ore

 

TH-96-120

 

48

 

0

 

0

 

48

 

0

 

0

 

48

 

 

 

Band-Ore

 

TH-96-121

 

248

 

25

 

0

 

248

 

0

 

0

 

248

 

 

 

Band-Ore

 

TH-96-122

 

141

 

3

 

0

 

141

 

0

 

0

 

141

 

 

 

Band-Ore

 

TH-96-123

 

113

 

5

 

0

 

113

 

0

 

0

 

113

 

 

 

Band-Ore

 

TH-96-124

 

236

 

10

 

0

 

236

 

0

 

0

 

236

 

 

 

Band-Ore

 

TH-96-126

 

65

 

19

 

0

 

65

 

0

 

0

 

65

 

 

 

Band-Ore

 

TH-96-127

 

397

 

5

 

0

 

397

 

0

 

0

 

397

 

 

 

Band-Ore

 

TH-97-128

 

86

 

0

 

0

 

86

 

0

 

0

 

86

 

 

 

Band-Ore

 

TH-97-129

 

122

 

4

 

0

 

122

 

0

 

0

 

122

 

 

 

Band-Ore

 

TH-97-130

 

62

 

5

 

0

 

62

 

0

 

0

 

62

 

 

 

Band-Ore

 

TH-97-131

 

176

 

2

 

0

 

176

 

0

 

0

 

176

 

 

 

Band-Ore

 

TH-97-132

 

205

 

7

 

0

 

205

 

0

 

0

 

205

 

 

 

Band-Ore

 

TH-97-133

 

69

 

0

 

0

 

69

 

0

 

0

 

69

 

 

 

Band-Ore

 

TH-97-134

 

38

 

2

 

0

 

38

 

0

 

0

 

38

 

 

 

Band-Ore

 

TH-97-135

 

176

 

16

 

0

 

175

 

0

 

1

 

176

 

 

 

Band-Ore

 

TH-97-136

 

169

 

11

 

0

 

169

 

0

 

0

 

169

 

 

 

Band-Ore

 

TH-97-137

 

98

 

1

 

0

 

98

 

0

 

0

 

98

 

 

 

Band-Ore

 

TH-97-138

 

27

 

0

 

0

 

27

 

0

 

0

 

27

 

 

 

Band-Ore

 

TH-97-139

 

85

 

8

 

0

 

85

 

0

 

0

 

85

 

 

 

Band-Ore

 

TH-97-140

 

34

 

0

 

0

 

34

 

0

 

0

 

34

 

 

 

Band-Ore

 

TH-97-141

 

180

 

5

 

0

 

180

 

0

 

0

 

180

 

 

 

Band-Ore

 

TH-97-142

 

86

 

6

 

0

 

86

 

0

 

0

 

86

 

 

 

Band-Ore

 

TH-97-143

 

133

 

5

 

1

 

132

 

0

 

1

 

133

 

 

 

Band-Ore

 

TH-97-144

 

150

 

11

 

0

 

150

 

0

 

0

 

150

 

 

 

Band-Ore

 

TH-97-145

 

59

 

0

 

0

 

59

 

0

 

0

 

59

 

 

 

Band-Ore

 

TH-97-146

 

180

 

12

 

0

 

180

 

0

 

0

 

180

 

 

 

Band-Ore

 

TH-97-147

 

38

 

4

 

0

 

38

 

0

 

0

 

38

 

 

 

Band-Ore

 

TH-97-148

 

64

 

3

 

0

 

63

 

0

 

1

 

64

 

 

 

Band-Ore

 

TH-97-149

 

116

 

7

 

0

 

116

 

0

 

0

 

116

 

 

 

Band-Ore

 

TH-97-150

 

175

 

12

 

1

 

175

 

0

 

5

 

175

 

 

 

Band-Ore

 

TH-97-151

 

187

 

5

 

0

 

187

 

0

 

2

 

187

 

 

 

Band-Ore

 

TH-97-152

 

5

 

0

 

0

 

5

 

0

 

0

 

5

 

 

 

Band-Ore

 

TH-97-153

 

93

 

2

 

0

 

93

 

0

 

0

 

93

 

 

 

Band-Ore

 

TH-97-154

 

29

 

0

 

0

 

29

 

0

 

0

 

29

 

 

 

Band-Ore

 

TH-97-155

 

49

 

4

 

0

 

49

 

0

 

0

 

49

 

 

 

Band-Ore

 

TH-97-156

 

4

 

0

 

0

 

4

 

0

 

0

 

4

 

 

 

Band-Ore

 

TH-97-157

 

114

 

1

 

0

 

114

 

0

 

0

 

114

 

 

 

Band-Ore

 

TH-97-158

 

137

 

7

 

1

 

137

 

0

 

5

 

137

 

 

 

Band-Ore

 

TH-97-159

 

153

 

15

 

0

 

153

 

0

 

0

 

153

 

 

 

 

186



 

 

 

 

 

Number of

 

Number Assays

 

Number Assays

 

Analysis

 

Analysis

 

Analysis

 

Analysis

 

 

 

 

 

Hole

 

Samples

 

equal to or greater

 

equal to or greater

 

FA aa

 

FA g

 

metallics

 

aa

 

Assays pending

 

Operator

 

Number

 

(excl. QA/QC)

 

than 1 gpt Au

 

than 34.29 gpt Au

 

Au

 

Au

 

Au

 

As

 

(excl. QA/QC)

 

Band-Ore

 

TH-97-160

 

105

 

8

 

0

 

105

 

0

 

0

 

105

 

 

 

Band-Ore

 

TH-97-161

 

75

 

0

 

0

 

75

 

0

 

0

 

75

 

 

 

Band-Ore

 

TH-97-162

 

113

 

2

 

0

 

113

 

0

 

0

 

113

 

 

 

Band-Ore

 

TH-97-163

 

43

 

3

 

0

 

42

 

0

 

1

 

43

 

 

 

Band-Ore

 

TH-97-164

 

114

 

6

 

0

 

114

 

0

 

0

 

114

 

 

 

Band-Ore

 

TH-97-165

 

43

 

3

 

0

 

43

 

0

 

0

 

43

 

 

 

Band-Ore

 

TH-97-166

 

114

 

6

 

0

 

114

 

0

 

0

 

114

 

 

 

Band-Ore

 

TH-97-167

 

78

 

8

 

0

 

78

 

0

 

0

 

78

 

 

 

Band-Ore

 

TH-97-168

 

62

 

2

 

0

 

62

 

0

 

0

 

62

 

 

 

Band-Ore

 

TH-97-169

 

98

 

2

 

0

 

98

 

0

 

0

 

98

 

 

 

Band-Ore

 

TH-97-170

 

164

 

8

 

0

 

164

 

0

 

0

 

164

 

 

 

Band-Ore

 

TH-97-171

 

81

 

3

 

0

 

81

 

0

 

0

 

81

 

 

 

Band-Ore

 

TH-97-172

 

98

 

6

 

0

 

98

 

0

 

0

 

98

 

 

 

Band-Ore

 

TH-97-173

 

83

 

6

 

0

 

83

 

0

 

0

 

83

 

 

 

Band-Ore

 

TH-97-174

 

83

 

6

 

0

 

83

 

0

 

0

 

83

 

 

 

Band-Ore

 

TH-97-175

 

60

 

0

 

0

 

60

 

0

 

0

 

60

 

 

 

Band-Ore

 

TH-97-176

 

49

 

1

 

0

 

49

 

0

 

0

 

49

 

 

 

Band-Ore

 

TH-97-177

 

32

 

2

 

0

 

32

 

0

 

0

 

32

 

 

 

Band-Ore

 

TH-97-178

 

94

 

10

 

0

 

94

 

0

 

0

 

94

 

 

 

Band-Ore

 

TH-97-179

 

154

 

3

 

0

 

154

 

0

 

0

 

154

 

 

 

Band-Ore

 

TH-97-180

 

66

 

2

 

0

 

66

 

0

 

0

 

66

 

 

 

Band-Ore

 

TH-97-181

 

45

 

1

 

0

 

45

 

0

 

0

 

45

 

 

 

Band-Ore

 

TH-97-182

 

206

 

10

 

0

 

206

 

0

 

0

 

206

 

 

 

Band-Ore

 

TH-97-183

 

150

 

8

 

0

 

150

 

0

 

0

 

150

 

 

 

Band-Ore

 

TH-97-184

 

95

 

11

 

0

 

95

 

0

 

0

 

95

 

 

 

Band-Ore

 

TH-97-185

 

104

 

4

 

0

 

104

 

0

 

0

 

104

 

 

 

Band-Ore

 

TH-97-186

 

68

 

5

 

0

 

68

 

0

 

0

 

68

 

 

 

Band-Ore

 

TH-97-187

 

53

 

0

 

0

 

53

 

0

 

0

 

53

 

 

 

Band-Ore

 

TH-97-188

 

137

 

11

 

0

 

137

 

0

 

0

 

137

 

 

 

Band-Ore

 

TH-97-189

 

60

 

5

 

0

 

60

 

0

 

0

 

60

 

 

 

Band-Ore

 

TH-97-190

 

43

 

3

 

0

 

43

 

0

 

0

 

43

 

 

 

Band-Ore

 

TH-97-191

 

244

 

4

 

0

 

244

 

0

 

0

 

244

 

 

 

Band-Ore

 

TH-97-192

 

16

 

1

 

0

 

16

 

0

 

0

 

16

 

 

 

Band-Ore

 

TH-97-193

 

45

 

7

 

1

 

45

 

0

 

0

 

45

 

 

 

Band-Ore

 

TH-97-194

 

79

 

6

 

0

 

79

 

0

 

0

 

79

 

 

 

Band-Ore

 

TH-97-195

 

181

 

12

 

0

 

181

 

0

 

0

 

181

 

 

 

Band-Ore

 

TH-97-196

 

62

 

1

 

0

 

62

 

0

 

0

 

62

 

 

 

Band-Ore

 

TH-97-197

 

75

 

1

 

0

 

75

 

0

 

0

 

75

 

 

 

Band-Ore

 

TH-97-198

 

21

 

1

 

0

 

21

 

0

 

0

 

21

 

 

 

Band-Ore

 

TH-97-199

 

72

 

3

 

0

 

72

 

0

 

0

 

72

 

 

 

Band-Ore

 

TH-97-200

 

114

 

5

 

0

 

114

 

0

 

0

 

114

 

 

 

Band-Ore

 

TH-97-201

 

147

 

5

 

0

 

147

 

0

 

0

 

147

 

 

 

Band-Ore

 

TH-97-202

 

82

 

2

 

0

 

82

 

0

 

0

 

82

 

 

 

Band-Ore

 

TH-97-203

 

87

 

0

 

0

 

87

 

0

 

0

 

87

 

 

 

Band-Ore

 

TH-97-204

 

243

 

4

 

0

 

243

 

0

 

0

 

243

 

 

 

Band-Ore

 

TH-97-205

 

230

 

9

 

0

 

230

 

0

 

0

 

230

 

 

 

Band-Ore

 

TH-97-206

 

88

 

2

 

0

 

88

 

0

 

0

 

88

 

 

 

Band-Ore

 

TH-97-207

 

61

 

0

 

0

 

61

 

0

 

0

 

61

 

 

 

Band-Ore

 

TH-97-208

 

118

 

4

 

0

 

118

 

0

 

0

 

118

 

 

 

Band-Ore

 

TH-97-209

 

192

 

8

 

0

 

192

 

0

 

0

 

192

 

 

 

Band-Ore

 

TH-97-210

 

147

 

7

 

0

 

147

 

0

 

0

 

147

 

 

 

Band-Ore

 

TH-97-211

 

124

 

3

 

0

 

124

 

0

 

0

 

124

 

 

 

Band-Ore

 

TH-97-212

 

77

 

0

 

0

 

77

 

0

 

0

 

77

 

 

 

Band-Ore

 

TH-97-213

 

200

 

7

 

0

 

200

 

0

 

0

 

200

 

 

 

Band-Ore

 

TH-97-214

 

79

 

2

 

0

 

79

 

0

 

0

 

79

 

 

 

Band-Ore

 

TH-97-215

 

179

 

13

 

0

 

179

 

0

 

0

 

179

 

 

 

Band-Ore

 

TH-97-216

 

130

 

4

 

0

 

130

 

0

 

0

 

130

 

 

 

Band-Ore

 

TH-97-217

 

135

 

5

 

0

 

135

 

0

 

0

 

135

 

 

 

Band-Ore

 

TH-97-218

 

159

 

8

 

0

 

159

 

0

 

0

 

159

 

 

 

Band-Ore

 

TH-97-219

 

143

 

2

 

0

 

143

 

0

 

0

 

143

 

 

 

Band-Ore

 

TH-97-220

 

106

 

3

 

0

 

106

 

0

 

0

 

106

 

 

 

Band-Ore

 

TH-97-221

 

339

 

3

 

0

 

339

 

0

 

0

 

339

 

 

 

Band-Ore

 

TH-97-222

 

312

 

7

 

1

 

312

 

0

 

0

 

312

 

 

 

Band-Ore

 

TH-97-223

 

284

 

10

 

1

 

284

 

0

 

0

 

284

 

 

 

Band-Ore

 

TH-97-224

 

112

 

2

 

0

 

112

 

0

 

0

 

112

 

 

 

Band-Ore

 

TH-97-225

 

100

 

4

 

1

 

100

 

0

 

0

 

100

 

 

 

Band-Ore

 

TH-97-226

 

55

 

4

 

0

 

55

 

0

 

0

 

55

 

 

 

Band-Ore

 

TH-97-227

 

40

 

6

 

0

 

40

 

0

 

0

 

40

 

 

 

Band-Ore

 

TH-97-228

 

42

 

2

 

0

 

42

 

0

 

0

 

42

 

 

 

Band-Ore

 

TH-97-229

 

55

 

2

 

0

 

55

 

0

 

0

 

55

 

 

 

Band-Ore

 

TH-97-230

 

68

 

4

 

0

 

68

 

0

 

0

 

68

 

 

 

 

187



 

 

 

 

 

Number of

 

Number Assays

 

Number Assays

 

Analysis

 

Analysis

 

Analysis

 

Analysis

 

 

 

 

 

Hole

 

Samples

 

equal to or greater

 

equal to or greater

 

FA aa

 

FA g

 

metallics

 

aa

 

Assays pending

 

Operator

 

Number

 

(excl. QA/QC)

 

than 1 gpt Au

 

than 34.29 gpt Au

 

Au

 

Au

 

Au

 

As

 

(excl. QA/QC)

 

Band-Ore

 

TH-97-231

 

290

 

6

 

0

 

290

 

0

 

0

 

290

 

 

 

Band-Ore

 

TH-97-232

 

362

 

22

 

0

 

362

 

0

 

0

 

362

 

 

 

Band-Ore

 

TH-97-233

 

425

 

10

 

0

 

425

 

0

 

0

 

425

 

 

 

Band-Ore

 

TH-97-234

 

455

 

8

 

1

 

455

 

0

 

0

 

455

 

 

 

Band-Ore

 

TH-97-235

 

148

 

4

 

0

 

148

 

0

 

0

 

148

 

 

 

Band-Ore

 

TH-97-236

 

221

 

7

 

1

 

221

 

0

 

0

 

221

 

 

 

Band-Ore

 

TH-97-237

 

225

 

4

 

0

 

225

 

0

 

0

 

225

 

 

 

Band-Ore

 

TH-97-238

 

162

 

6

 

0

 

162

 

0

 

0

 

162

 

 

 

Band-Ore

 

TH-97-239

 

118

 

6

 

0

 

118

 

0

 

0

 

117

 

 

 

Band-Ore

 

TH-97-240

 

51

 

2

 

0

 

51

 

0

 

0

 

51

 

 

 

Band-Ore

 

TH-97-241

 

41

 

5

 

0

 

41

 

0

 

0

 

41

 

 

 

Band-Ore

 

TH-97-242

 

43

 

2

 

0

 

42

 

0

 

0

 

42

 

 

 

Band-Ore

 

TH-97-243

 

42

 

0

 

0

 

42

 

0

 

0

 

42

 

 

 

Band-Ore

 

TH-97-244

 

25

 

2

 

0

 

25

 

0

 

0

 

25

 

 

 

Band-Ore

 

TH-97-245

 

49

 

1

 

0

 

49

 

0

 

0

 

49

 

 

 

Band-Ore

 

TH-97-246

 

30

 

2

 

0

 

30

 

0

 

0

 

30

 

 

 

Band-Ore

 

TH-97-247

 

30

 

1

 

0

 

30

 

0

 

0

 

30

 

 

 

Band-Ore

 

TH-97-248

 

45

 

5

 

0

 

45

 

0

 

0

 

45

 

 

 

Band-Ore

 

TH-97-249

 

31

 

2

 

0

 

31

 

0

 

0

 

31

 

 

 

Band-Ore

 

TH-97-250

 

53

 

2

 

0

 

53

 

0

 

0

 

53

 

 

 

Band-Ore

 

TH-97-251

 

69

 

5

 

0

 

69

 

0

 

0

 

69

 

 

 

Band-Ore

 

TW-96-01

 

235

 

8

 

0

 

235

 

0

 

0

 

235

 

 

 

Band-Ore

 

TW-96-02

 

78

 

1

 

0

 

78

 

0

 

0

 

78

 

 

 

Band-Ore

 

TW-96-03

 

159

 

2

 

0

 

159

 

0

 

0

 

159

 

 

 

Band-Ore

 

TW-96-04

 

182

 

0

 

0

 

182

 

0

 

0

 

182

 

 

 

Band-Ore

 

TW-96-05

 

176

 

12

 

0

 

176

 

0

 

0

 

176

 

 

 

Band-Ore

 

TW-96-06

 

39

 

0

 

0

 

39

 

0

 

0

 

39

 

 

 

Band-Ore

 

TW-96-07

 

72

 

0

 

0

 

72

 

0

 

0

 

72

 

 

 

Band-Ore

 

TW-96-08

 

157

 

8

 

0

 

157

 

0

 

0

 

157

 

 

 

Band-Ore

 

TW-96-09

 

130

 

0

 

0

 

130

 

0

 

0

 

130

 

 

 

Band-Ore

 

TW-96-10

 

217

 

8

 

0

 

217

 

0

 

0

 

217

 

 

 

Band-Ore

 

TW-96-11

 

223

 

6

 

0

 

223

 

0

 

0

 

223

 

 

 

Band-Ore

 

TW-96-12

 

101

 

9

 

0

 

101

 

0

 

0

 

101

 

 

 

Band-Ore

 

TW-96-13E

 

261

 

18

 

0

 

261

 

0

 

0

 

219

 

 

 

Band-Ore

 

TW-96-14

 

193

 

6

 

0

 

193

 

0

 

0

 

193

 

 

 

Band-Ore

 

TW-96-15

 

181

 

7

 

0

 

181

 

0

 

0

 

181

 

 

 

Band-Ore

 

TW-96-16

 

191

 

9

 

0

 

191

 

0

 

0

 

191

 

 

 

Band-Ore

 

TW-96-17

 

167

 

6

 

0

 

167

 

0

 

0

 

167

 

 

 

Band-Ore

 

TW-96-18

 

249

 

6

 

0

 

249

 

0

 

0

 

249

 

 

 

Band-Ore

 

TW-96-19

 

160

 

9

 

0

 

160

 

0

 

0

 

160

 

 

 

Band-Ore

 

TW-96-20E

 

188

 

11

 

0

 

188

 

0

 

0

 

136

 

 

 

Band-Ore

 

TW-96-21

 

60

 

7

 

0

 

60

 

0

 

0

 

60

 

 

 

Band-Ore

 

TW-96-22

 

40

 

0

 

0

 

40

 

0

 

0

 

40

 

 

 

Band-Ore

 

TW-96-23E

 

180

 

13

 

0

 

180

 

0

 

0

 

117

 

 

 

Band-Ore

 

TW-96-24E

 

95

 

5

 

0

 

95

 

0

 

1

 

58

 

 

 

Band-Ore

 

TW-96-25E

 

169

 

11

 

0

 

169

 

0

 

0

 

94

 

 

 

Band-Ore

 

TW-96-26E

 

94

 

5

 

0

 

94

 

0

 

0

 

40

 

 

 

Band-Ore

 

TW-96-27E

 

61

 

2

 

0

 

61

 

0

 

0

 

25

 

 

 

Band-Ore

 

TW-96-28

 

31

 

0

 

0

 

31

 

0

 

0

 

31

 

 

 

Band-Ore

 

TW-97-29E

 

148

 

15

 

0

 

147

 

0

 

4

 

119

 

 

 

Band-Ore

 

TW-97-30E

 

107

 

4

 

0

 

107

 

0

 

0

 

55

 

 

 

Band-Ore

 

TW-97-31E

 

170

 

4

 

0

 

170

 

0

 

0

 

89

 

 

 

Band-Ore

 

TW-97-32E

 

168

 

16

 

0

 

167

 

0

 

5

 

151

 

 

 

Band-Ore

 

TW-97-33E

 

162

 

10

 

0

 

162

 

1

 

0

 

162

 

 

 

Band-Ore

 

TW-97-34

 

65

 

4

 

0

 

65

 

0

 

0

 

65

 

 

 

Band-Ore

 

TW-97-35

 

35

 

4

 

0

 

35

 

0

 

0

 

35

 

 

 

Band-Ore

 

TW-97-36E

 

213

 

7

 

0

 

213

 

0

 

0

 

165

 

 

 

Band-Ore

 

TW-97-37E

 

188

 

9

 

0

 

188

 

0

 

1

 

119

 

 

 

Band-Ore

 

TW-97-38E

 

144

 

9

 

0

 

144

 

0

 

0

 

91

 

 

 

Band-Ore

 

TW-97-39

 

88

 

6

 

0

 

88

 

0

 

0

 

88

 

 

 

Band-Ore

 

TW-97-40

 

151

 

8

 

0

 

151

 

0

 

0

 

151

 

 

 

Band-Ore

 

TW-97-41

 

137

 

7

 

0

 

137

 

0

 

0

 

137

 

 

 

Band-Ore

 

TW-97-42

 

193

 

8

 

0

 

193

 

0

 

0

 

74

 

 

 

Band-Ore

 

TW-97-43E

 

150

 

14

 

0

 

150

 

0

 

0

 

5

 

 

 

Band-Ore

 

TW-97-44

 

115

 

2

 

0

 

115

 

0

 

0

 

0

 

 

 

Band-Ore

 

TW-97-45E

 

203

 

8

 

0

 

203

 

0

 

0

 

0

 

 

 

Band-Ore

 

TW-97-46E

 

72

 

1

 

0

 

72

 

0

 

0

 

8

 

 

 

Band-Ore

 

TW-97-47E

 

174

 

12

 

0

 

174

 

0

 

0

 

44

 

 

 

Band-Ore

 

TW-97-48E

 

190

 

8

 

0

 

190

 

0

 

0

 

144

 

 

 

Band-Ore

 

TW-97-49

 

48

 

3

 

0

 

48

 

0

 

0

 

48

 

 

 

Band-Ore

 

TW-97-50

 

114

 

3

 

0

 

114

 

0

 

0

 

19

 

 

 

 

188



 

 

 

 

 

Number of

 

Number Assays

 

Number Assays

 

Analysis

 

Analysis

 

Analysis

 

Analysis

 

 

 

 

 

Hole

 

Samples

 

equal to or greater

 

equal to or greater

 

FA aa

 

FA g

 

metallics

 

aa

 

Assays pending

 

Operator

 

Number

 

(excl. QA/QC)

 

than 1 gpt Au

 

than 34.29 gpt Au

 

Au

 

Au

 

Au

 

As

 

(excl. QA/QC)

 

Band-Ore

 

TW-97-51

 

105

 

0

 

0

 

105

 

0

 

0

 

0

 

 

 

Band-Ore

 

TW-97-52E

 

147

 

12

 

0

 

147

 

0

 

0

 

0

 

 

 

Band-Ore

 

TW-97-53

 

53

 

2

 

0

 

53

 

0

 

0

 

0

 

 

 

Band-Ore

 

TW-97-54

 

143

 

3

 

0

 

143

 

0

 

0

 

12

 

 

 

Band-Ore

 

TW-97-55

 

74

 

1

 

0

 

74

 

0

 

0

 

0

 

 

 

Band-Ore

 

TW-97-56

 

0

 

0

 

0

 

0

 

0

 

0

 

0

 

 

 

Band-Ore

 

TW-97-57E

 

43

 

0

 

0

 

43

 

0

 

0

 

0

 

 

 

Band-Ore

 

TW-97-58

 

82

 

0

 

0

 

82

 

0

 

0

 

0

 

 

 

Band-Ore

 

TW-97-59

 

156

 

6

 

0

 

156

 

0

 

0

 

0

 

 

 

Band-Ore

 

TW-97-60

 

109

 

2

 

0

 

109

 

0

 

0

 

109

 

 

 

Band-Ore

 

TW-97-61

 

120

 

1

 

0

 

120

 

0

 

0

 

0

 

 

 

Band-Ore

 

TW-97-62

 

319

 

1

 

0

 

319

 

0

 

0

 

319

 

 

 

Band-Ore

 

TW-97-63

 

199

 

8

 

0

 

199

 

0

 

0

 

199

 

 

 

Band-Ore

 

TW-97-64

 

206

 

15

 

0

 

206

 

0

 

0

 

206

 

 

 

Band-Ore

 

TW-97-65

 

198

 

2

 

0

 

198

 

0

 

0

 

198

 

 

 

Band-Ore

 

TW-97-66

 

148

 

6

 

0

 

148

 

0

 

0

 

148

 

 

 

Band-Ore

 

TW-97-67

 

204

 

3

 

0

 

204

 

0

 

0

 

204

 

 

 

Band-Ore

 

TW-97-68

 

171

 

9

 

0

 

171

 

0

 

0

 

171

 

 

 

Band-Ore

 

TW-97-69

 

208

 

6

 

0

 

208

 

0

 

0

 

208

 

 

 

Band-Ore

 

TW-97-70

 

57

 

7

 

0

 

57

 

0

 

0

 

57

 

 

 

Band-Ore

 

TW-97-71

 

71

 

0

 

0

 

71

 

0

 

0

 

71

 

 

 

Band-Ore

 

TW-97-72

 

57

 

5

 

0

 

57

 

0

 

0

 

57

 

 

 

Band-Ore

 

TW-97-73E

 

155

 

0

 

0

 

155

 

0

 

0

 

65

 

 

 

Band-Ore

 

TW-97-74

 

120

 

4

 

0

 

120

 

0

 

0

 

120

 

 

 

Band-Ore

 

TW-97-75

 

115

 

2

 

0

 

115

 

0

 

0

 

115

 

 

 

Band-Ore

 

TW-97-76

 

47

 

2

 

0

 

47

 

0

 

0

 

47

 

 

 

Band-Ore

 

TW-97-77

 

200

 

1

 

0

 

200

 

0

 

0

 

200

 

 

 

Band-Ore

 

TW-97-78

 

153

 

7

 

0

 

153

 

0

 

0

 

153

 

 

 

Band-Ore

 

TW-97-79

 

149

 

1

 

0

 

149

 

0

 

0

 

149

 

 

 

Band-Ore

 

TW-97-80

 

139

 

0

 

0

 

139

 

0

 

0

 

139

 

 

 

Band-Ore

 

TW-97-81

 

182

 

1

 

0

 

182

 

0

 

0

 

182

 

 

 

Band-Ore

 

TW-97-82

 

140

 

0

 

0

 

140

 

0

 

0

 

140

 

 

 

Band-Ore

 

TW-97-83

 

217

 

4

 

0

 

217

 

0

 

0

 

217

 

 

 

Band-Ore

 

TW-97-84

 

119

 

0

 

0

 

119

 

0

 

0

 

119

 

 

 

Band-Ore

 

TW-97-85

 

95

 

0

 

0

 

95

 

0

 

0

 

95

 

 

 

Band-Ore

 

TW-97-86

 

155

 

5

 

0

 

155

 

0

 

0

 

155

 

 

 

Band-Ore

 

TW-97-87

 

147

 

26

 

0

 

147

 

0

 

0

 

147

 

 

 

Band-Ore

 

TW-97-88

 

149

 

11

 

0

 

149

 

0

 

0

 

149

 

 

 

Band-Ore

 

TW-97-89

 

139

 

20

 

0

 

139

 

0

 

0

 

139

 

 

 

Band-Ore

 

TW-97-90

 

60

 

7

 

0

 

60

 

0

 

0

 

60

 

 

 

Band-Ore

 

TW-98-91

 

86

 

1

 

0

 

86

 

0

 

0

 

86

 

 

 

Band-Ore

 

TW-98-92

 

232

 

7

 

0

 

232

 

0

 

0

 

232

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Totals:

 

121,158

 

4,926

 

47

 

119,476

 

420

 

237

 

85,971

 

1,148

 

 

189



 

APPENDIX 3

 

DIAMOND DRILL HOLES NOT USED IN THE BLOCK MODEL

 

190



 

DIAMOND DRILL HOLES NOT USED IN THE BLOCK MODEL

 

Hole Number

 

Comment1

 

Comment2

EH-96-01

 

Hole does not intersect resource models

 

 

EH-96-02

 

Hole does not intersect resource models

 

 

GS-03-02

 

Hole does not intersect resource models

 

 

GS-03-03

 

Hole does not intersect resource models

 

 

GS-03-04

 

Hole does not intersect resource models

 

 

GS-03-07

 

Hole does not intersect resource models

 

 

GS-03-08

 

Hole does not intersect resource models

 

 

GS-03-09

 

Hole does not intersect resource models

 

 

GS-03-10

 

Hole does not intersect resource models

 

 

GS-03-11

 

Hole does not intersect resource models

 

 

GS-03-12

 

Hole does not intersect resource models

 

 

GS-04-01

 

Hole does not intersect resource models

 

 

GS-04-02

 

Hole does not intersect resource models

 

 

GS-04-03

 

Hole does not intersect resource models

 

 

GS-04-04

 

Hole does not intersect resource models

 

 

GS-04-05

 

Hole does not intersect resource models

 

 

GS-04-06E

 

Hole does not intersect resource models

 

 

GS-05-01

 

Hole does not intersect resource models

 

 

GS-05-02

 

Hole does not intersect resource models

 

 

GS-05-03

 

Hole does not intersect resource models

 

 

GS-05-04

 

Hole does not intersect resource models

 

 

GS-05-05

 

Hole does not intersect resource models

 

 

GS-05-06

 

Hole does not intersect resource models

 

 

GS-05-07

 

Hole does not intersect resource models

 

 

GS-06-02

 

Hole does not intersect resource models

 

 

GS-06-03

 

Hole does not intersect resource models

 

 

GS-06-05

 

Hole does not intersect resource models

 

 

GS-07-08

 

Hole does not intersect resource models

 

 

GS-07-09

 

Hole does not intersect resource models

 

 

GS-07-10

 

Hole does not intersect resource models

 

 

GS-07-13

 

Hole does not intersect resource models

 

 

GS-07-14

 

Hole does not intersect resource models

 

 

GS-07-15

 

Hole does not intersect resource models

 

 

GS-07-16

 

Hole does not intersect resource models

 

 

GS-07-18

 

Hole does not intersect resource models

 

 

GS-07-20

 

Hole does not intersect resource models

 

 

GS-07-21

 

Hole does not intersect resource models

 

 

GS-07-22

 

Hole does not intersect resource models

 

 

GS-07-23

 

Hole does not intersect resource models

 

 

GS-07-24

 

Hole does not intersect resource models

 

 

GS-07-25

 

Hole does not intersect resource models

 

 

GS-07-27

 

Hole does not intersect resource models

 

 

GS-09-36

 

Hole does not intersect resource models

 

 

GS-09-46

 

Hole does not intersect resource models

 

 

GW-03-01

 

Hole does not intersect resource models

 

 

GW-03-02

 

Hole does not intersect resource models

 

 

GW-03-03

 

Hole does not intersect resource models

 

 

GW-03-04

 

Hole does not intersect resource models

 

 

GW-03-05

 

Hole does not intersect resource models

 

 

GW-03-06

 

Hole does not intersect resource models

 

 

GW-03-07

 

Hole does not intersect resource models

 

 

 

191



 

Hole Number

 

Comment1

 

Comment2

GW-03-08

 

Hole does not intersect resource models

 

 

GW-03-09

 

Hole does not intersect resource models

 

 

GW-03-10

 

Hole does not intersect resource models

 

 

GW-03-10A

 

Hole does not intersect resource models

 

 

GW-03-11

 

Hole does not intersect resource models

 

 

GW-03-12

 

Hole does not intersect resource models

 

 

GW-03-13

 

Hole does not intersect resource models

 

 

GW-03-14

 

Hole does not intersect resource models

 

 

GW-03-15

 

Hole does not intersect resource models

 

abandoned in diab @13m

GW-03-16

 

Hole does not intersect resource models

 

 

GW-03-17

 

Hole does not intersect resource models

 

 

GW-03-18

 

Hole does not intersect resource models

 

 

GW-03-19

 

Hole does not intersect resource models

 

 

GW-03-20

 

Hole does not intersect resource models

 

 

GW-03-21

 

Hole does not intersect resource models

 

 

GW-03-21A

 

Hole does not intersect resource models

 

abandoned @26m

GW-03-22

 

Hole does not intersect resource models

 

 

GW-03-23E

 

Hole does not intersect resource models

 

 

GW-03-24

 

Hole does not intersect resource models

 

 

GW-03-25

 

Hole does not intersect resource models

 

abandoned in diabase

GW-03-26

 

Hole does not intersect resource models

 

 

GW-03-27

 

Hole does not intersect resource models

 

 

GW-03-28

 

Hole does not intersect resource models

 

 

GW-03-29

 

Hole does not intersect resource models

 

 

GW-03-30

 

Hole does not intersect resource models

 

 

GW-03-31

 

Hole does not intersect resource models

 

 

GW-03-32

 

Hole does not intersect resource models

 

abandoned in diabase

GW-04-01

 

Hole does not intersect resource models

 

 

GW-04-02

 

Hole does not intersect resource models

 

 

GW-04-03

 

Hole does not intersect resource models

 

 

GW-04-04

 

Hole does not intersect resource models

 

 

GW-04-05

 

Hole does not intersect resource models

 

 

GW-04-06

 

Hole does not intersect resource models

 

 

GW-04-07

 

Hole does not intersect resource models

 

 

GW-04-08

 

Hole does not intersect resource models

 

 

GW-04-09

 

Hole does not intersect resource models

 

 

GW-04-10

 

Hole does not intersect resource models

 

 

GW-04-11

 

Hole does not intersect resource models

 

 

GW-04-12

 

Hole does not intersect resource models

 

 

GW-04-13

 

Hole does not intersect resource models

 

 

GW-04-14

 

Hole does not intersect resource models

 

 

GW-04-15

 

Hole does not intersect resource models

 

 

GW-04-16

 

Hole does not intersect resource models

 

 

GW-04-17

 

Hole does not intersect resource models

 

 

GW-04-18

 

Hole does not intersect resource models

 

 

GW-04-19

 

Hole does not intersect resource models

 

 

GW-04-20

 

Hole does not intersect resource models

 

 

GW-05-01

 

Hole does not intersect resource models

 

 

GW-05-02

 

Hole does not intersect resource models

 

 

GW-05-03

 

Hole does not intersect resource models

 

 

GW-05-04

 

Hole does not intersect resource models

 

 

 

192



 

Hole Number

 

Comment1

 

Comment2

GW-05-05

 

Hole does not intersect resource models

 

 

GW-07-01

 

Hole does not intersect resource models

 

 

GW-07-01A

 

Hole does not intersect resource models

 

abandoned

GW-07-02

 

Hole does not intersect resource models

 

 

GW-07-03

 

Hole does not intersect resource models

 

 

GW-07-04

 

Hole does not intersect resource models

 

 

GW-07-05

 

Hole does not intersect resource models

 

 

GW-07-06

 

Hole does not intersect resource models

 

 

GW-07-07

 

Hole does not intersect resource models

 

 

GW-07-08

 

Hole does not intersect resource models

 

 

GW-07-09

 

Hole does not intersect resource models

 

 

GW-07-10

 

Hole does not intersect resource models

 

 

GW-07-11

 

Hole does not intersect resource models

 

 

GW-07-12

 

Hole does not intersect resource models

 

 

GW-07-13

 

Hole does not intersect resource models

 

 

GW-07-14

 

Hole does not intersect resource models

 

 

GW-07-15

 

Hole does not intersect resource models

 

 

GW-07-16

 

Hole does not intersect resource models

 

 

GW-08-17

 

Hole does not intersect resource models

 

 

GW-08-18

 

Hole does not intersect resource models

 

 

GW-08-18A

 

Hole does not intersect resource models

 

abandoned due to broken rods

GW-08-19

 

Hole does not intersect resource models

 

 

GW-08-21

 

Hole does not intersect resource models

 

 

GW-08-22

 

Hole does not intersect resource models

 

 

GW-08-23

 

Hole does not intersect resource models

 

 

GW-08-25

 

Hole does not intersect resource models

 

 

GW-08-26

 

Hole does not intersect resource models

 

 

GW-08-27

 

Hole does not intersect resource models

 

 

GW-08-29

 

Hole does not intersect resource models

 

 

GW-08-30

 

Hole does not intersect resource models

 

 

GW-08-31

 

Hole does not intersect resource models

 

 

GW-08-35

 

Hole does not intersect resource models

 

 

GW-08-36

 

Hole does not intersect resource models

 

 

GW-08-37

 

Hole does not intersect resource models

 

 

GW-08-38

 

Hole does not intersect resource models

 

 

GW-08-39

 

Hole does not intersect resource models

 

 

GW-08-40

 

Hole does not intersect resource models

 

 

GW-08-41

 

Hole does not intersect resource models

 

 

GW-08-42

 

Hole does not intersect resource models

 

 

GW-08-43

 

Hole does not intersect resource models

 

 

GW-09-46

 

Hole does not intersect resource models

 

 

GW-09-48

 

Hole does not intersect resource models

 

 

GW-09-49

 

Hole does not intersect resource models

 

 

GW-09-50

 

Hole does not intersect resource models

 

 

GW-09-51

 

Hole does not intersect resource models

 

 

GW-09-54

 

Hole does not intersect resource models

 

 

KG-96-01

 

Hole does not intersect resource models

 

 

KG-96-02

 

Hole does not intersect resource models

 

 

KZ-05-01

 

Poor intersection angle

 

 

KZ-05-02

 

Poor intersection angle

 

 

KZ-05-03

 

Poor intersection angle

 

 

 

193



 

Hole Number

 

Comment1

 

Comment2

NW-05-01

 

Hole does not intersect resource models

 

 

NW-05-02

 

Hole does not intersect resource models

 

 

NZ-05-02

 

Poor intersection angle

 

 

NZ-05-04

 

Hole does not intersect resource models

 

 

NZ-05-05

 

Hole does not intersect resource models

 

 

NZ-05-06

 

Hole does not intersect resource models

 

 

NZ-05-07

 

Hole does not intersect resource models

 

 

NZ-05-08

 

Hole does not intersect resource models

 

 

NZ-05-09

 

Hole does not intersect resource models

 

 

NZ-05-10

 

Hole does not intersect resource models

 

 

NZ-05-11

 

Hole does not intersect resource models

 

 

NZ-05-13

 

Poor intersection angle

 

 

RP-09-01

 

Hole does not intersect resource models

 

 

RP-09-02

 

Hole does not intersect resource models

 

 

RP-09-03

 

Hole does not intersect resource models

 

 

RP-09-04

 

Hole does not intersect resource models

 

abandoned in overburden

RP-09-04A

 

Hole does not intersect resource models

 

abandoned in overburden

RP-09-04B

 

Hole does not intersect resource models

 

abandoned in overburden

T-01

 

Hole does not intersect resource models

 

 

T-02

 

Hole does not intersect resource models

 

 

T-03

 

Hole does not intersect resource models

 

hole abandoned in cave

T-04

 

Hole does not intersect resource models

 

 

T-05

 

Hole does not intersect resource models

 

 

T-06

 

Hole does not intersect resource models

 

 

T-07

 

Hole does not intersect resource models

 

 

T-08

 

Hole does not intersect resource models

 

 

T-10

 

Hole does not intersect resource models

 

 

T-16

 

Hole does not intersect resource models

 

 

T-17

 

Hole does not intersect resource models

 

 

T-20

 

Hole does not intersect resource models

 

 

T-21E

 

Hole does not intersect resource models

 

 

T-22R

 

Hole does not intersect resource models

 

 

T-24R

 

Hole does not intersect resource models

 

 

T-25R

 

Hole does not intersect resource models

 

 

T-26

 

Hole does not intersect resource models

 

 

T-27

 

Hole does not intersect resource models

 

 

T-30

 

Hole does not intersect resource models

 

 

T-31

 

Hole does not intersect resource models

 

 

T-32

 

Hole does not intersect resource models

 

 

T-33

 

Hole does not intersect resource models

 

 

T-34

 

Hole does not intersect resource models

 

 

T-35

 

Hole does not intersect resource models

 

 

T-36R

 

Hole does not intersect resource models

 

 

T-37R

 

Hole does not intersect resource models

 

 

T-38

 

Hole does not intersect resource models

 

abandoned @41.74m in diabase

T-39

 

Hole does not intersect resource models

 

 

T-41

 

Hole does not intersect resource models

 

 

T-42

 

Hole does not intersect resource models

 

 

T-43R

 

Hole does not intersect resource models

 

 

T-44

 

Hole does not intersect resource models

 

 

T-48

 

Hole does not intersect resource models

 

 

 

194



 

Hole Number

 

Comment1

 

Comment2

T-50

 

Hole does not intersect resource models

 

 

T-51

 

Hole does not intersect resource models

 

 

T-52

 

Hole does not intersect resource models

 

 

T-53

 

Hole does not intersect resource models

 

 

T-54

 

Hole does not intersect resource models

 

 

T-55

 

Hole does not intersect resource models

 

 

TB-09-01

 

Hole does not intersect resource models

 

 

TB-09-03

 

Hole does not intersect resource models

 

 

TB-09-04

 

Hole does not intersect resource models

 

 

TC-93-01

 

Hole does not intersect resource models

 

 

TH-10-01

 

Hole does not intersect resource models

 

 

TH-10-07

 

Hole does not intersect resource models

 

abandoned due to excessive deviation

TH-10-08

 

Hole does not intersect resource models

 

 

TH-10-11

 

Hole does not intersect resource models

 

 

TH-10-13

 

Hole does not intersect resource models

 

 

TH-10-14

 

Hole does not intersect resource models

 

 

TH-10-16

 

Hole does not intersect resource models

 

abandoned; lost corebarrel

TH-10-22

 

Hole does not intersect resource models

 

 

TH-10-23

 

Hole does not intersect resource models

 

 

TH-10-26A

 

Hole does not intersect resource models

 

abandoned; stuck in wedge #1 @390m

TH-10-28

 

Hole does not intersect resource models

 

 

TH-10-31

 

Hole does not intersect resource models

 

 

TH-10-34

 

Hole does not intersect resource models

 

 

TH-10-37

 

Hole does not intersect resource models

 

abandoned in bedrock; casing broke

TH-10-43

 

Hole does not intersect resource models

 

 

TH-10-45

 

Hole does not intersect resource models

 

 

TH-10-54

 

Hole does not intersect resource models

 

abandoned due to excessive deviation

TH-10-58

 

Hole does not intersect resource models

 

 

TH-10-60

 

Hole does not intersect resource models

 

 

TH-10-61

 

Hole does not intersect resource models

 

 

TH-10-64

 

Hole does not intersect resource models

 

 

TH-10-67

 

Hole does not intersect resource models

 

abandoned due to excessive deviation

TH-10-68

 

Hole does not intersect resource models

 

abandoned due to excessive deviation

TH-10-69

 

Hole does not intersect resource models

 

 

TH-10-70

 

Hole does not intersect resource models

 

 

TH-11-73

 

Hole does not intersect resource models

 

 

TH-11-79

 

Hole does not intersect resource models

 

 

TH-11-80

 

Hole does not intersect resource models

 

 

TH-11-83

 

Hole does not intersect resource models

 

 

TH-11-84

 

Hole does not intersect resource models

 

 

TH-11-86

 

Hole does not intersect resource models

 

 

TH-11-89

 

Hole does not intersect resource models

 

abandoned; excessive deviation

TH-11-90

 

Hole does not intersect resource models

 

abandoned; excessive deviation

TH-11-91

 

Hole does not intersect resource models

 

abandoned; excessive deviation

TH-11-93

 

Hole does not intersect resource models

 

 

TH-11-94

 

Hole does not intersect resource models

 

abandoned; stuck in wedge #2 at 603m

TH-11-94A

 

Hole does not intersect resource models

 

 

TH-11-102

 

Hole does not intersect resource models

 

 

TH-11-107

 

Hole does not intersect resource models

 

 

TH-11-110

 

Hole does not intersect resource models

 

 

TH-11-112

 

Hole does not intersect resource models

 

 

 

195



 

Hole Number

 

Comment1

 

Comment2

TH-11-114

 

Hole does not intersect resource models

 

 

TH-11-117

 

Hole does not intersect resource models

 

 

TH-11-120

 

Hole does not intersect resource models

 

 

TH-11-122

 

Hole does not intersect resource models

 

abandoned; broken casing

TH-11-123

 

Hole does not intersect resource models

 

 

TH-11-125

 

Hole does not intersect resource models

 

 

TH-11-126

 

Hole does not intersect resource models

 

 

TH-11-127

 

Hole does not intersect resource models

 

abandoned; broken casing

TH-11-128

 

Hole does not intersect resource models

 

 

TH-11-129

 

Hole does not intersect resource models

 

 

TH-11-130

 

Hole does not intersect resource models

 

 

TH-11-131

 

Hole does not intersect resource models

 

 

TH-95-01

 

Hole does not intersect resource models

 

 

TH-95-02

 

Hole does not intersect resource models

 

 

TH-95-03

 

Hole does not intersect resource models

 

 

TH-95-04

 

Hole does not intersect resource models

 

 

TH-96-10E

 

Hole does not intersect resource models

 

 

TH-96-11

 

Hole does not intersect resource models

 

 

TH-96-13

 

Hole does not intersect resource models

 

abandoned in diabase

TH-96-15E

 

Hole does not intersect resource models

 

 

TH-96-20

 

Hole does not intersect resource models

 

 

TH-96-26

 

Hole does not intersect resource models

 

 

TH-96-29

 

Hole does not intersect resource models

 

 

TH-96-38

 

Hole does not intersect resource models

 

 

TH-96-40

 

Hole does not intersect resource models

 

 

TH-96-44

 

Hole does not intersect resource models

 

 

TH-96-50

 

Hole does not intersect resource models

 

 

TH-96-53

 

Hole does not intersect resource models

 

 

TH-96-55

 

Hole does not intersect resource models

 

 

TH-96-56

 

Hole does not intersect resource models

 

 

TH-96-57

 

Hole does not intersect resource models

 

 

TH-96-59

 

Hole does not intersect resource models

 

 

TH-96-65

 

Hole does not intersect resource models

 

 

TH-96-67

 

Hole does not intersect resource models

 

 

TH-96-72

 

Hole does not intersect resource models

 

 

TH-96-81

 

Hole does not intersect resource models

 

 

TH-96-90

 

Hole does not intersect resource models

 

 

TH-96-95

 

Hole does not intersect resource models

 

 

TH-96-96

 

Hole does not intersect resource models

 

 

TH-96-98

 

Hole does not intersect resource models

 

 

TH-96-99

 

Hole does not intersect resource models

 

 

TH-96-100

 

Hole does not intersect resource models

 

 

TH-96-104

 

Hole does not intersect resource models

 

 

TH-96-105

 

Hole does not intersect resource models

 

 

TH-96-106

 

Hole does not intersect resource models

 

 

TH-96-108

 

Hole does not intersect resource models

 

 

TH-96-110

 

Hole does not intersect resource models

 

 

TH-96-113

 

Hole does not intersect resource models

 

 

TH-96-114

 

Hole does not intersect resource models

 

 

TH-96-117

 

Hole does not intersect resource models

 

 

TH-96-118

 

Hole does not intersect resource models

 

 

 

196



 

Hole Number

 

Comment1

 

Comment2

TH-96-120

 

Hole does not intersect resource models

 

 

TH-96-122

 

Hole does not intersect resource models

 

 

TH-96-127

 

Hole does not intersect resource models

 

 

TH-97-128

 

Hole does not intersect resource models

 

 

TH-97-130

 

Hole does not intersect resource models

 

 

TH-97-131

 

Hole does not intersect resource models

 

 

TH-97-133

 

Hole does not intersect resource models

 

 

TH-97-134

 

Hole does not intersect resource models

 

 

TH-97-137

 

Hole does not intersect resource models

 

 

TH-97-138

 

Hole does not intersect resource models

 

 

TH-97-140

 

Hole does not intersect resource models

 

 

TH-97-141

 

Hole does not intersect resource models

 

 

TH-97-142

 

Hole does not intersect resource models

 

 

TH-97-145

 

Hole does not intersect resource models

 

 

TH-97-146

 

Hole does not intersect resource models

 

 

TH-97-147

 

Hole does not intersect resource models

 

 

TH-97-148

 

Hole does not intersect resource models

 

 

TH-97-152

 

Hole does not intersect resource models

 

 

TH-97-154

 

Hole does not intersect resource models

 

 

TH-97-155

 

Hole does not intersect resource models

 

 

TH-97-156

 

Hole does not intersect resource models

 

 

TH-97-157

 

Hole does not intersect resource models

 

 

TH-97-166

 

Hole does not intersect resource models

 

 

TH-97-168

 

Hole does not intersect resource models

 

 

TH-97-175

 

Hole does not intersect resource models

 

 

TH-97-177

 

Hole does not intersect resource models

 

 

TH-97-179

 

Hole does not intersect resource models

 

 

TH-97-180

 

Hole does not intersect resource models

 

 

TH-97-181

 

Hole does not intersect resource models

 

 

TH-97-182

 

Hole does not intersect resource models

 

 

TH-97-185

 

Hole does not intersect resource models

 

 

TH-97-186

 

Hole does not intersect resource models

 

 

TH-97-187

 

Hole does not intersect resource models

 

 

TH-97-189

 

Hole does not intersect resource models

 

 

TH-97-191

 

Hole does not intersect resource models

 

 

TH-97-192

 

Hole does not intersect resource models

 

 

TH-97-196

 

Hole does not intersect resource models

 

 

TH-97-197

 

Hole does not intersect resource models

 

 

TH-97-198

 

Hole does not intersect resource models

 

 

TH-97-199

 

Hole does not intersect resource models

 

 

TH-97-202

 

Hole does not intersect resource models

 

 

TH-97-203

 

Hole does not intersect resource models

 

 

TH-97-204

 

Hole does not intersect resource models

 

 

TH-97-206

 

Hole does not intersect resource models

 

 

TH-97-207

 

Hole does not intersect resource models

 

 

TH-97-208

 

Hole does not intersect resource models

 

 

TH-97-211

 

Hole does not intersect resource models

 

 

TH-97-212

 

Hole does not intersect resource models

 

 

TH-97-213

 

Hole does not intersect resource models

 

 

TH-97-214

 

Hole does not intersect resource models

 

 

TH-97-216

 

Hole does not intersect resource models

 

 

 

197



 

Hole Number

 

Comment1

 

Comment2

TH-97-217

 

Hole does not intersect resource models

 

 

TH-97-218

 

Hole does not intersect resource models

 

 

TH-97-219

 

Hole does not intersect resource models

 

 

TH-97-220

 

Hole does not intersect resource models

 

 

TH-97-221

 

Hole does not intersect resource models

 

 

TH-97-224

 

Hole does not intersect resource models

 

 

TH-97-226

 

Hole does not intersect resource models

 

 

TH-97-227

 

Hole does not intersect resource models

 

 

TH-97-228

 

Hole does not intersect resource models

 

 

TH-97-229

 

Hole does not intersect resource models

 

 

TH-97-236

 

Hole does not intersect resource models

 

 

TH-97-240

 

Hole does not intersect resource models

 

 

TH-97-241

 

Hole does not intersect resource models

 

 

TH-97-243

 

Hole does not intersect resource models

 

 

TH-97-244

 

Hole does not intersect resource models

 

 

TH-97-245

 

Hole does not intersect resource models

 

 

TH-97-250

 

Hole does not intersect resource models

 

 

TH-97-251

 

Hole does not intersect resource models

 

 

TW-96-02

 

Hole does not intersect resource models

 

 

TW-96-03

 

Hole does not intersect resource models

 

 

TW-96-04

 

Hole does not intersect resource models

 

 

TW-96-06

 

Hole does not intersect resource models

 

 

TW-96-07

 

Hole does not intersect resource models

 

 

TW-96-08

 

Hole does not intersect resource models

 

 

TW-96-09

 

Hole does not intersect resource models

 

 

TW-96-18

 

Hole does not intersect resource models

 

 

TW-96-21

 

Hole does not intersect resource models

 

 

TW-96-22

 

Hole does not intersect resource models

 

 

TW-96-25E

 

Hole does not intersect resource models

 

 

TW-96-26E

 

Hole does not intersect resource models

 

 

TW-96-27E

 

Hole does not intersect resource models

 

 

TW-96-28

 

Hole does not intersect resource models

 

 

TW-97-29E

 

Hole does not intersect resource models

 

 

TW-97-31E

 

Hole does not intersect resource models

 

 

TW-97-33E

 

Hole does not intersect resource models

 

 

TW-97-34

 

Hole does not intersect resource models

 

 

TW-97-35

 

Hole does not intersect resource models

 

 

TW-97-44

 

Hole does not intersect resource models

 

 

TW-97-45E

 

Hole does not intersect resource models

 

 

TW-97-49

 

Hole does not intersect resource models

 

 

TW-97-50

 

Hole does not intersect resource models

 

 

TW-97-51

 

Hole does not intersect resource models

 

 

TW-97-52E

 

Hole does not intersect resource models

 

 

TW-97-53

 

Hole does not intersect resource models

 

 

TW-97-54

 

Hole does not intersect resource models

 

 

TW-97-55

 

Hole does not intersect resource models

 

 

TW-97-56

 

Hole does not intersect resource models

 

abandoned in diabase

TW-97-57E

 

Hole does not intersect resource models

 

 

TW-97-58

 

Hole does not intersect resource models

 

 

TW-97-60

 

Hole does not intersect resource models

 

 

TW-97-61

 

Hole does not intersect resource models

 

 

 

198



 

Hole Number

 

Comment1

 

Comment2

TW-97-62

 

Hole does not intersect resource models

 

 

TW-97-65

 

Hole does not intersect resource models

 

 

TW-97-66

 

Hole does not intersect resource models

 

 

TW-97-67

 

Hole does not intersect resource models

 

 

TW-97-71

 

Hole does not intersect resource models

 

 

TW-97-75

 

Hole does not intersect resource models

 

 

TW-97-77

 

Hole does not intersect resource models

 

 

TW-97-79

 

Hole does not intersect resource models

 

 

TW-97-80

 

Hole does not intersect resource models

 

 

TW-97-81

 

Hole does not intersect resource models

 

 

TW-97-82

 

Hole does not intersect resource models

 

 

TW-97-84

 

Hole does not intersect resource models

 

 

TW-97-85

 

Hole does not intersect resource models

 

 

TW-97-86

 

Hole does not intersect resource models

 

 

TW-98-91

 

Hole does not intersect resource models

 

 

TW-98-92

 

Hole does not intersect resource models

 

 

 

199



 

APPENDIX 4

 

GOLD RIVER SOLID INTERSECTIONS

 

200



 

Gold River Trend Resource Solid Intersections

 

HOLE-ID

 

FROM

 

TO

 

AU

 

Au Capped

 

Width

 

Zone

 

LOCATIONX

 

LOCATIONY

 

LOCATIONZ

 

 

 

(m)

 

(m)

 

g/t

 

m.g/t

 

(m)

 

 

 

(m)

 

(m)

 

(m)

 

GS-09-37

 

137.00

 

139.00

 

3.30

 

3.30

 

2.00

 

4800

 

461622.18

 

5355102.81

 

9933.38

 

GS-09-38

 

159.11

 

161.03

 

3.05

 

3.05

 

1.92

 

4800

 

461625.09

 

5355135.88

 

9882.67

 

GS-09-39

 

145.70

 

148.00

 

1.57

 

1.57

 

2.30

 

4800

 

461671.49

 

5355094.60

 

9925.81

 

GS-09-41

 

248.80

 

251.00

 

3.12

 

3.12

 

2.20

 

4800

 

461471.93

 

5355171.34

 

9809.73

 

GS-09-42

 

101.00

 

103.00

 

2.09

 

2.09

 

1.99

 

4800

 

461300.86

 

5355094.00

 

9937.42

 

GS-09-43

 

88.80

 

92.50

 

3.85

 

3.85

 

3.70

 

4800

 

461349.04

 

5355098.09

 

9950.86

 

GS-09-45

 

91.00

 

93.00

 

2.32

 

2.32

 

2.00

 

4800

 

461326.06

 

5355096.30

 

9948.08

 

TH-10-02

 

172.80

 

175.00

 

7.16

 

7.16

 

2.20

 

4800

 

461852.23

 

5355111.79

 

9893.38

 

TH-10-17

 

172.00

 

174.00

 

3.84

 

3.84

 

2.00

 

4800

 

461993.90

 

5355043.19

 

9885.42

 

TH-10-19

 

179.80

 

183.00

 

4.19

 

4.19

 

3.20

 

4800

 

461018.26

 

5355157.44

 

9885.43

 

TH-10-21

 

104.01

 

109.01

 

33.45

 

29.01

 

5.00

 

4800

 

461016.73

 

5355147.80

 

9937.70

 

TH-10-25

 

184.50

 

188.00

 

2.23

 

2.23

 

3.50

 

4800

 

460943.36

 

5355189.69

 

9876.32

 

TH-10-29

 

280.00

 

282.40

 

1.33

 

1.33

 

2.40

 

4800

 

460911.17

 

5355210.79

 

9807.52

 

TH-10-30

 

198.00

 

200.00

 

37.72

 

28.23

 

2.00

 

4800

 

461813.40

 

5355073.93

 

9873.42

 

TH-10-33

 

185.95

 

188.00

 

4.89

 

4.89

 

2.05

 

4800

 

461578.95

 

5355120.90

 

9892.44

 

TH-10-36

 

59.85

 

62.00

 

4.63

 

4.63

 

2.15

 

4800

 

461617.35

 

5355107.22

 

9986.41

 

TH-10-38

 

177.50

 

180.00

 

0.19

 

0.19

 

2.50

 

4800

 

461620.45

 

5355119.55

 

9897.77

 

TH-10-40

 

120.99

 

125.00

 

1.70

 

1.70

 

4.00

 

4800

 

461671.90

 

5355094.14

 

9932.53

 

TH-10-46

 

85.50

 

89.20

 

4.65

 

4.65

 

3.70

 

4800

 

461679.24

 

5355090.14

 

9962.39

 

TH-10-49

 

168.00

 

170.59

 

2.94

 

2.94

 

2.60

 

4800

 

461696.71

 

5355096.65

 

9907.20

 

TH-10-51

 

41.40

 

43.70

 

4.71

 

4.71

 

2.30

 

4800

 

461720.05

 

5355099.04

 

9993.41

 

TH-10-52

 

190.10

 

192.10

 

7.18

 

7.18

 

2.00

 

4800

 

461715.33

 

5355119.66

 

9882.28

 

TH-10-56

 

183.30

 

186.40

 

3.69

 

3.69

 

3.10

 

4800

 

461783.82

 

5355072.65

 

9898.12

 

TH-10-57

 

147.50

 

149.80

 

12.36

 

12.36

 

2.30

 

4800

 

461777.45

 

5355062.63

 

9918.85

 

TH-11-103

 

78.40

 

80.90

 

2.82

 

2.82

 

2.50

 

4800

 

461018.84

 

5355135.23

 

9953.04

 

TH-11-105

 

134.00

 

136.00

 

2.82

 

2.82

 

2.00

 

4800

 

461127.10

 

5355152.04

 

9912.25

 

TH-11-108

 

152.99

 

155.70

 

3.27

 

3.27

 

2.70

 

4800

 

461801.65

 

5355061.15

 

9900.47

 

TH-11-72

 

166.60

 

170.10

 

1.27

 

1.27

 

3.50

 

4800

 

461753.75

 

5355070.93

 

9899.42

 

TH-11-81

 

157.30

 

160.00

 

2.61

 

2.61

 

2.70

 

4800

 

462085.91

 

5355048.15

 

9894.40

 

TH-11-87

 

47.65

 

50.00

 

1.24

 

1.24

 

2.34

 

4800

 

461699.58

 

5355078.98

 

9988.90

 

TH-11-88

 

116.15

 

118.80

 

0.70

 

0.70

 

2.65

 

4800

 

461703.73

 

5355093.07

 

9933.45

 

TH-11-95

 

226.30

 

228.50

 

2.33

 

2.33

 

2.20

 

4800

 

461543.67

 

5355119.25

 

9852.78

 

TH-11-97

 

274.00

 

275.95

 

1.37

 

1.37

 

1.95

 

4800

 

461508.02

 

5355162.92

 

9803.43

 

TH-11-99

 

289.58

 

292.60

 

0.00

 

0.00

 

3.02

 

4800

 

461493.20

 

5355171.36

 

9788.69

 

TH-96-09E

 

284.70

 

291.50

 

3.95

 

3.95

 

6.80

 

4800

 

460873.52

 

5355224.18

 

9799.53

 

TH-96-102

 

110.80

 

112.90

 

1.96

 

1.96

 

2.10

 

4800

 

461368.29

 

5355117.68

 

9946.70

 

TH-96-103

 

125.10

 

128.10

 

1.46

 

1.46

 

3.00

 

4800

 

461388.79

 

5355105.08

 

9939.42

 

TH-96-107

 

70.93

 

72.94

 

1.59

 

1.59

 

2.01

 

4800

 

461370.97

 

5355097.24

 

9976.07

 

TH-96-12

 

160.50

 

163.50

 

1.65

 

1.65

 

3.00

 

4800

 

460910.27

 

5355207.36

 

9874.47

 

TH-96-14

 

161.00

 

164.00

 

2.64

 

2.64

 

3.00

 

4800

 

460965.53

 

5355176.30

 

9902.74

 

TH-96-16

 

196.00

 

199.40

 

0.44

 

0.44

 

3.40

 

4800

 

460911.07

 

5355204.30

 

9848.68

 

TH-96-17

 

184.84

 

188.83

 

0.42

 

0.42

 

3.99

 

4800

 

460965.53

 

5355182.13

 

9886.32

 

TH-96-18

 

138.50

 

147.50

 

5.77

 

5.77

 

9.00

 

4800

 

460927.49

 

5355209.33

 

9915.31

 

TH-96-19

 

190.99

 

195.99

 

11.73

 

11.73

 

5.00

 

4800

 

460960.02

 

5355173.71

 

9882.73

 

TH-96-22

 

159.30

 

162.90

 

2.49

 

2.49

 

3.60

 

4800

 

460986.81

 

5355170.77

 

9901.27

 

TH-96-23

 

211.00

 

212.70

 

5.92

 

5.92

 

1.70

 

4800

 

461038.07

 

5355162.36

 

9866.04

 

TH-96-24

 

182.00

 

184.90

 

4.26

 

4.26

 

2.90

 

4800

 

461039.31

 

5355156.59

 

9886.04

 

TH-96-30

 

143.00

 

146.00

 

1.92

 

1.92

 

3.00

 

4800

 

460971.75

 

5355162.11

 

9910.37

 

TH-96-31

 

108.30

 

112.50

 

2.02

 

2.02

 

4.20

 

4800

 

460974.17

 

5355158.04

 

9936.85

 

TH-96-36

 

152.10

 

155.00

 

2.74

 

2.74

 

2.90

 

4800

 

461011.35

 

5355143.98

 

9914.95

 

TH-96-39

 

115.00

 

117.50

 

3.53

 

3.53

 

2.50

 

4800

 

461000.01

 

5355151.71

 

9934.70

 

TH-96-41

 

157.99

 

160.99

 

3.16

 

3.16

 

3.00

 

4800

 

461051.56

 

5355157.15

 

9906.77

 

TH-96-45

 

195.51

 

201.41

 

14.51

 

14.51

 

5.90

 

4800

 

460968.01

 

5355191.32

 

9881.09

 

TH-96-47

 

230.50

 

236.46

 

3.45

 

3.45

 

5.96

 

4800

 

460965.91

 

5355182.84

 

9868.24

 

TH-96-48

 

158.50

 

161.40

 

6.27

 

6.27

 

2.90

 

4800

 

461075.19

 

5355157.54

 

9905.87

 

TH-96-49

 

93.39

 

94.22

 

0.41

 

0.41

 

0.84

 

4800

 

461006.54

 

5355142.45

 

9949.53

 

TH-96-52

 

153.80

 

155.80

 

3.31

 

3.31

 

2.00

 

4800

 

461100.66

 

5355157.16

 

9913.10

 

TH-96-58

 

133.33

 

139.33

 

0.07

 

0.07

 

6.00

 

4800

 

461131.66

 

5355142.56

 

9923.88

 

TH-96-61

 

132.50

 

135.50

 

2.24

 

2.24

 

3.00

 

4800

 

460957.08

 

5355170.45

 

9920.36

 

TH-96-75

 

237.20

 

239.20

 

3.05

 

3.05

 

2.00

 

4800

 

460961.70

 

5355195.69

 

9846.11

 

TH-96-78

 

124.50

 

127.89

 

2.10

 

2.10

 

3.39

 

4800

 

461219.03

 

5355107.25

 

9931.88

 

TH-96-80

 

130.50

 

133.50

 

4.58

 

4.58

 

3.00

 

4800

 

461239.69

 

5355102.50

 

9932.18

 

TH-96-83

 

133.68

 

136.60

 

0.03

 

0.03

 

2.93

 

4800

 

461271.10

 

5355100.80

 

9928.15

 

TH-96-84

 

135.10

 

137.30

 

2.14

 

2.14

 

2.20

 

4800

 

461297.68

 

5355098.36

 

9928.86

 

TH-96-86

 

69.05

 

72.25

 

7.63

 

7.63

 

3.20

 

4800

 

461301.46

 

5355092.16

 

9978.58

 

TH-96-89

 

72.80

 

78.80

 

11.45

 

11.45

 

6.00

 

4800

 

461326.16

 

5355093.01

 

9970.55

 

 

201



 

HOLE-ID

 

FROM

 

TO

 

AU

 

Au Capped

 

Width

 

Zone

 

LOCATIONX

 

LOCATIONY

 

LOCATIONZ

 

 

 

(m)

 

(m)

 

g/t

 

m.g/t

 

(m)

 

 

 

(m)

 

(m)

 

(m)

 

TH-96-92

 

37.50

 

41.90

 

2.84

 

2.84

 

4.40

 

4800

 

461323.41

 

5355091.54

 

9998.45

 

TH-96-93

 

73.29

 

76.79

 

6.02

 

6.02

 

3.50

 

4800

 

461344.51

 

5355095.29

 

9972.00

 

TH-96-97

 

40.60

 

45.20

 

3.15

 

3.15

 

4.60

 

4800

 

461344.65

 

5355092.25

 

9996.09

 

TH-97-129

 

100.00

 

103.30

 

14.30

 

14.30

 

3.30

 

4800

 

461296.07

 

5355094.83

 

9953.22

 

TH-97-132

 

255.00

 

258.00

 

1.58

 

1.58

 

3.00

 

4800

 

461538.82

 

5355137.99

 

9832.25

 

TH-97-136

 

145.50

 

148.50

 

17.86

 

17.86

 

3.00

 

4800

 

461139.60

 

5355140.79

 

9912.68

 

TH-97-143

 

118.50

 

123.89

 

19.96

 

9.29

 

5.39

 

4800

 

461093.14

 

5355156.18

 

9931.15

 

TH-97-144

 

132.50

 

135.50

 

1.15

 

1.15

 

3.00

 

4800

 

461588.35

 

5355106.70

 

9935.40

 

TH-97-150

 

131.30

 

133.55

 

11.58

 

11.58

 

2.25

 

4800

 

461163.57

 

5355138.29

 

9925.12

 

TH-97-171

 

120.10

 

123.10

 

5.66

 

5.66

 

3.00

 

4800

 

461992.11

 

5355024.51

 

9932.87

 

TH-97-194

 

40.50

 

43.50

 

3.65

 

3.65

 

3.00

 

4800

 

461895.38

 

5355076.92

 

9994.02

 

TH-97-215

 

111.23

 

118.30

 

0.19

 

0.19

 

7.07

 

4800

 

461097.23

 

5355156.63

 

9911.44

 

TH-97-215

 

118.30

 

120.85

 

2.83

 

2.83

 

2.55

 

4800

 

461097.31

 

5355154.91

 

9906.94

 

TH-97-225

 

32.00

 

35.00

 

4.35

 

4.35

 

3.00

 

4800

 

461869.44

 

5355083.80

 

10000.06

 

TH-97-230

 

33.50

 

35.60

 

1.72

 

1.72

 

2.10

 

4800

 

461844.08

 

5355058.48

 

9998.04

 

TH-97-235

 

71.40

 

74.00

 

1.24

 

1.24

 

2.60

 

4800

 

461642.47

 

5355101.90

 

9975.87

 

TH-97-238

 

90.50

 

93.50

 

2.54

 

2.54

 

3.00

 

4800

 

461694.43

 

5355088.62

 

9960.16

 

TH-97-246

 

43.80

 

45.80

 

2.14

 

2.14

 

2.00

 

4800

 

462069.31

 

5355025.02

 

9990.15

 

TH-97-247

 

58.20

 

60.75

 

5.20

 

5.20

 

2.55

 

4800

 

462117.87

 

5355017.36

 

9980.24

 

GS-07-28

 

284.00

 

287.00

 

6.51

 

6.51

 

3.00

 

4800_N1

 

461574.11

 

5355180.15

 

9794.10

 

GS-09-29

 

292.00

 

294.00

 

8.63

 

8.63

 

2.00

 

4800_N1

 

461493.47

 

5355196.25

 

9778.39

 

GS-09-30

 

315.30

 

317.19

 

7.53

 

7.53

 

1.90

 

4800_N1

 

461496.93

 

5355197.56

 

9749.36

 

GS-09-31

 

206.80

 

209.19

 

45.02

 

23.76

 

2.39

 

4800_N1

 

461524.13

 

5355188.57

 

9829.19

 

GS-09-34

 

188.29

 

190.70

 

0.93

 

0.93

 

2.41

 

4800_N1

 

461530.16

 

5355184.02

 

9850.70

 

GS-09-35

 

209.19

 

216.29

 

10.45

 

10.38

 

7.11

 

4800_N1

 

461499.56

 

5355193.97

 

9822.84

 

GS-09-37

 

75.00

 

77.90

 

2.25

 

2.25

 

2.90

 

4800_N1

 

461620.95

 

5355148.38

 

9974.72

 

GS-09-39

 

110.00

 

112.99

 

5.38

 

5.38

 

2.99

 

4800_N1

 

461671.83

 

5355121.12

 

9949.19

 

NZ-05-01

 

44.48

 

52.98

 

2.02

 

2.02

 

8.50

 

4800_N1

 

460985.49

 

5355215.53

 

9981.03

 

NZ-05-03

 

63.75

 

69.64

 

5.89

 

5.89

 

5.89

 

4800_N1

 

460998.78

 

5355191.93

 

9968.66

 

NZ-05-03

 

106.58

 

109.91

 

0.35

 

0.35

 

3.32

 

4800_N1

 

461027.62

 

5355193.40

 

9938.80

 

T-23E

 

379.70

 

383.10

 

4.20

 

4.20

 

3.40

 

4800_N1

 

461446.46

 

5355211.39

 

9750.03

 

TH-10-19

 

114.00

 

117.20

 

7.81

 

7.81

 

3.20

 

4800_N1

 

461021.22

 

5355203.48

 

9932.35

 

TH-10-21

 

34.00

 

45.00

 

4.51

 

4.51

 

11.00

 

4800_N1

 

461020.45

 

5355192.79

 

9987.22

 

TH-10-25

 

109.00

 

117.00

 

2.99

 

2.99

 

8.00

 

4800_N1

 

460946.72

 

5355240.09

 

9929.37

 

TH-10-40

 

68.00

 

71.00

 

1.53

 

1.53

 

3.00

 

4800_N1

 

461668.32

 

5355128.61

 

9973.27

 

TH-10-44

 

116.00

 

118.00

 

3.10

 

3.10

 

2.00

 

4800_N1

 

461651.91

 

5355140.19

 

9942.76

 

TH-10-49

 

127.20

 

129.50

 

1.56

 

1.56

 

2.30

 

4800_N1

 

461697.67

 

5355126.67

 

9935.02

 

TH-10-56

 

129.50

 

132.40

 

3.81

 

3.81

 

2.90

 

4800_N1

 

461784.32

 

5355113.40

 

9933.39

 

TH-10-57

 

87.50

 

90.00

 

1.37

 

1.37

 

2.50

 

4800_N1

 

461779.28

 

5355105.69

 

9960.45

 

TH-11-108

 

74.00

 

76.00

 

2.92

 

2.92

 

2.00

 

4800_N1

 

461801.21

 

5355109.80

 

9963.15

 

TH-11-72

 

106.90

 

109.30

 

5.56

 

5.56

 

2.40

 

4800_N1

 

461756.18

 

5355111.92

 

9943.50

 

TH-11-76

 

153.00

 

155.00

 

7.52

 

7.52

 

2.00

 

4800_N1

 

461748.79

 

5355125.60

 

9909.25

 

TH-11-77

 

308.00

 

310.00

 

2.90

 

2.90

 

2.00

 

4800_N1

 

461742.89

 

5355146.16

 

9797.74

 

TH-11-88

 

71.99

 

73.99

 

6.16

 

6.16

 

2.00

 

4800_N1

 

461703.32

 

5355121.16

 

9967.93

 

TH-11-95

 

139.99

 

143.00

 

3.40

 

3.40

 

3.00

 

4800_N1

 

461542.63

 

5355176.83

 

9916.51

 

TH-11-97

 

232.41

 

233.19

 

0.03

 

0.03

 

0.79

 

4800_N1

 

461507.39

 

5355189.99

 

9835.76

 

TH-11-99

 

249.70

 

253.40

 

4.91

 

4.91

 

3.70

 

4800_N1

 

461491.75

 

5355195.85

 

9819.70

 

TH-96-12

 

94.00

 

107.30

 

11.55

 

11.55

 

13.30

 

4800_N1

 

460910.27

 

5355238.16

 

9927.52

 

TH-96-14

 

81.00

 

84.00

 

6.33

 

6.33

 

3.00

 

4800_N1

 

460965.53

 

5355234.06

 

9958.08

 

TH-96-17

 

111.50

 

113.80

 

6.15

 

6.15

 

2.30

 

4800_N1

 

460965.53

 

5355236.37

 

9936.91

 

TH-96-18

 

109.29

 

111.10

 

1.62

 

1.62

 

1.80

 

4800_N1

 

460930.44

 

5355232.71

 

9938.10

 

TH-96-19

 

122.19

 

124.68

 

1.10

 

1.10

 

2.49

 

4800_N1

 

460973.96

 

5355224.45

 

9928.96

 

TH-96-21

 

137.00

 

141.00

 

5.59

 

5.59

 

4.00

 

4800_N1

 

461012.22

 

5355212.90

 

9919.20

 

TH-96-22

 

99.50

 

104.00

 

3.44

 

3.44

 

4.50

 

4800_N1

 

460986.81

 

5355212.74

 

9943.24

 

TH-96-27

 

48.50

 

51.00

 

2.66

 

2.66

 

2.50

 

4800_N1

 

460883.39

 

5355250.92

 

9979.25

 

TH-96-30

 

65.00

 

78.50

 

8.90

 

8.90

 

13.50

 

4800_N1

 

460979.51

 

5355210.62

 

9964.00

 

TH-96-32

 

112.50

 

115.50

 

0.62

 

0.62

 

3.00

 

4800_N1

 

461008.06

 

5355205.53

 

9934.25

 

TH-96-35

 

120.00

 

124.00

 

2.16

 

2.16

 

4.00

 

4800_N1

 

460980.40

 

5355223.73

 

9924.33

 

TH-96-36

 

80.50

 

86.10

 

4.51

 

4.51

 

5.60

 

4800_N1

 

461011.35

 

5355198.18

 

9959.61

 

TH-96-37

 

105.50

 

113.00

 

3.28

 

3.28

 

7.50

 

4800_N1

 

461045.88

 

5355174.63

 

9943.48

 

TH-96-39

 

39.51

 

42.52

 

2.65

 

2.65

 

3.01

 

4800_N1

 

461008.47

 

5355204.46

 

9987.61

 

TH-96-41

 

273.50

 

276.00

 

8.28

 

8.28

 

2.50

 

4800_N1

 

461057.71

 

5355240.58

 

9827.55

 

TH-96-42

 

70.00

 

73.00

 

2.17

 

2.17

 

3.00

 

4800_N1

 

460932.89

 

5355233.76

 

9966.68

 

TH-96-43

 

97.83

 

102.46

 

0.21

 

0.21

 

4.63

 

4800_N1

 

461041.37

 

5355174.43

 

9945.25

 

TH-96-45

 

151.99

 

154.99

 

0.97

 

0.97

 

3.00

 

4800_N1

 

460976.06

 

5355225.82

 

9908.71

 

TH-96-46

 

70.80

 

73.60

 

2.45

 

2.45

 

2.80

 

4800_N1

 

461045.73

 

5355171.27

 

9964.81

 

 

202



 

HOLE-ID

 

FROM

 

TO

 

AU

 

Au Capped

 

Width

 

Zone

 

LOCATIONX

 

LOCATIONY

 

LOCATIONZ

 

 

 

(m)

 

(m)

 

g/t

 

m.g/t

 

(m)

 

 

 

(m)

 

(m)

 

(m)

 

TH-96-47

 

176.00

 

179.00

 

2.21

 

2.21

 

3.00

 

4800_N1

 

460975.61

 

5355229.50

 

9897.45

 

TH-96-48

 

265.70

 

267.50

 

1.68

 

1.68

 

1.80

 

4800_N1

 

461080.85

 

5355231.06

 

9828.85

 

TH-96-61

 

50.00

 

52.20

 

2.14

 

2.14

 

2.20

 

4800_N1

 

460961.35

 

5355228.91

 

9978.90

 

TH-96-66

 

156.50

 

159.00

 

2.92

 

2.92

 

2.50

 

4800_N1

 

461135.07

 

5355212.45

 

9906.22

 

TH-96-69

 

211.85

 

214.00

 

2.31

 

2.31

 

2.15

 

4800_N1

 

461104.72

 

5355228.69

 

9858.76

 

TH-96-71

 

90.70

 

93.10

 

6.44

 

6.44

 

2.40

 

4800_N1

 

461163.71

 

5355204.63

 

9952.77

 

TH-96-74

 

76.99

 

80.09

 

8.00

 

8.00

 

3.10

 

4800_N1

 

461061.66

 

5355168.85

 

9958.82

 

TH-96-75

 

172.40

 

175.00

 

35.34

 

19.33

 

2.60

 

4800_N1

 

460961.88

 

5355241.79

 

9891.22

 

TH-96-79

 

36.40

 

38.50

 

2.15

 

2.15

 

2.10

 

4800_N1

 

461220.17

 

5355119.76

 

9998.14

 

TH-96-82

 

41.00

 

44.00

 

2.26

 

2.26

 

3.00

 

4800_N1

 

461245.16

 

5355114.20

 

9993.70

 

TH-96-85

 

67.80

 

70.40

 

8.81

 

8.81

 

2.60

 

4800_N1

 

461271.61

 

5355097.05

 

9975.45

 

TH-96-94

 

24.50

 

27.20

 

0.90

 

0.90

 

2.70

 

4800_N1

 

461169.95

 

5355174.97

 

10001.67

 

TH-97-132

 

182.40

 

187.00

 

7.15

 

7.15

 

4.60

 

4800_N1

 

461542.07

 

5355186.11

 

9885.42

 

TH-97-144

 

63.63

 

66.88

 

0.02

 

0.02

 

3.25

 

4800_N1

 

461592.34

 

5355155.86

 

9983.29

 

TH-97-150

 

52.70

 

54.70

 

3.60

 

3.60

 

2.00

 

4800_N1

 

461166.95

 

5355193.15

 

9981.47

 

TH-97-158

 

93.00

 

95.90

 

1.32

 

1.32

 

2.90

 

4800_N1

 

461647.46

 

5355136.26

 

9958.44

 

TH-97-162

 

112.04

 

114.72

 

1.18

 

1.18

 

2.68

 

4800_N1

 

461672.50

 

5355125.09

 

9942.59

 

TH-97-169

 

30.50

 

33.51

 

4.05

 

4.05

 

3.00

 

4800_N1

 

461272.81

 

5355096.02

 

10003.19

 

TH-97-170

 

240.60

 

245.28

 

1.16

 

1.16

 

4.67

 

4800_N1

 

461069.38

 

5355241.26

 

9828.80

 

TH-97-173

 

29.90

 

32.90

 

2.04

 

2.04

 

3.00

 

4800_N1

 

461193.72

 

5355120.26

 

10000.23

 

TH-97-188

 

185.00

 

187.50

 

1.24

 

1.24

 

2.50

 

4800_N1

 

461114.52

 

5355221.07

 

9879.85

 

TH-97-200

 

54.00

 

56.00

 

2.24

 

2.24

 

2.00

 

4800_N1

 

460872.54

 

5355254.13

 

9974.82

 

TH-97-209

 

115.20

 

118.70

 

2.44

 

2.44

 

3.50

 

4800_N1

 

461542.63

 

5355171.47

 

9941.44

 

TH-97-222

 

277.50

 

280.59

 

32.09

 

16.83

 

3.10

 

4800_N1

 

461526.16

 

5355189.29

 

9794.90

 

TH-97-223

 

275.00

 

278.70

 

50.46

 

18.69

 

3.70

 

4800_N1

 

461501.59

 

5355194.80

 

9798.40

 

TH-97-232

 

366.59

 

369.99

 

6.86

 

6.86

 

3.40

 

4800_N1

 

461493.24

 

5355204.72

 

9718.54

 

TH-97-237

 

341.00

 

344.00

 

2.40

 

2.40

 

3.00

 

4800_N1

 

461636.45

 

5355181.16

 

9760.58

 

TH-97-242

 

27.00

 

30.00

 

1.88

 

1.88

 

3.00

 

4800_N1

 

461742.51

 

5355101.21

 

10004.26

 

T-09R

 

249.61

 

251.56

 

0.03

 

0.03

 

1.95

 

4800_N2

 

460968.53

 

5355286.52

 

9842.89

 

TH-10-20

 

180.50

 

183.00

 

1.48

 

1.48

 

2.50

 

4800_N2

 

461023.78

 

5355273.50

 

9883.89

 

TH-10-24

 

254.80

 

263.50

 

13.19

 

13.19

 

8.70

 

4800_N2

 

460944.14

 

5355287.65

 

9829.53

 

TH-10-35

 

201.00

 

203.90

 

2.56

 

2.56

 

2.90

 

4800_N2

 

460921.50

 

5355297.61

 

9838.91

 

TH-10-42

 

243.30

 

245.39

 

7.04

 

7.04

 

2.10

 

4800_N2

 

460958.60

 

5355286.70

 

9844.41

 

TH-10-48

 

254.50

 

256.80

 

8.95

 

8.95

 

2.30

 

4800_N2

 

460894.75

 

5355306.57

 

9820.74

 

TH-11-106

 

178.00

 

180.00

 

0.98

 

0.98

 

2.00

 

4800_N2

 

460951.75

 

5355294.52

 

9868.84

 

TH-96-119

 

197.30

 

205.70

 

4.85

 

4.85

 

8.40

 

4800_N2

 

460905.89

 

5355303.69

 

9862.34

 

TH-96-124

 

176.30

 

178.81

 

11.18

 

11.18

 

2.51

 

4800_N2

 

460950.50

 

5355291.35

 

9886.05

 

TH-96-17

 

43.40

 

46.00

 

1.58

 

1.58

 

2.60

 

4800_N2

 

460965.53

 

5355285.08

 

9984.28

 

TH-96-19

 

53.39

 

56.10

 

12.42

 

12.42

 

2.71

 

4800_N2

 

460983.74

 

5355272.86

 

9976.61

 

TH-96-21

 

59.00

 

61.40

 

14.74

 

14.74

 

2.40

 

4800_N2

 

461012.22

 

5355270.46

 

9973.01

 

TH-96-32

 

38.00

 

41.00

 

2.40

 

2.40

 

3.00

 

4800_N2

 

461012.31

 

5355256.97

 

9987.87

 

TH-96-35

 

214.00

 

216.00

 

2.91

 

2.91

 

2.00

 

4800_N2

 

460980.40

 

5355283.58

 

9853.16

 

TH-96-41

 

313.00

 

316.01

 

3.41

 

3.41

 

3.00

 

4800_N2

 

461060.25

 

5355269.06

 

9799.94

 

TH-96-45

 

81.50

 

83.60

 

8.74

 

8.74

 

2.10

 

4800_N2

 

460984.93

 

5355277.58

 

9956.33

 

TH-96-47

 

108.80

 

112.05

 

4.96

 

4.96

 

3.25

 

4800_N2

 

460984.11

 

5355281.72

 

9938.53

 

TH-96-51

 

98.50

 

100.84

 

1.56

 

1.56

 

2.34

 

4800_N2

 

461015.76

 

5355266.72

 

9945.12

 

TH-96-75

 

106.00

 

108.50

 

1.98

 

1.98

 

2.50

 

4800_N2

 

460961.44

 

5355288.95

 

9938.03

 

TH-97-159

 

127.00

 

130.00

 

3.93

 

3.93

 

3.00

 

4800_N2

 

461016.06

 

5355272.92

 

9922.49

 

T-09R

 

100.41

 

103.92

 

3.03

 

3.03

 

3.51

 

4800_N4

 

460968.53

 

5355404.19

 

9933.33

 

T-18E

 

222.78

 

227.38

 

4.63

 

4.63

 

4.60

 

4800_N4

 

460964.88

 

5355394.55

 

9868.48

 

T-19

 

146.85

 

152.40

 

1.39

 

1.39

 

5.55

 

4800_N4

 

460898.64

 

5355438.57

 

9915.24

 

TH-10-27

 

172.20

 

175.00

 

2.70

 

2.70

 

2.80

 

4800_N4

 

460939.04

 

5355419.17

 

9886.05

 

TH-10-39

 

228.80

 

231.00

 

3.33

 

3.33

 

2.20

 

4800_N4

 

460919.53

 

5355441.64

 

9846.56

 

TH-10-48

 

99.00

 

101.30

 

6.65

 

6.65

 

2.30

 

4800_N4

 

460886.88

 

5355410.32

 

9936.25

 

TH-10-50

 

166.00

 

168.00

 

3.18

 

3.18

 

2.00

 

4800_N4

 

460868.13

 

5355448.90

 

9883.92

 

TH-10-55

 

278.00

 

281.00

 

3.59

 

3.59

 

3.00

 

4800_N4

 

460973.84

 

5355415.62

 

9801.74

 

TH-11-101

 

152.65

 

155.69

 

2.28

 

2.28

 

3.03

 

4800_N4

 

460787.32

 

5355432.28

 

9872.37

 

TH-95-08

 

213.50

 

218.00

 

2.65

 

2.65

 

4.50

 

4800_N4

 

460855.31

 

5355437.93

 

9864.18

 

TH-96-126

 

276.90

 

279.90

 

4.58

 

4.58

 

3.00

 

4800_N4

 

460958.26

 

5355421.21

 

9796.63

 

T-11R

 

151.18

 

154.23

 

3.34

 

3.34

 

3.05

 

4800_N5A

 

460732.78

 

5355472.85

 

9898.52

 

T-12

 

113.97

 

116.44

 

0.02

 

0.02

 

2.47

 

4800_N5A

 

460739.53

 

5355467.84

 

9923.99

 

T-13

 

96.50

 

98.73

 

2.29

 

2.29

 

2.23

 

4800_N5A

 

460692.07

 

5355475.46

 

9935.50

 

T-28

 

79.16

 

84.80

 

15.37

 

6.80

 

5.64

 

4800_N5A

 

460763.64

 

5355470.14

 

9953.17

 

T-29

 

118.45

 

121.43

 

3.29

 

3.29

 

2.98

 

4800_N5A

 

460766.78

 

5355476.22

 

9905.66

 

T-49

 

137.35

 

140.30

 

3.25

 

3.25

 

2.95

 

4800_N5A

 

460720.02

 

5355485.91

 

9903.98

 

TH-10-62

 

70.00

 

72.50

 

2.09

 

2.09

 

2.50

 

4800_N5A

 

460738.92

 

5355459.28

 

9960.66

 

 

203



 

HOLE-ID

 

FROM

 

TO

 

AU

 

Au Capped

 

Width

 

Zone

 

LOCATIONX

 

LOCATIONY

 

LOCATIONZ

 

 

 

(m)

 

(m)

 

g/t

 

m.g/t

 

(m)

 

 

 

(m)

 

(m)

 

(m)

 

TH-11-100

 

95.00

 

98.19

 

13.40

 

10.59

 

3.20

 

4800_N5A

 

460743.25

 

5355467.58

 

9924.09

 

TH-11-101

 

58.90

 

62.00

 

2.91

 

2.91

 

3.10

 

4800_N5A

 

460786.68

 

5355473.08

 

9956.74

 

TH-95-05

 

67.10

 

69.80

 

1.74

 

1.74

 

2.70

 

4800_N5A

 

460720.97

 

5355463.48

 

9963.14

 

TH-95-06

 

85.50

 

88.00

 

2.36

 

2.36

 

2.50

 

4800_N5A

 

460720.83

 

5355471.14

 

9933.88

 

TH-95-07

 

115.79

 

118.85

 

0.42

 

0.42

 

3.06

 

4800_N5A

 

460753.31

 

5355469.73

 

9917.00

 

TH-96-116

 

31.14

 

33.05

 

2.98

 

2.98

 

1.91

 

4800_N5A

 

460743.77

 

5355439.08

 

9986.70

 

TH-96-121

 

79.90

 

82.46

 

0.00

 

0.00

 

2.56

 

4800_N5A

 

460713.20

 

5355467.90

 

9953.03

 

TH-96-33

 

107.59

 

110.86

 

0.00

 

0.00

 

3.26

 

4800_N5A

 

460728.18

 

5355470.58

 

9933.77

 

T-11R

 

101.65

 

103.95

 

3.48

 

3.48

 

2.30

 

4800_N5B

 

460732.78

 

5355507.88

 

9934.05

 

T-12

 

71.15

 

73.74

 

11.44

 

11.44

 

2.59

 

4800_N5B

 

460739.53

 

5355496.18

 

9955.99

 

T-13

 

61.79

 

64.00

 

2.30

 

2.30

 

2.21

 

4800_N5B

 

460684.17

 

5355497.18

 

9961.40

 

T-14E

 

110.20

 

113.07

 

0.01

 

0.01

 

2.86

 

4800_N5B

 

460728.72

 

5355502.21

 

9922.42

 

T-15

 

85.60

 

88.79

 

7.92

 

7.92

 

3.19

 

4800_N5B

 

460780.02

 

5355483.72

 

9949.29

 

T-28

 

63.09

 

65.88

 

3.78

 

3.78

 

2.79

 

4800_N5B

 

460763.64

 

5355482.52

 

9965.54

 

T-29

 

97.39

 

100.74

 

2.32

 

2.32

 

3.35

 

4800_N5B

 

460766.78

 

5355486.62

 

9923.74

 

T-40

 

56.59

 

58.82

 

2.05

 

2.05

 

2.23

 

4800_N5B

 

460761.88

 

5355489.34

 

9953.93

 

T-45

 

56.45

 

58.70

 

1.64

 

1.64

 

2.25

 

4800_N5B

 

460806.01

 

5355485.59

 

9972.89

 

T-46

 

80.37

 

82.34

 

6.17

 

6.17

 

1.97

 

4800_N5B

 

460808.80

 

5355486.15

 

9943.02

 

T-47

 

102.69

 

106.95

 

3.42

 

3.42

 

4.26

 

4800_N5B

 

460809.31

 

5355479.80

 

9913.93

 

T-49

 

124.69

 

130.05

 

7.45

 

7.45

 

5.36

 

4800_N5B

 

460720.98

 

5355493.29

 

9912.68

 

TH-10-62

 

38.40

 

50.00

 

6.84

 

6.84

 

11.60

 

4800_N5B

 

460739.08

 

5355478.76

 

9979.43

 

TH-10-63

 

177.00

 

180.00

 

5.28

 

5.28

 

3.00

 

4800_N5B

 

460732.62

 

5355499.68

 

9884.43

 

TH-10-66

 

30.00

 

32.00

 

2.69

 

2.69

 

2.00

 

4800_N5B

 

460785.43

 

5355477.22

 

9989.68

 

TH-11-100

 

53.50

 

61.99

 

4.85

 

4.85

 

8.50

 

4800_N5B

 

460742.19

 

5355484.89

 

9958.85

 

TH-11-101

 

41.60

 

49.99

 

4.15

 

4.15

 

8.39

 

4800_N5B

 

460786.56

 

5355479.39

 

9969.96

 

TH-95-05

 

45.50

 

47.50

 

2.72

 

2.72

 

2.00

 

4800_N5B

 

460720.97

 

5355479.53

 

9978.11

 

TH-95-06

 

61.40

 

63.80

 

1.71

 

1.71

 

2.40

 

4800_N5B

 

460720.83

 

5355482.48

 

9955.20

 

TH-95-07

 

74.50

 

76.95

 

1.41

 

1.41

 

2.45

 

4800_N5B

 

460753.31

 

5355495.21

 

9949.85

 

TH-96-121

 

64.15

 

69.65

 

1.96

 

1.96

 

5.50

 

4800_N5B

 

460715.11

 

5355477.72

 

9963.22

 

TH-96-33

 

78.82

 

81.17

 

0.00

 

0.00

 

2.35

 

4800_N5B

 

460728.18

 

5355491.25

 

9954.44

 

GS-06-01

 

38.70

 

40.40

 

6.73

 

6.73

 

1.70

 

4800_S1

 

461968.76

 

5355004.78

 

9995.79

 

GS-06-07

 

234.00

 

236.70

 

1.89

 

1.89

 

2.70

 

4800_S1

 

461893.31

 

5355083.13

 

9835.52

 

GS-07-11

 

20.00

 

23.70

 

2.49

 

2.49

 

3.70

 

4800_S1

 

461912.32

 

5355012.97

 

10007.99

 

GS-07-12

 

24.50

 

26.50

 

4.92

 

4.92

 

2.00

 

4800_S1

 

461912.74

 

5355012.82

 

10003.80

 

GS-07-17

 

24.50

 

27.50

 

2.09

 

2.09

 

3.00

 

4800_S1

 

461883.87

 

5355015.30

 

10001.61

 

GS-07-19

 

23.90

 

26.00

 

1.77

 

1.77

 

2.10

 

4800_S1

 

461895.78

 

5355021.34

 

10004.01

 

GS-09-40

 

224.20

 

226.20

 

2.80

 

2.80

 

2.00

 

4800_S1

 

461671.30

 

5355106.25

 

9822.06

 

GS-09-44

 

231.70

 

237.50

 

3.59

 

3.59

 

5.80

 

4800_S1

 

461354.96

 

5355113.79

 

9832.00

 

TH-10-02

 

228.75

 

231.10

 

2.24

 

2.24

 

2.35

 

4800_S1

 

461851.94

 

5355071.65

 

9854.29

 

TH-10-03

 

275.70

 

277.85

 

85.95

 

40.12

 

2.15

 

4800_S1

 

461821.54

 

5355084.54

 

9814.42

 

TH-10-05

 

259.50

 

261.50

 

14.93

 

14.93

 

2.00

 

4800_S1

 

461809.79

 

5355082.73

 

9839.20

 

TH-10-15

 

34.90

 

37.00

 

7.36

 

7.36

 

2.10

 

4800_S1

 

461919.18

 

5355015.66

 

9999.52

 

TH-10-20

 

352.25

 

354.50

 

1.36

 

1.36

 

2.25

 

4800_S1

 

461021.60

 

5355150.90

 

9763.80

 

TH-10-29

 

319.75

 

323.20

 

3.01

 

3.01

 

3.45

 

4800_S1

 

460910.27

 

5355182.86

 

9778.51

 

TH-10-30

 

211.49

 

213.71

 

0.01

 

0.01

 

2.22

 

4800_S1

 

461812.81

 

5355064.42

 

9863.71

 

TH-10-32

 

260.56

 

264.49

 

0.01

 

0.01

 

3.93

 

4800_S1

 

460889.85

 

5355166.07

 

9825.23

 

TH-10-41

 

249.10

 

250.90

 

17.54

 

17.54

 

1.80

 

4800_S1

 

461650.57

 

5355108.52

 

9836.85

 

TH-10-52

 

231.80

 

238.20

 

7.64

 

7.64

 

6.40

 

4800_S1

 

461712.68

 

5355087.96

 

9852.05

 

TH-10-56

 

210.80

 

213.00

 

1.14

 

1.14

 

2.20

 

4800_S1

 

461783.74

 

5355052.10

 

9880.53

 

TH-10-57

 

170.00

 

172.00

 

2.72

 

2.72

 

2.00

 

4800_S1

 

461776.52

 

5355046.45

 

9903.46

 

TH-10-59

 

328.00

 

330.99

 

2.20

 

2.20

 

3.00

 

4800_S1

 

461884.17

 

5355091.76

 

9771.68

 

TH-11-103

 

149.00

 

151.00

 

1.48

 

1.48

 

2.00

 

4800_S1

 

461018.90

 

5355093.13

 

9896.68

 

TH-11-104

 

138.00

 

140.00

 

2.71

 

2.71

 

2.00

 

4800_S1

 

461019.00

 

5355080.23

 

9905.80

 

TH-11-105

 

218.00

 

221.40

 

2.74

 

2.74

 

3.40

 

4800_S1

 

461131.22

 

5355098.62

 

9846.65

 

TH-11-108

 

166.70

 

169.00

 

26.66

 

26.66

 

2.30

 

4800_S1

 

461801.62

 

5355052.77

 

9889.89

 

TH-11-111

 

282.00

 

288.00

 

7.50

 

7.50

 

6.00

 

4800_S1

 

462157.22

 

5355051.19

 

9791.49

 

TH-11-113

 

162.90

 

165.00

 

193.55

 

24.44

 

2.10

 

4800_S1

 

461857.70

 

5355059.91

 

9888.71

 

TH-11-116

 

169.00

 

171.00

 

1.79

 

1.79

 

2.00

 

4800_S1

 

462125.34

 

5355017.72

 

9885.48

 

TH-11-118

 

256.30

 

258.40

 

65.29

 

25.53

 

2.10

 

4800_S1

 

462114.56

 

5355052.12

 

9817.81

 

TH-11-119

 

348.00

 

350.00

 

5.64

 

5.64

 

2.00

 

4800_S1

 

462124.92

 

5355071.75

 

9747.26

 

TH-11-121

 

397.00

 

401.50

 

13.15

 

13.15

 

4.50

 

4800_S1

 

462169.08

 

5355076.65

 

9702.28

 

TH-11-71

 

327.00

 

329.00

 

1.09

 

1.09

 

2.00

 

4800_S1

 

461688.88

 

5355134.25

 

9781.47

 

TH-11-77

 

349.90

 

353.60

 

3.53

 

3.53

 

3.70

 

4800_S1

 

461740.01

 

5355114.58

 

9769.07

 

TH-11-78

 

444.00

 

446.40

 

4.15

 

4.15

 

2.40

 

4800_S1

 

461741.40

 

5355161.24

 

9701.35

 

TH-11-81

 

181.00

 

183.80

 

2.02

 

2.02

 

2.80

 

4800_S1

 

462086.09

 

5355032.53

 

9876.50

 

TH-11-85

 

224.71

 

227.01

 

3.26

 

3.26

 

2.30

 

4800_S1

 

462247.73

 

5355018.26

 

9842.21

 

 

204



 

HOLE-ID

 

FROM

 

TO

 

AU

 

Au Capped

 

Width

 

Zone

 

LOCATIONX

 

LOCATIONY

 

LOCATIONZ

 

 

 

(m)

 

(m)

 

g/t

 

m.g/t

 

(m)

 

 

 

(m)

 

(m)

 

(m)

 

TH-11-96

 

168.30

 

175.00

 

4.35

 

4.35

 

6.70

 

4800_S1

 

462162.06

 

5355014.45

 

9885.81

 

TH-96-101

 

57.30

 

60.80

 

4.96

 

4.96

 

3.50

 

4800_S1

 

461944.62

 

5355016.33

 

9981.71

 

TH-96-109

 

261.70

 

263.70

 

7.15

 

7.15

 

2.00

 

4800_S1

 

461437.35

 

5355114.72

 

9836.04

 

TH-96-111

 

275.90

 

278.00

 

4.97

 

4.97

 

2.10

 

4800_S1

 

461459.75

 

5355110.45

 

9821.31

 

TH-96-112

 

287.40

 

291.25

 

11.52

 

11.52

 

3.85

 

4800_S1

 

461488.78

 

5355095.65

 

9817.90

 

TH-96-115

 

336.50

 

339.00

 

2.85

 

2.85

 

2.50

 

4800_S1

 

460822.05

 

5355225.23

 

9751.41

 

TH-96-116

 

330.35

 

332.85

 

2.05

 

2.05

 

2.50

 

4800_S1

 

460727.13

 

5355241.22

 

9762.63

 

TH-96-121

 

358.00

 

361.10

 

4.06

 

4.06

 

3.10

 

4800_S1

 

460661.57

 

5355269.12

 

9765.46

 

TH-96-123

 

192.50

 

195.20

 

2.73

 

2.73

 

2.70

 

4800_S1

 

461137.41

 

5355055.99

 

9884.38

 

TH-96-124

 

343.62

 

346.41

 

0.16

 

0.16

 

2.80

 

4800_S1

 

460931.81

 

5355179.37

 

9762.97

 

TH-96-16

 

253.00

 

256.00

 

1.27

 

1.27

 

3.00

 

4800_S1

 

460911.07

 

5355173.23

 

9801.14

 

TH-96-25

 

259.96

 

262.97

 

0.00

 

0.00

 

3.01

 

4800_S1

 

460857.49

 

5355165.39

 

9843.38

 

TH-96-28E

 

215.20

 

219.20

 

2.79

 

2.79

 

4.00

 

4800_S1

 

460870.99

 

5355178.31

 

9826.35

 

TH-96-30

 

203.00

 

205.30

 

3.49

 

3.49

 

2.30

 

4800_S1

 

460963.41

 

5355122.88

 

9866.21

 

TH-96-31

 

178.50

 

184.70

 

4.51

 

4.51

 

6.20

 

4800_S1

 

460964.83

 

5355110.48

 

9884.72

 

TH-96-39

 

182.00

 

186.20

 

6.12

 

6.12

 

4.20

 

4800_S1

 

460989.54

 

5355101.08

 

9890.80

 

TH-96-49

 

164.00

 

170.70

 

4.15

 

4.15

 

6.70

 

4800_S1

 

461004.70

 

5355090.97

 

9897.05

 

TH-96-51

 

293.00

 

295.40

 

3.42

 

3.42

 

2.40

 

4800_S1

 

461015.76

 

5355129.16

 

9807.56

 

TH-96-54

 

157.30

 

166.30

 

6.52

 

6.52

 

9.00

 

4800_S1

 

460980.85

 

5355094.74

 

9902.08

 

TH-96-60

 

332.00

 

334.40

 

6.42

 

6.42

 

2.40

 

4800_S1

 

461136.90

 

5355142.63

 

9775.23

 

TH-96-61

 

198.30

 

201.50

 

1.30

 

1.30

 

3.20

 

4800_S1

 

460950.55

 

5355122.43

 

9875.76

 

TH-96-62

 

344.00

 

346.20

 

0.47

 

0.47

 

2.20

 

4800_S1

 

461146.64

 

5355148.35

 

9760.32

 

TH-96-63

 

175.00

 

179.14

 

4.92

 

4.92

 

4.14

 

4800_S1

 

460953.76

 

5355112.20

 

9891.74

 

TH-96-64

 

276.50

 

280.09

 

8.53

 

8.53

 

3.59

 

4800_S1

 

461099.33

 

5355123.57

 

9824.37

 

TH-96-66

 

280.20

 

285.00

 

5.29

 

5.29

 

4.80

 

4800_S1

 

461120.29

 

5355116.93

 

9827.36

 

TH-96-68

 

290.90

 

294.10

 

4.64

 

4.64

 

3.20

 

4800_S1

 

461163.62

 

5355108.70

 

9823.67

 

TH-96-69

 

329.07

 

331.21

 

4.85

 

4.85

 

2.13

 

4800_S1

 

461110.94

 

5355149.34

 

9772.73

 

TH-96-70

 

280.40

 

282.71

 

11.71

 

11.71

 

2.30

 

4800_S1

 

461198.86

 

5355111.05

 

9839.30

 

TH-96-73

 

283.20

 

286.57

 

1.86

 

1.86

 

3.36

 

4800_S1

 

461099.35

 

5355128.41

 

9810.33

 

TH-96-75

 

306.50

 

308.50

 

1.73

 

1.73

 

2.00

 

4800_S1

 

460960.23

 

5355145.88

 

9797.96

 

TH-96-76

 

247.50

 

250.60

 

2.68

 

2.68

 

3.10

 

4800_S1

 

461236.67

 

5355107.13

 

9837.01

 

TH-96-77

 

290.50

 

292.50

 

1.92

 

1.92

 

2.00

 

4800_S1

 

460774.83

 

5355194.78

 

9808.58

 

TH-96-78

 

195.50

 

199.50

 

2.37

 

2.37

 

4.00

 

4800_S1

 

461217.62

 

5355056.65

 

9881.67

 

TH-96-79

 

146.30

 

148.30

 

1.78

 

1.78

 

2.00

 

4800_S1

 

461218.86

 

5355043.44

 

9919.14

 

TH-96-80

 

201.20

 

203.10

 

2.01

 

2.01

 

1.90

 

4800_S1

 

461232.82

 

5355051.42

 

9884.60

 

TH-96-82

 

150.50

 

152.50

 

3.46

 

3.46

 

2.00

 

4800_S1

 

461244.27

 

5355038.93

 

9914.87

 

TH-96-87

 

261.50

 

265.00

 

3.74

 

3.74

 

3.50

 

4800_S1

 

460868.87

 

5355160.89

 

9848.49

 

TH-96-88

 

300.50

 

302.60

 

6.66

 

6.66

 

2.10

 

4800_S1

 

460870.22

 

5355197.90

 

9802.12

 

TH-96-91

 

188.00

 

191.00

 

2.26

 

2.26

 

3.00

 

4800_S1

 

461194.81

 

5355061.22

 

9886.83

 

TH-96-94

 

184.50

 

188.55

 

4.22

 

4.22

 

4.05

 

4800_S1

 

461169.95

 

5355061.36

 

9888.06

 

TH-97-135

 

383.60

 

389.00

 

3.10

 

3.10

 

5.40

 

4800_S1

 

461081.99

 

5355179.39

 

9717.07

 

TH-97-136

 

225.60

 

228.60

 

2.79

 

2.79

 

3.00

 

4800_S1

 

461135.15

 

5355087.00

 

9853.50

 

TH-97-143

 

225.20

 

227.20

 

4.96

 

4.96

 

2.00

 

4800_S1

 

461090.95

 

5355082.16

 

9856.71

 

TH-97-149

 

218.00

 

223.20

 

5.69

 

5.69

 

5.20

 

4800_S1

 

461058.49

 

5355089.98

 

9852.47

 

TH-97-150

 

214.37

 

218.70

 

0.02

 

0.02

 

4.33

 

4800_S1

 

461158.07

 

5355080.13

 

9864.61

 

TH-97-151

 

331.80

 

334.20

 

2.88

 

2.88

 

2.40

 

4800_S1

 

461146.99

 

5355147.87

 

9756.00

 

TH-97-153

 

219.65

 

222.50

 

0.25

 

0.25

 

2.85

 

4800_S1

 

461231.62

 

5355085.41

 

9862.48

 

TH-97-159

 

319.40

 

325.00

 

3.77

 

3.77

 

5.60

 

4800_S1

 

461008.59

 

5355141.16

 

9780.85

 

TH-97-160

 

282.50

 

285.00

 

6.07

 

6.07

 

2.50

 

4800_S1

 

461034.00

 

5355129.20

 

9809.01

 

TH-97-163

 

53.00

 

55.50

 

9.94

 

9.94

 

2.50

 

4800_S1

 

461921.00

 

5355018.85

 

9985.44

 

TH-97-164

 

303.50

 

308.00

 

3.69

 

3.69

 

4.50

 

4800_S1

 

461019.62

 

5355135.52

 

9791.05

 

TH-97-165

 

36.30

 

39.30

 

4.84

 

4.84

 

3.00

 

4800_S1

 

461942.89

 

5355009.28

 

9995.47

 

TH-97-167

 

42.00

 

44.50

 

8.83

 

8.83

 

2.50

 

4800_S1

 

461896.67

 

5355026.69

 

9992.89

 

TH-97-170

 

359.90

 

362.90

 

2.43

 

2.43

 

3.00

 

4800_S1

 

461058.65

 

5355165.87

 

9738.07

 

TH-97-172

 

208.20

 

210.90

 

0.98

 

0.98

 

2.70

 

4800_S1

 

461214.78

 

5355092.64

 

9860.84

 

TH-97-173

 

156.90

 

160.10

 

5.46

 

5.46

 

3.20

 

4800_S1

 

461188.03

 

5355032.75

 

9908.28

 

TH-97-174

 

122.00

 

124.00

 

3.99

 

3.99

 

2.00

 

4800_S1

 

461250.87

 

5355011.71

 

9932.67

 

TH-97-176

 

40.80

 

42.84

 

2.38

 

2.38

 

2.04

 

4800_S1

 

461993.76

 

5355003.19

 

9992.33

 

TH-97-178

 

266.00

 

268.00

 

9.69

 

9.69

 

2.00

 

4800_S1

 

461132.70

 

5355141.02

 

9783.49

 

TH-97-183

 

310.00

 

313.60

 

5.28

 

5.28

 

3.60

 

4800_S1

 

461835.90

 

5355094.48

 

9791.27

 

TH-97-184

 

178.00

 

191.60

 

4.20

 

4.20

 

13.60

 

4800_S1

 

461123.79

 

5355078.04

 

9873.32

 

TH-97-188

 

308.00

 

312.00

 

6.14

 

6.14

 

4.00

 

4800_S1

 

461108.19

 

5355137.71

 

9788.65

 

TH-97-190

 

22.48

 

24.50

 

10.89

 

10.89

 

2.02

 

4800_S1

 

461921.09

 

5355010.83

 

10007.95

 

TH-97-193

 

24.20

 

26.40

 

53.67

 

22.78

 

2.20

 

4800_S1

 

461896.40

 

5355016.24

 

10006.71

 

TH-97-195

 

270.87

 

276.59

 

7.23

 

7.23

 

5.72

 

4800_S1

 

461641.40

 

5355109.95

 

9829.01

 

TH-97-200

 

211.80

 

214.00

 

4.81

 

4.81

 

2.20

 

4800_S1

 

460882.94

 

5355146.08

 

9860.16

 

 

205



 

HOLE-ID

 

FROM

 

TO

 

AU

 

Au Capped

 

Width

 

Zone

 

LOCATIONX

 

LOCATIONY

 

LOCATIONZ

 

 

 

(m)

 

(m)

 

g/t

 

m.g/t

 

(m)

 

 

 

(m)

 

(m)

 

(m)

 

TH-97-201

 

256.50

 

259.00

 

4.03

 

4.03

 

2.50

 

4800_S1

 

461482.30

 

5355068.27

 

9844.38

 

TH-97-205

 

354.60

 

359.00

 

2.97

 

2.97

 

4.40

 

4800_S1

 

460897.87

 

5355201.65

 

9725.56

 

TH-97-209

 

267.60

 

269.50

 

3.98

 

3.98

 

1.90

 

4800_S1

 

461540.87

 

5355063.75

 

9834.83

 

TH-97-210

 

232.00

 

234.00

 

1.35

 

1.35

 

2.00

 

4800_S1

 

461448.63

 

5355086.11

 

9860.59

 

TH-97-215

 

205.50

 

209.69

 

1.58

 

1.58

 

4.19

 

4800_S1

 

461099.62

 

5355122.94

 

9824.97

 

TH-97-239

 

275.30

 

280.00

 

2.17

 

2.17

 

4.70

 

4800_S1

 

461703.15

 

5355099.19

 

9830.67

 

GS-07-26

 

94.50

 

96.70

 

2.30

 

2.30

 

2.20

 

4800_S1A

 

461643.20

 

5355075.31

 

9961.46

 

GS-09-37

 

156.90

 

161.00

 

2.69

 

2.69

 

4.10

 

4800_S1A

 

461622.37

 

5355087.21

 

9919.38

 

NZ-05-12

 

191.00

 

193.00

 

12.68

 

12.68

 

2.00

 

4800_S1A

 

461000.23

 

5355154.97

 

9842.45

 

TH-10-25

 

227.00

 

230.00

 

2.27

 

2.27

 

3.00

 

4800_S1A

 

460941.85

 

5355160.57

 

9845.75

 

TH-10-33

 

205.80

 

208.00

 

2.22

 

2.22

 

2.20

 

4800_S1A

 

461578.08

 

5355106.86

 

9878.32

 

TH-10-36

 

124.00

 

126.00

 

2.10

 

2.10

 

2.00

 

4800_S1A

 

461619.57

 

5355061.42

 

9941.65

 

TH-10-40

 

136.60

 

139.50

 

1.89

 

1.89

 

2.90

 

4800_S1A

 

461672.96

 

5355084.31

 

9921.17

 

TH-10-46

 

112.00

 

114.00

 

0.77

 

0.77

 

2.00

 

4800_S1A

 

461678.53

 

5355071.44

 

9944.85

 

TH-10-47

 

54.60

 

58.00

 

10.48

 

10.48

 

3.40

 

4800_S1A

 

461702.22

 

5355053.15

 

9986.96

 

TH-11-87

 

73.20

 

76.40

 

6.00

 

6.00

 

3.20

 

4800_S1A

 

461699.52

 

5355062.29

 

9968.99

 

TH-11-92

 

132.40

 

135.20

 

9.56

 

9.56

 

2.80

 

4800_S1A

 

461643.17

 

5355089.22

 

9922.15

 

TH-96-14

 

216.00

 

218.50

 

1.21

 

1.21

 

2.50

 

4800_S1A

 

460965.53

 

5355136.26

 

9865.43

 

TH-96-17

 

228.70

 

231.00

 

3.92

 

3.92

 

2.30

 

4800_S1A

 

460965.53

 

5355150.18

 

9857.51

 

TH-96-19

 

231.50

 

234.50

 

0.87

 

0.87

 

3.00

 

4800_S1A

 

460950.43

 

5355144.62

 

9857.83

 

TH-96-21

 

235.60

 

237.60

 

3.14

 

3.14

 

2.00

 

4800_S1A

 

461012.22

 

5355141.52

 

9852.63

 

TH-96-24

 

222.00

 

224.00

 

1.71

 

1.71

 

2.00

 

4800_S1A

 

461039.31

 

5355128.63

 

9858.07

 

TH-96-30

 

188.00

 

190.30

 

3.28

 

3.28

 

2.30

 

4800_S1A

 

460965.51

 

5355132.70

 

9877.35

 

TH-96-60

 

309.50

 

312.50

 

0.81

 

0.81

 

3.00

 

4800_S1A

 

461137.70

 

5355157.94

 

9791.28

 

TH-96-68

 

272.50

 

274.60

 

2.60

 

2.60

 

2.10

 

4800_S1A

 

461163.62

 

5355123.52

 

9835.48

 

TH-96-71

 

232.80

 

236.50

 

2.70

 

2.70

 

3.70

 

4800_S1A

 

461172.36

 

5355105.85

 

9850.09

 

TH-96-73

 

247.50

 

250.00

 

1.66

 

1.66

 

2.50

 

4800_S1A

 

461098.78

 

5355153.34

 

9836.47

 

TH-96-76

 

229.40

 

231.80

 

4.96

 

4.96

 

2.40

 

4800_S1A

 

461235.77

 

5355119.79

 

9850.40

 

TH-96-94

 

153.20

 

155.20

 

4.56

 

4.56

 

2.00

 

4800_S1A

 

461169.95

 

5355084.21

 

9910.91

 

TH-97-144

 

165.50

 

168.00

 

2.26

 

2.26

 

2.50

 

4800_S1A

 

461586.27

 

5355083.57

 

9912.31

 

TH-97-150

 

197.00

 

199.00

 

4.06

 

4.06

 

2.00

 

4800_S1A

 

461159.41

 

5355092.93

 

9877.95

 

TH-97-153

 

196.90

 

199.90

 

2.72

 

2.72

 

3.00

 

4800_S1A

 

461233.70

 

5355101.08

 

9878.74

 

TH-97-158

 

152.50

 

157.51

 

18.23

 

13.99

 

5.01

 

4800_S1A

 

461647.86

 

5355094.20

 

9914.88

 

TH-97-172

 

193.00

 

196.90

 

7.19

 

7.19

 

3.90

 

4800_S1A

 

461214.64

 

5355102.22

 

9871.85

 

TH-97-178

 

242.00

 

245.00

 

2.43

 

2.43

 

3.00

 

4800_S1A

 

461132.95

 

5355152.42

 

9804.04

 

TH-97-188

 

280.49

 

282.50

 

6.35

 

6.35

 

2.00

 

4800_S1A

 

461110.07

 

5355156.72

 

9809.81

 

TH-97-235

 

115.30

 

122.10

 

4.39

 

4.39

 

6.80

 

4800_S1A

 

461639.77

 

5355070.64

 

9942.23

 

TH-97-238

 

118.50

 

121.50

 

18.49

 

18.49

 

3.00

 

4800_S1A

 

461693.77

 

5355068.84

 

9940.35

 

GS-07-28

 

351.00

 

353.60

 

5.14

 

5.14

 

2.60

 

4800_S1D

 

461576.52

 

5355137.12

 

9743.06

 

GS-09-32

 

344.00

 

347.00

 

3.57

 

3.57

 

3.00

 

4800_S1D

 

461465.41

 

5355174.34

 

9728.26

 

GS-09-33

 

455.43

 

460.81

 

4.67

 

4.67

 

5.38

 

4800_S1D

 

461472.77

 

5355179.23

 

9616.38

 

T-23E

 

427.92

 

430.41

 

0.00

 

0.00

 

2.48

 

4800_S1D

 

461442.20

 

5355174.56

 

9720.10

 

TH-10-04

 

508.00

 

510.50

 

3.22

 

3.22

 

2.50

 

4800_S1D

 

461464.26

 

5355191.39

 

9578.55

 

TH-10-26

 

683.00

 

686.00

 

2.65

 

2.65

 

3.00

 

4800_S1D

 

461464.68

 

5355278.90

 

9413.55

 

TH-10-26B

 

653.80

 

655.65

 

2.70

 

2.70

 

1.85

 

4800_S1D

 

461455.97

 

5355262.25

 

9465.89

 

TH-10-65

 

646.00

 

648.00

 

3.04

 

3.04

 

2.00

 

4800_S1D

 

461510.93

 

5355278.15

 

9452.27

 

TH-10-65A

 

618.00

 

634.00

 

4.22

 

4.22

 

16.00

 

4800_S1D

 

461513.93

 

5355270.12

 

9483.98

 

TH-10-65B

 

626.00

 

628.80

 

16.06

 

16.06

 

2.80

 

4800_S1D

 

461511.64

 

5355242.80

 

9504.89

 

TH-11-115

 

369.00

 

371.00

 

5.17

 

5.17

 

2.00

 

4800_S1D

 

461399.53

 

5355134.52

 

9702.71

 

TH-11-75

 

691.99

 

694.00

 

2.84

 

2.84

 

2.00

 

4800_S1D

 

461570.23

 

5355254.61

 

9413.65

 

TH-11-75A

 

655.00

 

657.40

 

7.70

 

7.70

 

2.40

 

4800_S1D

 

461567.27

 

5355244.12

 

9469.63

 

TH-97-231

 

404.00

 

406.00

 

2.60

 

2.60

 

2.00

 

4800_S1D

 

461527.83

 

5355151.91

 

9699.71

 

TH-97-232

 

429.40

 

434.40

 

6.30

 

6.30

 

5.00

 

4800_S1D

 

461489.67

 

5355165.00

 

9669.00

 

TH-97-233

 

475.00

 

477.50

 

3.07

 

3.07

 

2.50

 

4800_S1D

 

461511.33

 

5355174.83

 

9610.11

 

TH-97-234

 

484.00

 

486.00

 

24.40

 

24.40

 

2.00

 

4800_S1D

 

461429.02

 

5355195.00

 

9589.35

 

GS-06-04

 

95.80

 

98.10

 

4.19

 

4.19

 

2.30

 

4800_S2

 

462239.76

 

5354962.63

 

9956.17

 

GS-06-06

 

193.00

 

196.00

 

1.65

 

1.65

 

3.00

 

4800_S2

 

462305.36

 

5354979.03

 

9887.94

 

TH-11-116

 

189.00

 

191.00

 

1.61

 

1.61

 

2.00

 

4800_S2

 

462124.98

 

5355004.83

 

9870.19

 

TH-11-74

 

249.90

 

252.00

 

2.12

 

2.12

 

2.10

 

4800_S2

 

462019.98

 

5355026.26

 

9835.67

 

TH-11-81

 

210.00

 

212.50

 

0.93

 

0.93

 

2.50

 

4800_S2

 

462086.10

 

5355013.34

 

9854.96

 

TH-11-82

 

361.20

 

363.50

 

2.87

 

2.87

 

2.30

 

4800_S2

 

462083.53

 

5355050.61

 

9725.80

 

TH-11-85

 

242.11

 

244.63

 

7.63

 

7.63

 

2.52

 

4800_S2

 

462248.32

 

5355007.04

 

9828.78

 

TH-11-96

 

194.40

 

197.00

 

4.73

 

4.73

 

2.60

 

4800_S2

 

462161.42

 

5354998.37

 

9867.94

 

TH-96-70

 

320.50

 

325.50

 

4.36

 

4.36

 

5.00

 

4800_S2

 

461192.40

 

5355077.36

 

9816.05

 

TH-96-71

 

274.85

 

278.68

 

0.00

 

0.00

 

3.82

 

4800_S2

 

461174.91

 

5355076.70

 

9819.79

 

TH-96-94

 

197.95

 

201.00

 

2.37

 

2.37

 

3.05

 

4800_S2

 

461169.95

 

5355052.20

 

9878.90

 

 

206



 

HOLE-ID

 

FROM

 

TO

 

AU

 

Au Capped

 

Width

 

Zone

 

LOCATIONX

 

LOCATIONY

 

LOCATIONZ

 

 

 

(m)

 

(m)

 

g/t

 

m.g/t

 

(m)

 

 

 

(m)

 

(m)

 

(m)

 

TH-97-139

 

157.50

 

160.10

 

1.43

 

1.43

 

2.60

 

4800_S2

 

461167.08

 

5355032.47

 

9906.43

 

TH-97-150

 

240.00

 

242.00

 

5.67

 

5.67

 

2.00

 

4800_S2

 

461156.29

 

5355063.23

 

9847.01

 

TH-97-248

 

153.00

 

159.00

 

3.42

 

3.42

 

6.00

 

4800_S2

 

462042.16

 

5355003.44

 

9912.43

 

TH-97-249

 

185.20

 

188.20

 

8.19

 

8.19

 

3.00

 

4800_S2

 

462235.70

 

5354988.13

 

9890.03

 

GS-09-33

 

499.99

 

502.99

 

1.95

 

1.95

 

3.01

 

4800_S3D

 

461472.26

 

5355155.39

 

9580.16

 

TH-10-04

 

531.65

 

541.35

 

5.33

 

5.33

 

9.70

 

4800_S3D

 

461462.91

 

5355174.29

 

9557.38

 

TH-10-09

 

591.80

 

602.65

 

3.95

 

3.95

 

10.85

 

4800_S3D

 

461462.83

 

5355194.42

 

9508.80

 

TH-10-26

 

769.50

 

773.70

 

23.66

 

14.49

 

4.20

 

4800_S3D

 

461462.66

 

5355218.42

 

9350.96

 

TH-10-26B

 

727.50

 

733.40

 

8.74

 

8.74

 

5.90

 

4800_S3D

 

461453.37

 

5355205.51

 

9415.82

 

TH-10-26C

 

829.99

 

836.00

 

3.37

 

3.37

 

6.01

 

4800_S3D

 

461458.75

 

5355246.91

 

9258.93

 

TH-10-53

 

782.00

 

784.00

 

26.86

 

26.86

 

2.00

 

4800_S3D

 

461670.13

 

5355189.26

 

9347.33

 

TH-10-53A

 

711.50

 

714.00

 

6.11

 

6.11

 

2.50

 

4800_S3D

 

461642.16

 

5355194.45

 

9434.38

 

TH-10-65

 

755.00

 

765.40

 

5.36

 

5.36

 

10.40

 

4800_S3D

 

461507.26

 

5355207.72

 

9363.75

 

TH-10-65A

 

742.00

 

744.00

 

58.19

 

24.98

 

2.00

 

4800_S3D

 

461509.34

 

5355191.85

 

9397.17

 

TH-10-65B

 

698.00

 

699.50

 

11.39

 

11.39

 

1.50

 

4800_S3D

 

461508.90

 

5355190.09

 

9456.89

 

TH-11-109

 

537.00

 

539.00

 

2.70

 

2.70

 

2.00

 

4800_S3D

 

461384.20

 

5355141.15

 

9552.24

 

TH-11-124

 

692.32

 

696.83

 

2.07

 

2.07

 

4.51

 

4800_S3D

 

461291.52

 

5355152.04

 

9423.19

 

TH-11-124A

 

663.00

 

665.00

 

2.91

 

2.91

 

2.00

 

4800_S3D

 

461263.14

 

5355149.68

 

9462.02

 

TH-11-75

 

761.00

 

764.00

 

1.32

 

1.32

 

3.00

 

4800_S3D

 

461562.17

 

5355208.82

 

9362.01

 

TH-11-75A

 

735.00

 

738.00

 

7.38

 

7.38

 

3.00

 

4800_S3D

 

461553.04

 

5355186.62

 

9415.47

 

TH-11-98

 

667.49

 

671.99

 

7.67

 

7.67

 

4.50

 

4800_S3D

 

461365.06

 

5355146.83

 

9463.74

 

TH-97-232

 

453.50

 

463.60

 

3.07

 

3.07

 

10.10

 

4800_S3D

 

461487.70

 

5355148.34

 

9648.29

 

TH-97-234

 

557.00

 

559.70

 

2.70

 

2.70

 

2.70

 

4800_S3D

 

461419.71

 

5355157.30

 

9527.13

 

GW-08-24

 

325.10

 

328.30

 

2.26

 

2.26

 

3.20

 

W1A

 

459406.70

 

5355474.28

 

9732.39

 

GW-08-28

 

356.00

 

359.00

 

12.68

 

12.68

 

3.00

 

W1A

 

459416.52

 

5355458.42

 

9755.39

 

GW-08-32

 

338.20

 

340.40

 

4.03

 

4.03

 

2.20

 

W1A

 

459290.58

 

5355432.46

 

9744.13

 

GW-08-33

 

400.50

 

404.40

 

2.68

 

2.68

 

3.90

 

W1A

 

459283.72

 

5355446.78

 

9694.44

 

GW-08-34

 

453.00

 

455.00

 

1.90

 

1.90

 

2.00

 

W1A

 

459279.53

 

5355474.84

 

9656.64

 

GW-09-52

 

348.00

 

352.00

 

2.92

 

2.92

 

4.00

 

W1A

 

459350.73

 

5355476.59

 

9699.55

 

GW-09-53

 

399.20

 

401.40

 

0.42

 

0.42

 

2.20

 

W1A

 

459376.87

 

5355520.12

 

9638.63

 

TH-10-06

 

181.00

 

186.00

 

5.61

 

5.61

 

5.00

 

W1A

 

459439.51

 

5355418.52

 

9873.73

 

TH-10-18

 

368.00

 

371.30

 

4.04

 

4.04

 

3.30

 

W1A

 

459349.84

 

5355455.23

 

9709.09

 

TW-96-16

 

271.16

 

274.15

 

2.14

 

2.14

 

2.99

 

W1A

 

459494.20

 

5355501.16

 

9772.77

 

TW-96-19

 

232.90

 

235.90

 

3.45

 

3.45

 

3.00

 

W1A

 

459495.66

 

5355476.15

 

9802.88

 

TW-97-30E

 

169.40

 

172.40

 

4.51

 

4.51

 

3.00

 

W1A

 

459499.41

 

5355415.31

 

9886.97

 

TW-97-37E

 

206.50

 

211.00

 

1.73

 

1.73

 

4.50

 

W1A

 

459479.88

 

5355445.54

 

9820.04

 

TW-97-38E

 

162.50

 

167.00

 

1.99

 

1.99

 

4.50

 

W1A

 

459474.07

 

5355421.49

 

9889.34

 

TW-97-39

 

171.50

 

176.00

 

0.69

 

0.69

 

4.50

 

W1A

 

459439.99

 

5355412.86

 

9882.70

 

TW-97-40

 

215.99

 

218.99

 

3.71

 

3.71

 

3.00

 

W1A

 

459440.03

 

5355429.96

 

9816.61

 

TW-97-41

 

243.80

 

249.00

 

4.44

 

4.44

 

5.20

 

W1A

 

459452.29

 

5355444.98

 

9804.15

 

TW-97-42

 

295.00

 

298.00

 

13.96

 

13.96

 

3.00

 

W1A

 

459451.81

 

5355468.77

 

9762.67

 

TW-97-47E

 

152.00

 

155.00

 

3.41

 

3.41

 

3.00

 

W1A

 

459413.59

 

5355424.07

 

9899.43

 

TW-97-48E

 

207.49

 

212.00

 

9.53

 

9.53

 

4.50

 

W1A

 

459416.91

 

5355428.93

 

9825.72

 

TW-97-59

 

239.00

 

242.01

 

5.41

 

5.41

 

3.01

 

W1A

 

459323.80

 

5355418.01

 

9797.91

 

TW-97-63

 

268.40

 

270.99

 

2.39

 

2.39

 

2.60

 

W1A

 

459419.01

 

5355448.60

 

9774.37

 

TW-97-64

 

319.00

 

322.00

 

11.32

 

11.32

 

3.00

 

W1A

 

459343.24

 

5355428.92

 

9727.79

 

TW-97-68

 

204.00

 

207.00

 

3.19

 

3.19

 

3.00

 

W1A

 

459194.41

 

5355400.03

 

9864.46

 

TW-97-69

 

239.50

 

242.60

 

1.65

 

1.65

 

3.10

 

W1A

 

459190.18

 

5355420.91

 

9832.67

 

TW-97-70

 

80.30

 

83.00

 

3.95

 

3.95

 

2.70

 

W1A

 

459416.76

 

5355377.40

 

9950.09

 

TW-97-72

 

129.50

 

132.00

 

8.88

 

8.88

 

2.50

 

W1A

 

459443.46

 

5355391.05

 

9914.82

 

TW-97-73E

 

124.50

 

127.50

 

0.62

 

0.62

 

3.00

 

W1A

 

459464.33

 

5355396.62

 

9916.93

 

TW-97-74

 

219.50

 

221.70

 

3.95

 

3.95

 

2.20

 

W1A

 

459140.86

 

5355394.52

 

9843.64

 

TW-97-76

 

71.00

 

76.30

 

3.86

 

3.86

 

5.30

 

W1A

 

459462.30

 

5355381.38

 

9956.08

 

TW-97-78

 

272.30

 

275.85

 

3.09

 

3.09

 

3.55

 

W1A

 

459076.43

 

5355407.83

 

9805.00

 

TW-97-83

 

204.35

 

207.22

 

0.00

 

0.00

 

2.87

 

W1A

 

459192.45

 

5355405.11

 

9855.20

 

TW-97-87

 

356.20

 

359.20

 

4.80

 

4.80

 

3.00

 

W1A

 

459303.75

 

5355458.63

 

9676.67

 

TW-97-88

 

366.80

 

369.00

 

4.56

 

4.56

 

2.20

 

W1A

 

459258.87

 

5355474.51

 

9662.52

 

TW-97-89

 

418.00

 

421.00

 

3.94

 

3.94

 

3.00

 

W1A

 

459382.42

 

5355544.32

 

9601.50

 

TW-97-90

 

381.00

 

383.00

 

5.26

 

5.26

 

2.00

 

W1A

 

459388.16

 

5355505.27

 

9651.93

 

GS-09-47

 

244.80

 

248.00

 

1.56

 

1.56

 

3.20

 

W1A1

 

459595.39

 

5355460.53

 

9822.74

 

GW-08-44

 

233.00

 

235.00

 

7.63

 

7.63

 

2.00

 

W1A1

 

459587.13

 

5355493.22

 

9806.15

 

GW-09-47

 

282.50

 

284.60

 

3.83

 

3.83

 

2.10

 

W1A1

 

459603.36

 

5355529.80

 

9741.19

 

TW-96-01

 

418.10

 

421.80

 

3.34

 

3.34

 

3.70

 

W1A1

 

459539.78

 

5355520.35

 

9711.28

 

TW-96-13E

 

303.92

 

306.91

 

2.00

 

2.00

 

2.99

 

W1A1

 

459559.44

 

5355529.62

 

9747.79

 

TW-96-14

 

262.70

 

265.71

 

1.37

 

1.37

 

3.01

 

W1A1

 

459563.17

 

5355514.26

 

9776.67

 

TW-96-17

 

220.50

 

225.00

 

8.78

 

8.78

 

4.51

 

W1A1

 

459571.51

 

5355476.85

 

9814.89

 

 

207



 

HOLE-ID

 

FROM

 

TO

 

AU

 

Au Capped

 

Width

 

Zone

 

LOCATIONX

 

LOCATIONY

 

LOCATIONZ

 

 

 

(m)

 

(m)

 

g/t

 

m.g/t

 

(m)

 

 

 

(m)

 

(m)

 

(m)

 

TW-97-32E

 

192.51

 

203.00

 

4.31

 

4.31

 

10.49

 

W1A1

 

459629.23

 

5355480.04

 

9842.87

 

TW-97-36E

 

272.00

 

275.00

 

5.26

 

5.26

 

3.00

 

W1A1

 

459639.94

 

5355479.62

 

9782.63

 

TW-97-46E

 

102.50

 

105.50

 

4.30

 

4.30

 

3.00

 

W1A1

 

459665.42

 

5355413.67

 

9934.87

 

GS-09-47

 

201.95

 

203.07

 

0.07

 

0.07

 

1.12

 

W1B

 

459596.51

 

5355491.50

 

9853.81

 

GW-08-44

 

213.30

 

221.00

 

4.87

 

4.87

 

7.70

 

W1B

 

459587.39

 

5355502.29

 

9820.36

 

GW-08-45

 

163.50

 

166.00

 

4.91

 

4.91

 

2.50

 

W1B

 

459587.31

 

5355480.13

 

9866.29

 

GW-09-47

 

248.00

 

250.40

 

3.83

 

3.83

 

2.40

 

W1B

 

459601.74

 

5355542.96

 

9772.87

 

TH-10-06

 

152.00

 

154.00

 

2.96

 

2.96

 

2.00

 

W1B

 

459435.28

 

5355438.14

 

9896.69

 

TH-10-12

 

213.00

 

215.70

 

0.36

 

0.36

 

2.70

 

W1B

 

459536.21

 

5355470.57

 

9859.99

 

TW-96-01

 

387.90

 

391.00

 

4.08

 

4.08

 

3.10

 

W1B

 

459539.78

 

5355541.92

 

9732.85

 

TW-96-05

 

339.84

 

342.80

 

6.28

 

6.28

 

2.96

 

W1B

 

459539.04

 

5355510.23

 

9779.11

 

TW-96-10

 

295.00

 

297.80

 

0.86

 

0.86

 

2.80

 

W1B

 

459538.82

 

5355486.81

 

9813.36

 

TW-96-11

 

342.80

 

345.60

 

4.86

 

4.86

 

2.80

 

W1B

 

459515.65

 

5355514.46

 

9778.24

 

TW-96-12

 

120.00

 

123.00

 

3.51

 

3.51

 

3.00

 

W1B

 

459546.00

 

5355452.68

 

9921.39

 

TW-96-13E

 

290.01

 

296.01

 

2.54

 

2.54

 

6.00

 

W1B

 

459560.26

 

5355536.32

 

9758.19

 

TW-96-14

 

244.90

 

247.90

 

5.47

 

5.47

 

3.00

 

W1B

 

459563.68

 

5355523.40

 

9791.95

 

TW-96-15

 

250.60

 

252.60

 

1.68

 

1.68

 

2.00

 

W1B

 

459503.32

 

5355489.00

 

9827.16

 

TW-96-16

 

250.55

 

252.55

 

4.03

 

4.03

 

2.00

 

W1B

 

459494.29

 

5355512.22

 

9790.74

 

TW-96-17

 

194.80

 

197.10

 

0.63

 

0.63

 

2.30

 

W1B

 

459570.73

 

5355490.67

 

9837.84

 

TW-96-19

 

209.10

 

212.45

 

3.59

 

3.59

 

3.35

 

W1B

 

459495.86

 

5355487.78

 

9823.45

 

TW-96-20E

 

142.20

 

151.00

 

5.93

 

5.93

 

8.80

 

W1B

 

459568.52

 

5355469.25

 

9880.10

 

TW-96-23E

 

87.90

 

90.70

 

1.10

 

1.10

 

2.80

 

W1B

 

459568.36

 

5355444.25

 

9928.68

 

TW-96-24E

 

43.70

 

46.00

 

7.68

 

7.68

 

2.30

 

W1B

 

459564.52

 

5355416.29

 

9971.21

 

TW-97-37E

 

154.00

 

157.00

 

8.35

 

8.35

 

3.00

 

W1B

 

459474.53

 

5355468.94

 

9867.52

 

TW-97-40

 

157.50

 

160.50

 

1.75

 

1.75

 

3.00

 

W1B

 

459439.23

 

5355459.67

 

9866.97

 

TW-97-47E

 

141.50

 

147.50

 

3.76

 

3.76

 

6.00

 

W1B

 

459413.82

 

5355430.51

 

9905.72

 

TW-97-48E

 

161.00

 

164.00

 

1.41

 

1.41

 

3.00

 

W1B

 

459416.62

 

5355452.66

 

9866.57

 

GW-08-20

 

133.20

 

137.00

 

5.36

 

5.36

 

3.80

 

W1B1

 

459717.02

 

5355473.40

 

9914.37

 

TH-10-10

 

88.00

 

90.20

 

4.10

 

4.10

 

2.20

 

W1B1

 

459714.07

 

5355455.46

 

9940.97

 

TW-97-43E

 

123.50

 

126.50

 

2.61

 

2.61

 

3.00

 

W1B1

 

459670.56

 

5355451.70

 

9919.29

 

 

208


 


 

APPENDIX 5

 

GOLD RIVER QA/QC GRAPHS OF STANDARDS, BLANKS

 

209



 

GRAPHIC

 

GRAPHIC

 

210



 

GRAPHIC

 

GRAPHIC

 

211



 

GRAPHIC

 

GRAPHIC

 

212



 

GRAPHIC

 

GRAPHIC

 

213



 

GRAPHIC

 

GRAPHIC

 

214


 


 

GRAPHIC

 

GRAPHIC

 

215



 

GRAPHIC

 

GRAPHIC

 

216



 

GRAPHIC

 

GRAPHIC

 

217



 

GRAPHIC

 

GRAPHIC

 

218



 

GRAPHIC

 

219


 


 

APPENDIX 6

 

CHECK ASSAY PROGRAM BY LAKE SHORE GOLD CORP. OF PULPS FROM

HISTORICAL DIAMOND DRILL HOLES

 

220



 

CHECK ASSAY PROGRAM BY LSG ON PULPS FROM HISTORICAL DRILL HOLES - GOLD RIVER PROPERTY, Aug 2011

 

 

 

Historical Assays (Swastika Lab.)

 

Check-Assay Results (ALS Chemex -certificate TM11168835)

 

Comparaison

 

Hole No.

 

Original
Sample
No.

 

Au (g/t)

 

Original
Certificate No.
(Swastika Lab)

 

New
Sample
No.

 

Control
Samples

 

Au
FA/AA
gpt

 

Au
FA/GRAV
gpt

 

As
Aqua
Regia/AA
ppm

 

Comment
on QA/QC

 

Chemex
Final
Results
Au gpt

 

Chemex
minus
Swastika
Au gpt

 

Variance
(%)

 

TH-96-12

 

8601

 

1.474

 

6W-0518-RA1

 

L911651

 

 

 

1.315

 

 

 

5260

 

 

 

1.315

 

-0.159

 

-12.091

 

TH-96-12

 

8602

 

0.549

 

6W-0518-RA1

 

L911652

 

 

 

0.543

 

 

 

309

 

 

 

0.543

 

-0.006

 

-1.105

 

TH-96-12

 

8603

 

16.046

 

6W-0518-RA1

 

L911653

 

 

 

>10.0

 

16.8

 

27800

 

 

 

16.800

 

0.754

 

4.488

 

 

 

 

 

 

 

 

 

L911654

 

O-10c

 

6.44

 

 

 

4620

 

passed

 

 

 

 

 

 

 

TH-96-12

 

8604

 

24.377

 

6W-0518-RA1

 

L911655

 

 

 

>10.0

 

24.6

 

33900

 

 

 

24.600

 

0.223

 

0.907

 

TH-96-12

 

8605

 

14.640

 

6W-0518-RA1

 

L911656

 

 

 

>10.0

 

14.75

 

26700

 

 

 

14.750

 

0.110

 

0.746

 

TH-96-12

 

8606

 

18.857

 

6W-0518-RA1

 

L911657

 

 

 

>10.0

 

18.9

 

31700

 

 

 

18.900

 

0.043

 

0.228

 

TH-96-12

 

8607

 

6.240

 

6W-0518-RA1

 

L911658

 

 

 

6.57

 

 

 

19100

 

 

 

6.570

 

0.330

 

5.023

 

TH-96-12

 

8608

 

0.583

 

6W-0518-RA1

 

L911659

 

 

 

0.481

 

 

 

3970

 

 

 

0.481

 

-0.102

 

-21.206

 

TH-96-12

 

8609

 

29.589

 

6W-0518-RA1

 

L911660

 

 

 

>10.0

 

29.6

 

25100

 

 

 

29.600

 

0.011

 

0.037

 

TC10-85B

 

K620985

 

0.007

 

 

 

L911661

 

Blank

 

0.012

 

 

 

6

 

passed

 

 

 

 

 

 

 

TH-96-12

 

8610

 

15.840

 

6W-0518-RA1

 

L911662

 

 

 

>10.0

 

15.7

 

25800

 

 

 

15.700

 

-0.140

 

-0.892

 

TH-96-12

 

8611

 

14.949

 

6W-0518-RA1

 

L911663

 

 

 

>10.0

 

15

 

25000

 

 

 

15.000

 

0.051

 

0.340

 

TH-96-12

 

8612

 

0.754

 

6W-0533-RA1

 

L911664

 

 

 

0.804

 

 

 

3510

 

 

 

0.804

 

0.050

 

6.219

 

TH-96-12

 

8653

 

1.886

 

6W-0533-RA1

 

L911665

 

 

 

1.995

 

 

 

8340

 

 

 

1.995

 

0.109

 

5.464

 

TH-96-30

 

7476

 

0.994

 

6W-1370-RA1

 

L911666

 

 

 

1.04

 

 

 

220

 

 

 

1.040

 

0.046

 

4.423

 

TH-96-30

 

7477

 

1.611

 

6W-1370-RA1

 

L911667

 

 

 

1.505

 

 

 

97

 

 

 

1.505

 

-0.106

 

-7.043

 

TH-96-30

 

7478

 

1.166

 

6W-1370-RA1

 

L911668

 

 

 

1.145

 

 

 

82

 

 

 

1.145

 

-0.021

 

-1.834

 

TH-96-30

 

7479

 

4.183

 

6W-1370-RA1

 

L911669

 

 

 

4.45

 

 

 

137

 

 

 

4.450

 

0.267

 

6.000

 

TH-96-30

 

7480

 

10.629

 

6W-1370-RA1

 

L911670

 

 

 

>10.0

 

10.7

 

254

 

 

 

10.700

 

0.071

 

0.664

 

TH-96-30

 

7481

 

0.549

 

6W-1370-RA1

 

L911671

 

 

 

0.544

 

 

 

360

 

 

 

0.544

 

-0.005

 

-0.919

 

TH-96-30

 

7482

 

1.474

 

6W-1370-RA1

 

L911672

 

 

 

1.415

 

 

 

3740

 

 

 

1.415

 

-0.059

 

-4.170

 

TH-96-30

 

7483

 

9.669

 

6W-1370-RA1

 

L911673

 

 

 

9.1

 

 

 

201

 

 

 

9.100

 

-0.569

 

-6.253

 

TH-96-30

 

7484

 

26.606

 

6W-1370-RA1

 

L911674

 

 

 

>10.0

 

27.9

 

6860

 

 

 

27.900

 

1.294

 

4.638

 

TC10-85A

 

H868396

 

0.003

 

 

 

L911675

 

Blank

 

<0.005

 

 

 

<5

 

passed

 

 

 

 

 

 

 

TH-96-30

 

7485

 

7.406

 

6W-1370-RA1

 

L911676

 

 

 

7.54

 

 

 

134

 

 

 

7.540

 

0.134

 

1.777

 

TH-96-30

 

7486

 

7.131

 

6W-1370-RA1

 

L911677

 

 

 

6.63

 

 

 

888

 

 

 

6.630

 

-0.501

 

-7.557

 

TH-96-30

 

7487

 

12.480

 

6W-1370-RA1

 

L911678

 

 

 

>10.0

 

12.5

 

9350

 

 

 

12.500

 

0.020

 

0.160

 

TH-96-30

 

7488

 

0.651

 

6W-1370-RA1

 

L911679

 

 

 

0.669

 

 

 

466

 

 

 

0.669

 

0.018

 

2.691

 

TH-96-30

 

7489

 

0.171

 

6W-1370-RA1

 

L911680

 

 

 

0.169

 

 

 

225

 

 

 

0.169

 

-0.002

 

-1.183

 

TH-96-49

 

90397

 

0.549

 

6W-2098-RA1

 

L911681

 

 

 

0.553

 

 

 

2170

 

 

 

0.553

 

0.004

 

0.723

 

TH-96-49

 

90398

 

0.103

 

6W-2098-RA1

 

L911682

 

 

 

0.099

 

 

 

925

 

 

 

0.099

 

-0.004

 

-4.040

 

TH-96-49

 

90399

 

3.566

 

6W-2098-RA1

 

L911683

 

 

 

3.22

 

 

 

6480

 

 

 

3.220

 

-0.346

 

-10.745

 

TH-96-49

 

90400

 

1.406

 

6W-2098-RA1

 

L911684

 

 

 

1.495

 

 

 

3440

 

 

 

1.495

 

0.089

 

5.953

 

TH-96-49

 

90401

 

3.360

 

6W-2098-RA1

 

L911685

 

 

 

3.56

 

 

 

9700

 

 

 

3.560

 

0.200

 

5.618

 

TH-96-49

 

90402

 

13.817

 

6W-2098-RA1

 

L911686

 

 

 

>10.0

 

14

 

24900

 

 

 

14.000

 

0.183

 

1.307

 

 

 

 

 

 

 

 

 

L911687

 

O-10c

 

6.5

 

 

 

4440

 

passed

 

 

 

 

 

 

 

TH-96-49

 

90403

 

5.177

 

6W-2098-RA1

 

L911688

 

 

 

5.54

 

 

 

7170

 

 

 

5.540

 

0.363

 

6.552

 

TH-96-49

 

90404

 

2.263

 

6W-2252-RA1

 

L911689

 

 

 

2.23

 

 

 

3900

 

 

 

2.230

 

-0.033

 

-1.480

 

TH-96-49

 

90405

 

2.366

 

6W-2252-RA1

 

L911690

 

 

 

2.08

 

 

 

3390

 

 

 

2.080

 

-0.286

 

-13.750

 

TH-96-49

 

90406

 

0.960

 

6W-2252-RA1

 

L911691

 

 

 

0.893

 

 

 

1965

 

 

 

0.893

 

-0.067

 

-7.503

 

TH-96-49

 

90407

 

0.034

 

6W-2252-RA1

 

L911692

 

 

 

0.007

 

 

 

101

 

 

 

0.007

 

-0.027

 

-385.714

 

TH-96-49

 

90408

 

0.034

 

6W-2252-RA1

 

L911693

 

 

 

0.021

 

 

 

79

 

 

 

0.021

 

-0.013

 

-61.905

 

TW-96-24

 

19514

 

0.549

 

6W-4656-RA1

 

L911694

 

 

 

0.55

 

 

 

80

 

 

 

0.550

 

0.001

 

0.182

 

TW-96-24

 

19515

 

0.789

 

6W-4656-RA1

 

L911695

 

 

 

0.849

 

 

 

98

 

 

 

0.849

 

0.060

 

7.067

 

TW-96-24

 

19516

 

5.691

 

6W-4656-RA1

 

L911696

 

 

 

5.78

 

 

 

104

 

 

 

5.780

 

0.089

 

1.540

 

TW-96-24

 

19517

 

0.206

 

6W-4656-RA1

 

L911697

 

 

 

0.294

 

 

 

35

 

 

 

0.294

 

0.088

 

29.932

 

TW-96-24

 

19518

 

11.910

 

6W-4656-RA1

 

L911698

 

 

 

>10.0

 

10.35

 

124

 

 

 

10.350

 

-1.560

 

-15.072

 

TC10-85C

 

K621545

 

0.003

 

 

 

L911699

 

Blank

 

<0.005

 

 

 

<5

 

passed

 

 

 

 

 

 

 

TW-96-24

 

19519

 

0.926

 

6W-4656-RA1

 

L911700

 

 

 

0.769

 

 

 

135

 

 

 

0.769

 

-0.157

 

-20.416

 

TW-96-24

 

19520

 

0.274

 

6W-4656-RA1

 

L911701

 

 

 

0.291

 

 

 

61

 

 

 

0.291

 

0.017

 

5.842

 

TW-96-24

 

19521

 

0.857

 

6W-4656-RA1

 

L911702

 

 

 

0.89

 

 

 

108

 

 

 

0.890

 

0.033

 

3.708

 

TW-96-24

 

19522

 

0.823

 

6W-4656-RA1

 

L911703

 

 

 

0.836

 

 

 

115

 

 

 

0.836

 

0.013

 

1.555

 

 

221



 

 

 

Historical Assays (Swastika Lab.)

 

Check-Assay Results (ALS Chemex -certificate TM11168835)

 

Comparaison

 

Hole No.

 

Original
Sample
No.

 

Au (g/t)

 

Original
Certificate No.
(Swastika Lab)

 

New
Sample
No.

 

Control
Samples

 

Au
FA/AA
gpt

 

Au
FA/GRAV
gpt

 

As
Aqua
Regia/AA
ppm

 

Comment
on QA/QC

 

Chemex
Final
Results
Au gpt

 

Chemex
minus
Swastika
Au gpt

 

Variance
(%)

 

TW-96-24

 

19523

 

0.411

 

6W-4656-RA1

 

L911704

 

 

 

0.415

 

 

 

29

 

 

 

0.415

 

0.004

 

0.964

 

TW-96-24

 

19524

 

0.720

 

6W-4656-RA1

 

L911705

 

 

 

0.674

 

 

 

49

 

 

 

0.674

 

-0.046

 

-6.825

 

TW-96-24

 

19525

 

1.611

 

6W-4656-RA1

 

L911706

 

 

 

1.525

 

 

 

47

 

 

 

1.525

 

-0.086

 

-5.639

 

 

 

 

 

 

 

 

 

L911707

 

O-6Pc

 

1.56

 

 

 

1255

 

passed

 

 

 

 

 

 

 

TW-96-24

 

19526

 

0.960

 

6W-4656-RA1

 

L911708

 

 

 

0.952

 

 

 

86

 

 

 

0.952

 

-0.008

 

-0.840

 

TW-96-24

 

19527

 

0.651

 

6W-4656-RA1

 

L911709

 

 

 

0.678

 

 

 

66

 

 

 

0.678

 

0.027

 

3.982

 

TH-97-184

 

35072

 

0.034

 

7W-1027-RA1

 

L911710

 

 

 

0.035

 

 

 

203

 

 

 

0.035

 

0.001

 

2.857

 

TH-97-184

 

35073

 

1.440

 

7W-1027-RA1

 

L911711

 

 

 

1.235

 

 

 

3290

 

 

 

1.235

 

-0.205

 

-16.599

 

TH-97-184

 

35074

 

12.514

 

7W-1027-RA1

 

L911712

 

 

 

>10.0

 

12.2

 

21000

 

 

 

12.200

 

-0.314

 

-2.574

 

TC10-85B

 

K620985

 

0.007

 

 

 

L911713

 

Blank

 

0.006

 

 

 

<5

 

passed

 

 

 

 

 

 

 

TH-97-184

 

35075

 

3.874

 

7W-1027-RA1

 

L911714

 

 

 

3.56

 

 

 

3810

 

 

 

3.560

 

-0.314

 

-8.820

 

TH-97-184

 

35076

 

0.034

 

7W-1027-RA1

 

L911715

 

 

 

0.039

 

 

 

282

 

 

 

0.039

 

0.005

 

12.821

 

TH-97-184

 

35077

 

2.537

 

7W-1027-RA1

 

L911716

 

 

 

2.25

 

 

 

6930

 

 

 

2.250

 

-0.287

 

-12.756

 

TH-97-184

 

35078

 

0.274

 

7W-1027-RA1

 

L911717

 

 

 

0.262

 

 

 

1275

 

 

 

0.262

 

-0.012

 

-4.580

 

TH-97-184

 

35079

 

0.034

 

7W-1027-RA1

 

L911718

 

 

 

0.066

 

 

 

701

 

 

 

0.066

 

0.032

 

48.485

 

TH-97-184

 

35080

 

0.549

 

7W-1027-RA1

 

L911719

 

 

 

0.723

 

 

 

3330

 

 

 

0.723

 

0.174

 

24.066

 

TH-97-184

 

35081

 

2.091

 

7W-1027-RA1

 

L911720

 

 

 

1.885

 

 

 

8920

 

 

 

1.885

 

-0.206

 

-10.928

 

TH-97-184

 

35082

 

0.274

 

7W-1027-RA1

 

L911721

 

 

 

0.24

 

 

 

1090

 

 

 

0.240

 

-0.034

 

-14.167

 

TH-97-184

 

35083

 

10.800

 

7W-1027-RA1

 

L911722

 

 

 

>10.0

 

10.35

 

16000

 

 

 

10.350

 

-0.450

 

-4.348

 

TH-97-184

 

35084

 

10.800

 

7W-1027-RA1

 

L911723

 

 

 

>10.0

 

10.25

 

23000

 

 

 

10.250

 

-0.550

 

-5.366

 

 

 

 

 

 

 

 

 

L911724

 

O-10c

 

6.52

 

 

 

4260

 

passed

 

 

 

 

 

 

 

TH-97-184

 

35085

 

7.063

 

7W-1027-RA1

 

L911725

 

 

 

6.76

 

 

 

14500

 

 

 

6.760

 

-0.303

 

-4.482

 

TH-97-184

 

35086

 

3.531

 

7W-1027-RA1

 

L911726

 

 

 

3.11

 

 

 

7170

 

 

 

3.110

 

-0.421

 

-13.537

 

TH-97-184

 

35087

 

0.069

 

7W-1027-RA1

 

L911727

 

 

 

0.105

 

 

 

106

 

 

 

0.105

 

0.036

 

34.286

 

TH-97-184

 

35088

 

0.003

 

7W-1027-RA1

 

L911728

 

 

 

0.011

 

 

 

66

 

 

 

0.011

 

0.009

 

77.273

 

TH-97-188

 

37127

 

8.126

 

7W-1063-RA1

 

L911729

 

 

 

8.18

 

 

 

13700

 

 

 

8.180

 

0.054

 

0.660

 

TH-97-188

 

37128

 

8.023

 

7W-1063-RA1

 

L911730

 

 

 

9.54

 

 

 

12200

 

 

 

9.540

 

1.517

 

15.901

 

TH-97-188

 

37129

 

5.760

 

7W-1063-RA1

 

L911731

 

 

 

6.18

 

 

 

8300

 

 

 

6.180

 

0.420

 

6.796

 

TH-97-188

 

37130

 

2.640

 

7W-1063-RA1

 

L911732

 

 

 

2.84

 

 

 

4640

 

 

 

2.840

 

0.200

 

7.042

 

TH-97-188

 

37131

 

1.131

 

7W-1063-RA1

 

L911733

 

 

 

1.22

 

 

 

2170

 

 

 

1.220

 

0.089

 

7.295

 

TH-97-188

 

37132

 

0.274

 

7W-1063-RA1

 

L911734

 

 

 

0.292

 

 

 

818

 

 

 

0.292

 

0.018

 

6.164

 

TH-97-188

 

37133

 

0.206

 

7W-1063-RA1

 

L911735

 

 

 

0.198

 

 

 

1835

 

 

 

0.198

 

-0.008

 

-4.040

 

TH-97-188

 

37125

 

0.446

 

7W-1155-RA1

 

L911736

 

 

 

0.42

 

 

 

3280

 

 

 

0.420

 

-0.026

 

-6.190

 

TH-97-188

 

37126

 

0.103

 

7W-1155-RA1

 

L911737

 

 

 

0.086

 

 

 

617

 

 

 

0.086

 

-0.017

 

-19.767

 

TH-97-193

 

34944

 

0.003

 

7W-1156-RA1

 

L911738

 

 

 

0.008

 

 

 

125

 

 

 

0.008

 

0.006

 

68.750

 

TH-97-193

 

34945

 

0.171

 

7W-1156-RA1

 

L911739

 

 

 

0.139

 

 

 

440

 

 

 

0.139

 

-0.032

 

-23.022

 

TH-97-193

 

34946

 

1.851

 

7W-1156-RA1

 

L911740

 

 

 

1.685

 

 

 

3560

 

 

 

1.685

 

-0.166

 

-9.852

 

TH-97-193

 

34947

 

17.829

 

7W-1156-RA1

 

L911741

 

 

 

>10.0

 

18.1

 

10700

 

 

 

18.100

 

0.271

 

1.497

 

 

 

 

 

 

 

 

 

L911742

 

O-10c

 

6.47

 

 

 

4270

 

passed

 

 

 

 

 

 

 

TH-97-193

 

34948

 

17.486

 

7W-1156-RA1

 

L911743

 

 

 

>10.0

 

17.75

 

12500

 

 

 

17.750

 

0.264

 

1.487

 

TH-97-193

 

34949

 

21.737

 

7W-1156-RA1

 

L911744

 

 

 

>10.0

 

21.4

 

20500

 

 

 

21.400

 

-0.337

 

-1.575

 

TC10-85

 

H973924

 

0.009

 

 

 

L911745

 

Blank

 

<0.005

 

 

 

<5

 

passed

 

 

 

 

 

 

 

TH-97-193

 

34950

 

5.657

 

7W-1156-RA1

 

L911746

 

 

 

5.52

 

 

 

5850

 

 

 

5.520

 

-0.137

 

-2.482

 

TH-97-193

 

34951

 

0.309

 

7W-1156-RA1

 

L911747

 

 

 

0.256

 

 

 

94

 

 

 

0.256

 

-0.053

 

-20.703

 

TH-97-193

 

34952

 

0.137

 

7W-1156-RA1

 

L911748

 

 

 

0.117

 

 

 

83

 

 

 

0.117

 

-0.020

 

-17.094

 

TH-97-232

 

48515

 

0.137

 

7W-2903-RA1

 

L911749

 

 

 

0.141

 

 

 

276

 

 

 

0.141

 

0.004

 

2.837

 

TH-97-232

 

48516

 

4.800

 

7W-2903-RA1

 

L911750

 

 

 

4.74

 

 

 

10800

 

 

 

4.740

 

-0.060

 

-1.266

 

TH-97-232

 

48517

 

3.669

 

7W-2903-RA1

 

L911751

 

 

 

3.46

 

 

 

11100

 

 

 

3.460

 

-0.209

 

-6.040

 

TH-97-232

 

48518

 

1.611

 

7W-2903-RA1

 

L911752

 

 

 

1.81

 

 

 

3060

 

 

 

1.810

 

0.199

 

10.994

 

TH-97-232

 

48519

 

0.240

 

7W-2903-RA1

 

L911753

 

 

 

0.245

 

 

 

703

 

 

 

0.245

 

0.005

 

2.041

 

TH-97-232

 

48520

 

0.274

 

7W-2903-RA1

 

L911754

 

 

 

0.262

 

 

 

182

 

 

 

0.262

 

-0.012

 

-4.580

 

TH-97-232

 

48521

 

0.377

 

7W-2903-RA1

 

L911755

 

 

 

0.331

 

 

 

256

 

 

 

0.331

 

-0.046

 

-13.897

 

TH-97-232

 

48522

 

0.274

 

7W-2903-RA1

 

L911756

 

 

 

0.299

 

 

 

620

 

 

 

0.299

 

0.025

 

8.361

 

TH-97-232

 

48523

 

4.491

 

7W-2903-RA1

 

L911757

 

 

 

4.6

 

 

 

26200

 

 

 

4.600

 

0.109

 

2.370

 

TH-97-232

 

48524

 

6.000

 

7W-2903-RA1

 

L911758

 

 

 

6.2

 

 

 

22900

 

 

 

6.200

 

0.200

 

3.226

 

 

 

 

 

 

 

 

 

L911759

 

O-10c

 

6.33

 

 

 

4390

 

passed

 

 

 

 

 

 

 

 

222



 

 

 

Historical Assays (Swastika Lab.)

 

Check-Assay Results (ALS Chemex -certificate TM11168835)

 

Comparaison

 

Hole No.

 

Original
Sample
No.

 

Au (g/t)

 

Original
Certificate No.
(Swastika Lab)

 

New
Sample
No.

 

Control
Samples

 

Au
FA/AA
gpt

 

Au
FA/GRAV
gpt

 

As
Aqua
Regia/AA
ppm

 

Comment
on QA/QC

 

Chemex
Final
Results
Au gpt

 

Chemex
minus
Swastika
Au gpt

 

Variance
(%)

 

TH-97-232

 

48525

 

7.749

 

7W-2903-RA1

 

L911760

 

 

 

7.65

 

 

 

10900

 

 

 

7.650

 

-0.099

 

-1.294

 

TH-97-232

 

48526

 

0.069

 

7W-2903-RA1

 

L911761

 

 

 

0.075

 

 

 

865

 

 

 

0.075

 

0.006

 

8.000

 

TW-97-87

 

50623

 

0.034

 

7W-4526-RA1

 

L911762

 

 

 

0.02

 

 

 

5

 

 

 

0.020

 

-0.014

 

-70.000

 

TW-97-87

 

50624

 

0.069

 

7W-4526-RA1

 

L911763

 

 

 

0.056

 

 

 

41

 

 

 

0.056

 

-0.013

 

-23.214

 

TW-97-87

 

50625

 

3.531

 

7W-4526-RA1

 

L911764

 

 

 

3.4

 

 

 

3050

 

 

 

3.400

 

-0.131

 

-3.853

 

TW-97-87

 

50626

 

4.389

 

7W-4526-RA1

 

L911765

 

 

 

4.11

 

 

 

5380

 

 

 

4.110

 

-0.279

 

-6.788

 

TW-97-87

 

50627

 

8.503

 

7W-4526-RA1

 

L911766

 

 

 

7.69

 

 

 

10300

 

 

 

7.690

 

-0.813

 

-10.572

 

TC11-111

 

E394896

 

0.003

 

 

 

L911767

 

Blank

 

0.009

 

 

 

<5

 

passed

 

 

 

 

 

 

 

TW-97-87

 

50628

 

1.166

 

7W-4526-RA1

 

L911768

 

 

 

1.125

 

 

 

1935

 

 

 

1.125

 

-0.041

 

-3.644

 

TW-97-87

 

50629

 

1.989

 

7W-4526-RA1

 

L911769

 

 

 

2.05

 

 

 

4530

 

 

 

2.050

 

0.061

 

2.976

 

TW-97-87

 

50630

 

0.754

 

7W-4526-RA1

 

L911770

 

 

 

0.755

 

 

 

2980

 

 

 

0.755

 

0.001

 

0.132

 

TW-97-87

 

50631

 

0.994

 

7W-4526-RA1

 

L911771

 

 

 

1.06

 

 

 

3300

 

 

 

1.060

 

0.066

 

6.226

 

TW-97-87

 

50632

 

5.143

 

7W-4526-RA1

 

L911772

 

 

 

4.45

 

 

 

9300

 

 

 

4.450

 

-0.693

 

-15.573

 

TW-97-87

 

50633

 

3.977

 

7W-4526-RA1

 

L911773

 

 

 

3.96

 

 

 

6240

 

 

 

3.960

 

-0.017

 

-0.429

 

TW-97-87

 

50634

 

0.891

 

7W-4526-RA1

 

L911774

 

 

 

1.005

 

 

 

2950

 

 

 

1.005

 

0.114

 

11.343

 

TW-97-87

 

50635

 

0.069

 

7W-4526-RA1

 

L911775

 

 

 

0.045

 

 

 

172

 

 

 

0.045

 

-0.024

 

-53.333

 

GS-09-44

 

539271

 

0.010

 

9W-1971-RA1

 

L911776

 

 

 

0.014

 

 

 

257

 

 

 

0.014

 

0.004

 

28.571

 

GS-09-44

 

539272

 

0.030

 

9W-1971-RA1

 

L911777

 

 

 

0.038

 

 

 

195

 

 

 

0.038

 

0.008

 

21.053

 

GS-09-44

 

539273

 

3.700

 

9W-1971-RA1

 

L911778

 

 

 

3.8

 

 

 

11000

 

 

 

3.800

 

0.100

 

2.632

 

 

 

 

 

 

 

 

 

L911779

 

O-68a

 

3.76

 

 

 

458

 

passed

 

 

 

 

 

 

 

GS-09-44

 

539274

 

3.840

 

9W-1971-RA1

 

L911780

 

 

 

4.27

 

 

 

13600

 

 

 

4.270

 

0.430

 

10.070

 

GS-09-44

 

539276

 

2.880

 

9W-1971-RA1

 

L911781

 

 

 

3.19

 

 

 

14900

 

 

 

3.190

 

0.310

 

9.718

 

GS-09-44

 

539277

 

3.090

 

9W-1971-RA1

 

L911782

 

 

 

4.38

 

 

 

11500

 

 

 

4.380

 

1.290

 

29.452

 

GS-09-44

 

539279

 

5.420

 

9W-1971-RA1

 

L911783

 

 

 

5.43

 

 

 

13600

 

 

 

5.430

 

0.010

 

0.184

 

TC11-111

 

E394898

 

0.003

 

 

 

L911784

 

Blank

 

0.01

 

 

 

<5

 

passed

 

 

 

 

 

 

 

GS-09-44

 

539280

 

3.430

 

9W-1971-RA1

 

L911785

 

 

 

3.57

 

 

 

11800

 

 

 

3.570

 

0.140

 

3.922

 

GS-09-44

 

539281

 

2.130

 

9W-1971-RA1

 

L911786

 

 

 

2.14

 

 

 

10200

 

 

 

2.140

 

0.010

 

0.467

 

GS-09-44

 

539282

 

0.070

 

9W-1971-RA1

 

L911787

 

 

 

0.103

 

 

 

1370

 

 

 

0.103

 

0.033

 

32.039

 

GS-09-44

 

539283

 

0.040

 

9W-1971-RA1

 

L911788

 

 

 

0.038

 

 

 

777

 

 

 

0.038

 

-0.002

 

-5.263

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Average Relative Difference for 124 Pairs:

-3.146

 

 

Note:

Control samples have all passed, as per parameters discussed in Section 11.

 

223



 

GRAPHIC

 

224


 


 

APPENDIX 7

 

PHOTOS:

 

The following photos and commentary have been provided courtesy of Mr. David Rhys from a PowerPoint presentation titled “Setting and controls on gold mineralization in the Gold River East Zone” (Rhys 2011a)

 

225



 

GRAPHIC

 

226



 

GRAPHIC

 

227



 

GRAPHIC

 

228



 

GRAPHIC

 

229



 

GRAPHIC

 

230



 

GRAPHIC

 

231



 

GRAPHIC

 

232



 

APPENDIX 8

 

RESOURCE MODELING AND ESTIMATION OF THE GOLD RIVER TREND DEPOSITS

 M. DAGBERT (2012)

SGS CANADA INC. GEOSTAT

 

233



 

GRAPHIC

 

RESOURCE MODELING AND ESTIMATION

OF THE GOLD RIVER TREND DEPOSITS

 

Respectfully submitted to Lakeshore Gold Corp.

by SGS Canada Inc. - Geostat

March 09,2012

 

 

Geostat

 

SGS Canada Inc.

10 boul. de la Seigneurie Est, Suite 203, Blainville, Québec Canada

 

t (450) 433 1050  f (450) 433 1048  www.geostat.com  www.met.sgs.com

 

 

 

 

 

Member of SGS Group (SGS SA)

 

 



 

Foreword

 

This report describes the work completed in the fall of 2011 and winter 2011-2012 at SGS Canada Inc. — Geostat (thereafter SGS) to assist Lakeshore Gold Corp. (thereafter LSG) in their modeling and estimation of the resources of their Gold River Trend deposits (thereafter GR) to the west of Timmins, Ontario, from latest drill hole information available in the fall of 2011. This report is not an NI43-101 Technical Report but it can be used to support the results in the NI43-101 Technical Report authored by LSG on the GR resources to be produced in March 2012.  This work is covered by a proposal from SGS to LSG dated September 21, 2011 and accepted by LSG on September 22, 2011.

 

ii



 

Summary, conclusions and recommendations

 

1-              The main purpose of this work was to support resource estimates of the Golden River Trend (GR) deposits derived by LSG’s geologists from DH information available at the end of 2011 by a comparison model using the same DH information and mineralized zones limits but a different resource modeling approach.  The LSG’s model uses a standard inverse squared distance method to interpolate the grade of the mineralized zone fraction of 3x2x3m blocks from 1m composites within the same zone with zone limits defined by 3D solids from interpreted sectional rings. Our alternative model uses the traditional approach for estimating global resources at no cut-off of relatively narrow sheet-like sub-vertical mineralized structures by projecting hole mineralized intercepts on a vertical long section plane and using polygons of influence around projected intercepts to delineate the extension of the structure on the projection plane. In addition to the mineralized intercepts, we also project the extrapolated intercept (= “blank intercept”) of the structure with surrounding holes where the structure was not found. This extrapolation is generally done on each drill section beyond the extremities of the interpreted structure on the section. The extent of the structure on the projection plane is generally drawn mid-way between mineralized and blank intercepts hence following the outline of the polygons of influence. This traditional approach is particularly applicable to the GR mineralized structures since almost all drill holes intersect a given zone only once.

 

2-              A first comparison involving an LSG draft model of December 2011 showed a significant 26% difference of overall estimated ounces at no cut-off in favor of the LSG block model (1.42Moz vs. 1.05Moz). After reducing the interpreted lateral extent of a few zones in the final January 2011 LSG model, the difference was reduced to a more acceptable 17% (1.27Moz vs. 1.05Moz) given the mostly inferred categorization of the estimated resource.

 

3-              The latest DH database has values for 753 holes totalling 231,267 m. A majority of those drill holes dip from 42o to 77o to the south. Drill hole length varies from 13m to 1364m with an average of 307m. Holes tend to be on NS cross-sections with a E-W spacing as low as 20-25m between sections and a similar spacing between holes on the same section. We have 121,100 valid assay intervals along those holes.  A majority of intervals (38%) are 1.5m long with significant groups of 1m intervals (32%) and 0.5m intervals (6%). Gold assay values range from 0 to 1350g/t (over 0.3m).

 

4-              The GR resources are currently confined to 15 mineralized over a 3.4km E-W strike length. More precisely, we have 4 zones on the west side (W1A, W1A1, W1B, W1B1 from 459,000E to 459,800E) and 11 zones on the east side (4800, 4800-N1, 4800-N2, 4800-N4, 4800-S1, 4800-S2, 4800-S1A, 4800-S1D plus the shallow 452 and 453 in the so-called Kapika sector and the deep 4800-S3D). Interpreted mineral zones are sheet-like structures with a strong dip to the north and a limited N-S thickness. They strike from N270 to N280. A review of assay interval data within the intercepts of holes with interpreted zones indicates that 39% of high assay intervals above 20 g/t Au are outside those intercepts hence outside those interpreted zones leaving room for additional zones or modified limits of existing ones.

 

iii



 

5-              In the eastern zones, we suggest a capping of 50m.g/tAu applied to the length*grade product of original assay intervals. With that limit, we cap 14 intervals (0.8% of total)  with a gold loss of 12.9% (length weighted average capped grade is down to 4.55g/t from 5.17 g/t uncapped). In the two small Kapika zones, the cap limit is lowered to 25 m.g/t with a gold loss of 10.2%. There is no need to cap assay data in the western zones.

 

6-              Despite the high variability of gold grades from GR samples, the QAQC data of samples from LSG holes in 2010-2011 and analyzed at the ALS Canada Ltd. lab tend to indicate that the quality of those sample grade values is more than satisfactory. Although we have significant differences between mean results and target values for some standards, we do not see any overall bias from the results of standards. Blanks show a few cases of likely contamination but the proportion of real failures keeps extremely low (0.2%). Lab and coarse duplicates show better than expected sample errors i.e. about 5% relative difference for pulp duplicates and 20% relative difference for coarse duplicates. Check pulp samples at the SGS lab indicate that there is a possibility that ALS values are slightly conservative

 

7-              Similarly, the historical QAQC data of samples from pre-LSG holes (2003-2006) and analyzed at the ALS and Swastika labs tend to indicate that the quality of those sample grade values is satisfactory. Although we have significant differences between mean results and target values for some standards, we do not see any overall bias from the results of standards. Blanks show a few cases of likely contamination but the proportion of real failures keeps low (0.4%). Based on results for standards and blanks, the quality (both accuracy and precision) of assays at the Accurassay lab is more questionable. Fortunately, the results for standards at that lab indicate that gold values from that lab are likely to undervalue the true gold grade of submitted samples.

 

iv



 

Table of Contents

 

Foreword

ii

 

 

Summary, conclusions and recommendations

iii

 

 

Table of Contents

v

 

 

List of tables

vi

 

 

List of Figures

vii

 

 

1-

Drill hole data

1

 

 

 

2-

Mineralized domains

2

 

 

 

3-

Assay intervals in mineralized intercepts and capping

3

 

 

 

4-

Composites, blocks and block grade interpolation

6

 

 

 

5-

Alternative zone resource estimates

8

 

 

 

6-

Resources of the Kapika sector

12

 

 

 

7-

Resource update

16

 

 

 

8-

Statistical analysis of QAQC assay data for LSG samples

20

 

 

 

8-1 Standards

20

8-2 Blanks

21

8-3 Duplicates

21

8-4 Check assays

22

8-5 Conclusions

22

 

 

9-

Statistical analysis of historical QAQC assay data

24

 

 

 

9-1

Standards

24

9-2

Blanks

29

9-3

Duplicates

29

9-4

Conclusions

29

 

 

 

Appendix : polygonal maps of zones on long section

31

 

v



 

List of tables

 

Table 1 Highest grade intervals in the mineralized intercepts

4

Table 2 Statistics of 1m composite capped grade in the different mineralized zones

6

Table 3 Comparison of average composite and block grades in the different zones

7

Table 4 Comparison of resources from LSG block model and alternative approach

11

Table 5 Kapika : comparison of resources from LSG block model and alternative 2D polygons

13

Table 6 Comparison of average composite and block grades in the different zones

18

Table 7 Statistics of results for standard pulps with LSG samples to ALS

21

Table 8 Statistics of historical results for standard pulps from the Accurassay lab

26

Table 9 Statistics of historical results for standard pulps from the ALS lab

27

Table 10 Statistics of historical results for standard pulps from the Swastika lab

28

 

vi



 

List of Figures

 

Figure 1 Drill holes and mineralized domains (planview)

2

Figure 2 Drill holes and mineralized domains (view to north)

2

Figure 3 Histogram and cumulative frequency plot of GTs of all mineralized intervals

5

Figure 4 E-W long section with projection of Zone W1A intercepts

9

Figure 5 Histogram and cumulative frequency plot of GTs of all Kapika mineralized intervals

14

Figure 6 E-W long section with projection of Kapika zone intercepts

15

Figure 7 Log cumulative frequency curves of GTs of zone samples in the updated model

19

Figure 8 Correlation plots of pulp and coarse duplicates

23

Figure 9 Correlation plots of check and original assays

24

Figure 10 Correlation plot of historical duplicates at Swastika

30

 

vii



 

1-             Drill hole data

 

A first version of the drill hole database for the Gold River Trend (GR) deposits was received on Dec. 2, 2011. It has collar coordinates, orientation at collar, depth, deviation data, assay and litho intervals data for up to 989 drill holes with various names : 1613-1 to 617-386, BE-06-01 and -02, BKP-T-01 to 36, BP-96-08 to 29, BT-0-01 to 16, BT-11-17, C82-1, CP04-01 and 02, CT83-1 and -2, D82-1A to -7, DT-10 to 35, EF-16 and 23, EH-96-01 and -02, ETB01-1, GS-03-01 to GS-09-47, GW-02-01 to GW-09-54, H82-1 to H82-14, K-1 to K-4, KG-98-01 to -03, KZ-05-01 to -02, NS-05-02 to NS-08-04, NW-05-01 and -02, NZ05-01 toNZ-05-13, PS-1 to -6, RC_CX84-1 to -9, RP-09-01 to -04b, RS-1 to -3, S-1 and -2, SBA-05-08 to SBA-06-14, SBAW-06-01 to -07, T-01 to T-55, TB-09-01 to -04, TC-93-01, TH-10-01 to TH1—1124, TH-95-01 to TH-97-251, TW81-8, TW-96-01 to TW-98-92, WBP-06-01 to WBP-09-20, WD-06-01 to -08 and finally WF-1 to -51. 15 holes with no orientation at collar have been rejected (BT-04-, C-00-01 and -02, RIO-84-01 to 11 and TW-97-52E).

 

Collar coordinates range from 448,099x, 5,352,635y, 9975z to 465,124x, 5,363,712y, 10033z (after excluding an odd TW81-8 with x=486,904) i.e. about 17.0x11.1.km extension. From collar elevations, it appears that all holes are drilled from surface.

 

A majority of those drill holes (777 out of 989) dip from 42o to 77o to the south (N164 to N191). 54 holes dip to the SE (azimuths N130 to N160), 17 holes dip to the north, 21 holes dip to the east and 79 holes are vertical. Drill hole length varies from 0.3 to 1446m. Total meterage is 263,384m (average 266m).

 

We have 120,704 valid assay intervals along those holes.  After correcting a few obvious oddities which were generating negative interval lengths (interval in hole BKP-T-01 with a From = 8702 replaced by 87.02m, in TB-09-01 with To=288.8 replaced by 388.8m, in BKP-T-12 with a From = 324.2 replaced by 234.2m, in T-44 with From=165.01 and To=163.86m suppressed), assay interval length varies from a mere 0.05m to 308m, this last value for a complete hole at zero grade (long intervals are generally very low grade with the exception of long intervals in some RC_CX84 holes like 32.9m @ 1.60 g/t in RC_CX84-8 hole or 23m @1.29 g/t in RC_CX84-7  hole as well as 11.7m @ 1.60 g/t in GS-06-04). Total meterage is 142,045m i.e. an average of 1.17m/interval. A majority of intervals (40%) are 1.5m long with significant groups of 1m intervals (30%) and 0.5m intervals (6%). Gold assay values range from 0 to 1350g/t (a 0.3m interval in TH-11-113) with an uncapped weighted average of 0.19 g/t.

 

From the location of interpreted mineralized domains (see next section and Figures 1+2), not all the drill holes in the supplied drill hole database are related to the GR gold mineralization. Those of interest are mostly with the GS, GW, NZ, T, TH and TW prefix. They tend to be on NS cross-sections with an E-W spacing as low as 20-25m between sections and a similar spacing between holes on the same section.

 

1



 

2-             Mineralized domains

 

As illustrated on Figure 1 and 2, the GR resources are currently confined to 13 mineralized zones from 459,000E to 462,400E i.e. a 3.4km strike length. More precisely, we have 4 zones on the west side (W1A, W1A1, W1B, W1B1 from 459,000E to 459,800E) and 9 zones on the east side (4800, 4800-N1, 4800-N2, 4800-N4, 4800-S1, 4800-S2, 4800-S1A, 4800-S1D and the deep 4800-S3D from 460,600E to 462,400E). Interpreted mineral zones are sheet-like structures with a strong dip to the north and a limited N-S thickness. They strike from N270 to N280.

 

A review of assay interval data within the intercepts of holes with interpreted mineralized domains (see below) indicates that 39% of high assay intervals above 20 g/t Au are outside those intercepts hence outside those interpreted mineralized domains leaving room for additional domains or modified limits of existing ones.

 

Figure 1 Drill holes and mineralized domains (planview)

 

GRAPHIC

 

Figure 2 Drill holes and mineralized domains (view to north)

 

GRAPHIC

 

2



 

3-             Assay intervals in mineralized intercepts and capping

 

We have up to 1714 assay intervals in the 453 mineral intercepts of domains with holes. Their length ranges from 0.2m to 3.04m with an average of 0.93m. 1m is the most current length (35%) followed by 1.5m (15%) and 0.5m (13%). Gold grade of those assay intervals ranges from 0 to 1350g/t with a (length-weighted and uncapped) average of 5.18g/t.

 

As shown on Table 1, intervals with the highest gold grade (above 30g/t) have a quite variable length (from 0.3m to 1.2m). Given that those outliers tend to be isolated with much lower grades on both sides, it makes more sense to cap according to gold content, hence the GT product of grade by length, rather than gold grade alone. In other words a 200 g/t over 0.5m is the same as a 100g/t over 1m when it comes to capping given that both yield the same 100g/t when composited over 1m.

 

The histogram of GTs of mineralized intervals with a logarithmic scale (which excludes zero grade intervals) is on top of next Figure 3. We clearly see a lognormal shape but still with some very low values (less than 0.3m.g/t). On the high side, there is a clear tail of very high data above about 50 m.g/t.

 

The high end of the cumulative frequency plot with a log scale (bottom of Figure 3) shows a strong kick upward at about 50 m.g/t and corresponding to a natural gap in the distribution of GT products.  With that limit of 50 m.g/t, we cap 14 intervals (0.8% of total)  with a gold loss of 12.1% (length weighted average capped grade is down to 4.55g/t from 5.17 g/t uncapped). All the capped intervals are in the eastern zones (4800, 4800-N1, 4800-S1, 4800-S1A and 4800-S3D).

 

3



 

Table 1 Highest grade intervals in the mineralized intercepts

 

Hole name

 

From (m)

 

To (m)

 

Length (m)

 

Zone

 

g/t Au

 

TH-10-53

 

783

 

784

 

1

 

443

 

30

 

TH-11-124

 

697.5

 

698.3

 

0.8

 

443

 

31.8

 

TH-11-108

 

166.7

 

167.5

 

0.8

 

411

 

32.1

 

TH-10-41

 

250.4

 

250.9

 

0.5

 

411

 

33

 

TH-11-111

 

286.8

 

287.4

 

0.6

 

411

 

33.5

 

TH-10-21

 

107

 

108

 

1

 

400

 

34.1

 

TH-10-24

 

256.3

 

256.8

 

0.5

 

402

 

35.9

 

TH-11-92

 

133.4

 

134

 

0.6

 

421

 

36

 

TH-10-24

 

258.8

 

259.1

 

0.3

 

402

 

38.1

 

TH-10-15

 

35.3

 

35.6

 

0.3

 

411

 

39.1

 

TH-96-70

 

280.4

 

281

 

0.6

 

411

 

40.11

 

TH-10-65

 

760.4

 

760.7

 

0.3

 

443

 

40.6

 

TH-10-65

 

757.6

 

758

 

0.4

 

443

 

40.7

 

TH-10-24

 

259.5

 

260

 

0.5

 

402

 

40.7

 

TH-10-21

 

104

 

105

 

1

 

400

 

42.8

 

TH-10-03

 

277.1

 

277.5

 

0.4

 

411

 

43.4

 

TH-97-234

 

484

 

485

 

1

 

441

 

48.41

 

TH-97-150

 

132.5

 

132.9

 

0.4

 

400

 

52.07

 

TH-11-108

 

167.5

 

168.1

 

0.6

 

411

 

59.3

 

TH-10-05

 

259.5

 

259.9

 

0.4

 

411

 

59.6

 

TH-10-65B

 

628.4

 

628.8

 

0.4

 

441

 

67.2

 

TH-97-158

 

153.5

 

154.5

 

1

 

421

 

71.24

 

TH-10-21

 

108

 

109

 

1

 

400

 

72.2

 

TH-96-75

 

173.9

 

175

 

1.1

 

401

 

83.31

 

GS-09-35

 

215.1

 

215.7

 

0.6

 

401

 

84.12

 

TH-10-52

 

232.2

 

232.6

 

0.4

 

411

 

85.6

 

TH-97-222

 

279.6

 

280.6

 

1

 

401

 

97.61

 

TH-97-193

 

24.2

 

25.4

 

1.2

 

411

 

98.3

 

GS-09-31

 

207.5

 

208.5

 

1

 

401

 

100.91

 

TH-10-26B

 

732

 

732.4

 

0.4

 

443

 

104.5

 

TH-97-143

 

119.5

 

120.5

 

1

 

400

 

107.57

 

TH-10-65A

 

743

 

744

 

1

 

443

 

116.5

 

TH-10-30

 

199.5

 

200

 

0.5

 

400

 

138

 

TH-97-223

 

277.7

 

278.7

 

1

 

401

 

168

 

TH-10-03

 

276

 

276.55

 

0.55

 

411

 

270

 

TH-10-26

 

772.4

 

772.7

 

0.3

 

443

 

295

 

TH-11-113

 

163.3

 

163.6

 

0.3

 

411

 

1350

 

 

4



 

Figure 3 Histogram and cumulative frequency plot of GTs of all mineralized intervals

 

GRAPHIC

 

GRAPHIC

 

5



 

4-             Composites, blocks and block grade interpolation

 

Assay intervals within drill hole mineralized intercepts are composited into 1m composites. The last composite of the intercept is kept if its length is at least 0.5m. The composite table supplied by LSG has 1549 entries (247 in west sector and 1302 in east sector) with an uncapped grade from 0 to 405.7 g/t and averaging 5.42 g/t and a capped grade from 0 to 36 g/t and averaging 4.47 g/t. Our compositing in the same intercepts leaves 1551 entries with an uncapped grade from 0 to 405.7 g/t and averaging 5.41 g/t and a capped grade from 0 to 54.4 g/t and averaging 4.73 g/t Au. Obviously our proposed capping (50 m.g/t with 12.3% gold loss) is less severe than LSG’s capping (likely 36 g/t Au with 17.3% gold loss). A comparison of composite number and capped grade statistics in each mineralized zone is on Table 2.

 

Table 2 Statistics of 1m composite capped grade in the different mineralized zones

 

Zone

 

Nzone

 

Nb LSG
composites

 

Average LSG
g/t Auc

 

Nb SGS
composites

 

Average SGS
g/t Auc

 

W1A

 

211

 

119

 

4.19

 

119

 

4.19

 

W1A1

 

212

 

38

 

4.23

 

38

 

4.24

 

W1B

 

221

 

81

 

3.83

 

81

 

3.83

 

W1B1

 

222

 

9

 

4.15

 

9

 

4.15

 

Total West

 

 

 

247

 

4.08

 

247

 

4.08

 

4800

 

400

 

294

 

4.25

 

291

 

4.47

 

4800-N1

 

401

 

285

 

4.43

 

289

 

4.74

 

4800-N2

 

402

 

62

 

6.14

 

63

 

6.15

 

4800-N4

 

404

 

38

 

3.20

 

38

 

3.20

 

4800-S1

 

411

 

330

 

4.51

 

334

 

4.83

 

4800-S2

 

412

 

42

 

3.60

 

42

 

3.61

 

4800-S1A

 

421

 

89

 

4.83

 

91

 

4.90

 

4800-S1D

 

441

 

62

 

5.18

 

61

 

5.67

 

4800-S3D

 

443

 

94

 

5.43

 

94

 

6.32

 

Total East

 

 

 

1302

 

4.55

 

1303

 

4.86

 

Grand Total

 

 

 

1549

 

4.47

 

1551

 

4.73

 

 

LSG current resource block model is made of 310,317 blocks 3x2x3m with some percentage material within the interpreted limits of mineralized zones (48,067 blocks in west zones and 262,250 blocks in east zones). The grade estimate of the portion of each block within a given mineralized zone is interpolated by inverse distance squared from the capped grade of neighbour 1m composites in the same zone.  Interpolation is done in up to 5 runs with relaxed search limitations from one run to the next until all blocks within interpreted zones are interpolated. Search ellipsoid size ranges from 15x15x8m (run 1) to 120x120x50m (run 5). Ellipsoids are generally striking E-W (from N265 to N272) and dipping to the north (from 62o to 85o). Minimum number of composites in the ellipsoid is 5 in at least 3 different holes (maximum number of composites from the same hole is 2) except for the last run 5 where blocks can be interpolated from 2 composites in the same hole (in that case, the block grade estimate is the

 

6



 

average capped grade of those 2 composites). The maximum number of composites kept in the ellipsoid is 10 in all the runs.

 

Those interpolation parameters look reasonable given the limited number of composites in mineralized intercepts. Actually in such narrow mineralized structures as those currently interpreted at GR, the block interpolation could be done directly from the capped grade of intercepts themselves with a single value in each hole.

 

Average block grade estimates (weighted by block percentage in zone) are compared to average composite grade in the same zone on Table 3. More than often, the average block grade is more than the average composite grade with large differences in zone 4800-S3D (8.09g/t for blocks vs. 5.43 g/t for composites). A NN block estimate might be worth running to ensure that there has not been any mechanical problem in the block interpolation.

 

Table 3 Comparison of average composite and block grades in the different zones

 

Zone

 

Nzone

 

Nb LSG
composites

 

Average LSG
Composites g/t Auc

 

Nb. blocks

 

Average LSG
blocks g/tAuc

 

W1A

 

211

 

119

 

4.19

 

27,435

 

4.27

 

W1A1

 

212

 

38

 

4.23

 

7,831

 

4.66

 

W1B

 

221

 

81

 

3.83

 

11,363

 

3.72

 

W1B1

 

222

 

9

 

4.15

 

1,438

 

3.55

 

Total West

 

 

 

247

 

4.08

 

48,067

 

4.18

 

4800

 

400

 

294

 

4.25

 

32,087

 

4.18

 

4800-N1

 

401

 

285

 

4.43

 

25,060

 

4.85

 

4800-N2

 

402

 

62

 

6.14

 

8,106

 

4.62

 

4800-N4

 

404

 

38

 

3.20

 

10,781

 

3.62

 

4800-S1

 

411

 

330

 

4.51

 

72,385

 

4.36

 

4800-S2

 

412

 

42

 

3.60

 

21,223

 

3.58

 

4800-S1A

 

421

 

89

 

4.83

 

11,947

 

4.46

 

4800-S1D

 

441

 

62

 

5.18

 

27,388

 

5.68

 

4800-S3D

 

443

 

94

 

5.43

 

53,273

 

8.09

 

Total East

 

 

 

1302

 

4.55

 

262,250

 

5.30

 

Grand Total

 

 

 

1549

 

4.47

 

310,317

 

5.15

 

 

7



 

5-             Alternative zone resource estimates

 

The traditional approach for estimating global resources at no cut-off of relatively narrow sheet-like mineralized structures is to project hole mineralized intercepts on either an horizontal plane (sub-horizontal structures) or a vertical long section plane (sub-vertical structures) and use polygons of influence around projected intercepts to delineate the extension of the structure in the projection plane. In addition to the mineralized intercepts, we also project the extrapolated intercept (= “blank intercept”) of the structure with surrounding holes where the structure was not found. This extrapolation is generally done on each drill section beyond the extremities of the interpreted structure on the section. The extent of the structure on the projection plane is generally drawn mid-way between mineralized and blank intercepts hence following the outline of the polygons of influence.

 

This traditional approach is particularly applicable to the GR mineralized structures since almost all drill holes intersect a given zone only once. The only three cases of multiple intercepts of the same hole with the same zone are : (1) the E-W dipping NZ-05-13 that intersects zone 4800 from 89.9 to 95.5m, then from 95.5 to 105.8m and finally from 107.2 to 112.8m : those 3 intercepts are merged together into a single intercept from 89.9m to 112.8m but given the odd drill hole orientation with respect to the zone, the 22.9m long intercept is converted into a 6.45m N-S horizontal thickness) (2) the E-W dipping NZ-05-02 that intersects zone 4800-N1 from 51.6 to 67.2m, then from 77.2 to 85.2m, then from 94.2 to 95.8m and finally from 101.5 to 104.2m : in this case, only the second and more central 8m long intercept is kept (3) the south dipping TH-97-215 that intersects zone 4800 from 111.2 to 118.3m and then from 118.3 to 120.8m : those two contiguous intercepts are simply merged into a 9.6m long intercept.

 

This exercise is illustrated on Figure 4 with intercepts of zone W1A. The 36 mineralized intercepts in that zone are projected on a vertical E-W long section plane (in red on the figure). In addition to those mineralized intercepts, 41 blank intercepts (depth at which the W1A zone should have intercepted a drill hole but with no real mineralized grade values) in surrounding holes are projected (in blue on the figure). A reasonable limit for the extension of the W1A zone on the long section follows the outline of polygons drawn around the mineralized intercepts (in red) and constrained by the extent of polygons drawn around blank intercepts (in blue) with a maximum radius for polygons of 50m. The total surface area of the 36 mineralized polygons (with the top ones clipped with the overburden/bedrock surface) is 73,670m2 which can be compared to the 81,480m2 of the LSG resource block model for the same W1A zone (the projected limits of which are also shown on Figure 4).

 

In addition to a mineralized surface area, one can get an average mineralized thickness (and thus a mineralized volume and tonnage) by weighting the thickness of the zone at each intercept with the surface of the polygon around that intercept. This thickness is a N-S horizontal thickness which can be derived from the intercept length based on measured azimuth and dip of drill hole and assumed azimuth and dip of the zone. For zone W1A, we assume an average dip of 65o to north at all intercepts. If we take for example the mineralized intercept of W1A in hole TW-97-88 (from=366.8m to=369m; also shown on Figure 4), the 2.1m intercept length is converted into a 1.76m horizontal N-S thickness. Weighted average thickness for all 36 mineralized intercepts is 2.90m hence a mineralized volume of 73,670*2.90 = 213,760m3 and a mineralized tonnage of

 

8



 

213,760*2.8 = 598,530t to be compared to the 671,323t of the LSG current resource block model for W1A.

 

In addition to the mineralized tonnage, one can get an estimated average grade (hence a gold quantity estimate) by weighting the average capped grade of each intercept by its thickness and polygon area.  That gives an overall average grade of 4.18 g/t (hence 80,490 oz) to compare to the 4.27 g/t (and 92,172oz) of the LSG current resource block model for W1A.

 

Figure 4 E-W long section with projection of Zone W1A intercepts

 

GRAPHIC

 

9



 

The same type of alternative resource estimation has been applied to other zones with results in Table 4. In the western zones, metal estimates are within 7%. We have more differences in the eastern zones with 29% more metal in the proposed resource block model.  Of particular concern is the deep 4800-S3D (443) zone with a polygonal resource estimate showing 29% less tonnes, 17% less grade hence 41% less metal. Metal differences between the two resource estimates result from surface, thickness and grade differences:

 

+ extension surface on the E-W long section : in almost all zones, that extension surface is slightly larger (average 10% difference) for interpreted mineralized solids around resource blocks. This may happen when the half-way rule between mineralized and blank intercepts is not fully observed when delineating the mineralized solids. The maximum radius of polygons on the long section is 50m which is not that restrictive.

 

+ average N-S horizontal thickness : in the eastern zones, that thickness is significantly longer for interpreted mineralized solids (average 16% difference). A higher average thickness in the block model may result from a much fluctuating trace of interpreted mineral solids on horizontal levels (i.e. intercepts from one section to the next are not at the same N-S position). On the other hand, in the alternative polygonal model on long section, we calculate the thickness of each intercept using a constant dip to north throughout the zone (50o for W1B1, 60o for W1A1, W1B, 4800-S1, 4800-S2 and 4800-S1A, 65o  for W1A, 70o for 4800 and 4800-S1D, 75o for 4800-S3D, 80o for 4800-N1 and finally 85o for  4800-N2 and 4800-N4) but in reality it varies both with east coordinate and elevation, especially in extended zones like 4800 and 4800-N1.

 

+ average grade: differences are generally low especially for large zones. The overall difference of  5.6% in favour of the resource block model mostly reflects the high grade difference of  17.1% in the 4800-S3D zone (grade of 8.1g/t for block model vs. 6.7 g/t for polygonal model — we recall that the average composite grade in that zone is only 5.4 g/t) i.e. overall grade difference is less than 1% (0.6% in favour of polygons) if zone 4800-S3D is not accounted for in the total.

 

At this stage, we recommended a review of interpreted solids for the few eastern zones with significant resources and rather high differences with polygonal estimates on long section. It includes by order of priority 4800-S3D (443), 4800-S1D (441) and some sectors of 4800-S1. Ideally, the metal estimate at no cut-off from the resource block model should not be more than 10% that from the polygonal model on long section i.e. about 1.15Moz.

 

10



 

Table 4 Comparison of resources from LSG block model and alternative approach

 

 

 

Block Model

 

Poly long section

 

%Difference

 

Zone

 

Nb

 

Surface

 

Thck

 

Tonnage

 

Grade

 

Metal

 

Nb

 

Surface

 

Thck

 

Tonnage

 

Grade

 

Metal

 

Surf.

 

Thck

 

Tonnage

 

Grade

 

Metal

 

 

 

blocks

 

m2

 

m

 

(t)

 

g/t

 

Oz

 

inter

 

m2

 

m

 

(t)

 

g/t

 

Oz

 

 

 

 

 

 

 

 

 

 

 

211

 

27,435

 

81,480

 

2.94

 

671,323

 

4.27

 

92,172

 

36

 

73,667

 

2.90

 

598,530

 

4.18

 

80,488

 

9.6

%

1.4

%

10.8

%

2.2

%

12.7

%

212

 

7,831

 

19,309

 

3.55

 

192,012

 

4.66

 

28,787

 

10

 

17,155

 

3.90

 

187,284

 

4.16

 

25,078

 

11.2

%

-9.8

%

2.5

%

10.7

%

12.9

%

221

 

11,363

 

31,297

 

3.28

 

287,092

 

3.72

 

34,340

 

24

 

28,385

 

3.75

 

298,360

 

3.91

 

37,555

 

9.3

%

-14.6

%

-3.9

%

-5.2

%

-9.4

%

222

 

1,438

 

3,612

 

3.41

 

34,506

 

3.55

 

3,939

 

3

 

3,517

 

3.84

 

37,803

 

4.11

 

4,999

 

2.6

%

-12.5

%

-9.6

%

-15.8

%

-26.9

%

West

 

48,067

 

135,698

 

3.12

 

1,184,933

 

4.18

 

159,238

 

73

 

122,724

 

3.27

 

1,121,978

 

4.11

 

148,120

 

9.6

%

-4.7

%

5.3

%

1.8

%

7.0

%

400

 

32,087

 

102,831

 

2.78

 

799,876

 

4.18

 

107,459

 

85

 

87,015

 

2.70

 

658,530

 

4.23

 

89,622

 

15.4

%

2.7

%

17.7

%

-1.3

%

16.6

%

401

 

25,060

 

76,488

 

3.05

 

652,292

 

4.85

 

101,702

 

74

 

79,504

 

2.41

 

535,475

 

5.06

 

87,148

 

-3.9

%

21.0

%

17.9

%

-4.4

%

14.3

%

402

 

8,106

 

28,544

 

2.51

 

200,895

 

4.62

 

29,818

 

20

 

28,978

 

2.16

 

175,444

 

5.55

 

31,288

 

-1.5

%

14.0

%

12.7

%

-20.2

 

-4.9

%

404

 

10,781

 

31,518

 

3.26

 

287,839

 

3.62

 

33,536

 

11

 

27,598

 

2.48

 

192,012

 

3.40

 

21,004

 

12.4

%

23.8

%

33.3

%

6.1

%

37.4

%

411

 

72,385

 

176,521

 

4.08

 

2,016,548

 

4.36

 

282,920

 

102

 

157,485

 

3.57

 

1,572,147

 

4.39

 

221,879

 

10.8

%

12.6

%

22.0

%

-0.6

%

21.6

%

412

 

21,223

 

62,522

 

3.35

 

586,618

 

3.58

 

67,596

 

14

 

54,448

 

2.86

 

436,041

 

3.88

 

54,377

 

12.9

%

14.6

%

25.7

%

-8.2

%

19.6

%

421

 

11,947

 

32,567

 

3.21

 

292,623

 

4.46

 

41,995

 

32

 

26,968

 

2.99

 

225,462

 

4.61

 

33,434

 

17.2

%

7.0

%

23.0

%

-3.3

%

20.4

%

441

 

27,388

 

69,914

 

3.95

 

773,887

 

5.68

 

141,388

 

17

 

59,812

 

2.93

 

489,932

 

5.47

 

86,230

 

14.4

%

26.0

%

36.7

%

3.7

%

39.0

%

443

 

53,273

 

129,136

 

5

 

1,675,889

 

8.09

 

436,160

 

19

 

112,966

 

3.77

 

1,192,017

 

6.71

 

257,212

 

12.5

%

18.7

%

28.9

%

17.1

%

41.0

%

East

 

262,250

 

710,041

 

3.67

 

7,286,464

 

5.30

 

1,242,575

 

374

 

634,774

 

3.08

 

5,477,060

 

5.01

 

882,196

 

10.6

%

15.9

%

24.8

%

5.5

%

29.0

%

Total

 

310,317

 

845,739

 

3.58

 

8,471,397

 

5.15

 

1,401,812

 

447

 

757,497

 

3.11

 

6,599,038

 

4.86

 

1,030,316

 

10.4

%

13.0

%

22.1

%

5.6

%

26.5

%

 

11



 

6-             Resources of the Kapika sector

 

Some additional mineralization has been defined in the so-called Kapika sector, a 200m long E-W stretch between 460,650E and 460, 850E and on the north side of the GR trend. It takes the form of two subparallel zones, close to the surface (between Z=9850 and Z=9990) and with a stong dip to the north (actually from 65o to north on the west end to 75o to sub-vertical and even 85o to south on the east end). Those zones are dubbed 4800-N5A (452) to the south and 4800-N5B (453) to the north.

 

We have 22 holes intercepts in the 4800-N5A zone and 24 of them in the 4800-N5B zone. Like for the other mineralized structures of the GR property, they are generally in holes dipping to the south plus a few dipping to the north on sections 460800E and 460820E. In those holes on N-S sections, we have a single intercept of any given hole with either zone. We also have multiple intercepts in two holes dipping 45o to the east : 6 intercepts of zone 4800-N5A with hole KZ-05-03 and 3 intercepts of zone 4800-N5B with hole KZ-05-01. Those multiple intercepts in the vertical E-W long section plane can be explained by the “snake” profile of interpreted mineralized solids in horizontal levels. Some of those multiple intercepts are fairly low grade (e.g. 18m @ 0.31 g/t in KZ-05-03 or 2.7m@0 g/t and 3.8m@0.06 g/t in KZ-05-01) and they could likely be avoided by slightly shifting the limits of the mineralized solids.

 

Two intercepts are fairly impressive i.e. 5.6m@15.4g/t(uncut) in T-28 with zone 452 and 11.6m@6.8g/t in TH-10-62 with zone 453. An additional intercept of 3.1m @ 2.9 g/t could be defined in TH-11-101 with zone 452 on section 460780E.

 

We have respectively 97 and 94 assay intervals of varying length (from 0.4 to 3.1m) in the 22 intercepts of zone 452 and the 24 intercepts of zone 453. Only one interval of 0.6m with a 122.2 g/t grade in hole T-28 and zone 452 is cut using the previously defined capping scheme of 50 m.g/t. Average uncut grade of 3.15 g/t is reduced to 3.03 g/t i.e. a 3.9% gold loss. Given that the Kapika structures are of a lower average grade than most of the other GR ones on the east side, it might be safe to lower the capping limit for assay data in those structures.  A cumulative frequency plot of GT products (Figure 5) suggests a cap at 15 m.g/t with a gold loss of 17.1% (average capped grade is down to 2.61g/t) which might be a little too severe. A conpromise would be a capping at 25m.g/t with only two assays capped (the previous one plus a 1m@34g/t in TH-11-100 and also in zone 452) and a gold loss of 9.6% (average capped grade of 2.85 g/t).

 

As usual, capped interval data have been composited into 1m composites with a minimum documented length of  0.5m and a dilution with zero grade of gaps. We have 85 composites in zone 452 with an average capped grade of 2.43 g/t and 82 composites in zone 453 with an average capped grade of 3.86 g/t with LSG capping scheme (likely 36 g/t limit on grade) applied in both cases. The overall average of 3.11 g/t for the 167 composites is a bit high compared to the length weighted average of capped intervals within intercepts of 2.88g/t. The origin of that difference probably lies in an over-representation of low grade in composites dropped because too short.

 

12



 

The grade estimate of the portion of each block (same 3x2x3m grid as for the other zones of GR) within a given mineralized zone is interpolated by inverse distance squared from the capped grade of neighbour 1m composites in the same zone.  Interpolation is done in up to 4 runs with relaxed search limitations from one run to the next until all blocks within interpreted zones are interpolated. Search ellipsoid size ranges from 15x15x8m (run 1) to 120x120x50m (run 4). Ellipsoids strike E-W and dip 85o to the north. Minimum number of composites in the ellipsoid is 5 in at least 3 different holes (maximum number of composites from the same hole is 2). The maximum number of composites kept in the ellipsoid is 10 in all the runs. Those interpolation parameters look reasonable given the limited number of composites in mineralized intercepts.

 

The weighted average block grade of 3.31 g/t Au for the 7183 blocks with some material in zones 452 or 453 is reasonably close to the average composite grade of 3.11 g/t. Block average is more than composite average in zone 452 (2645 blocks averaging 3.01 g/t compared to 2.43 g/t for composites) and less than composite average in zone 453 (4538 blocks averaging 3.48 g/t compared to 3.86 g/t for composites).

 

Like for the other mineralized zones of GR, resources of zones 452 and 453 have been estimated through polygons around projected intercepts on the E-W long section plane (Figure 6). The conversion of intercept length into horizontal N-S thickness is based on a fixed dip of 75o to the north for both structures. Of course, this is an approximation since the local dip and azimuth of those structures is quite variable. Multiple intercepts in holes KZ-05-01 and KZ-05-03 are excluded. Maximum radius of polygons is limited to 30m. The polygonal resource estimate compares reasonably well with the block model resource estimate at no cut-off (Table 5). As expected from the varying zone orientation, average polygon thickness is less but since polygon surface is more, tonnages are within less than 10% while metal is 15% more with polygons mostly as a result of a higher average grade (part of that higher grade can be explained by the different capping scheme of composites i.e. 36 g/t Au for block model and 50 m.g/tAu for 2D polygons).

 

The polygonal maps of Figure 6 enhance intercepts with polygons capturing a sizeable fraction of the total metal estimate for the zone.

 

Table 5 Kapika : comparison of resources from LSG block model and alternative 2D polygons

 

Zone

 

Model

 

Nb

 

Surface

 

Thck

 

Tonnage

 

Grade

 

Metal

 

 

 

 

 

Blk/Int

 

m2

 

m

 

t

 

g/tAuc

 

Oz Au

 

452

 

Block

 

2645

 

8,391

 

2.51

 

58,968

 

3.01

 

5,703

 

452

 

Poly2D

 

17

 

9,609

 

2.32

 

62,504

 

3.75

 

7,533

 

453

 

Block

 

4538

 

13,923

 

2.87

 

112,105

 

3.48

 

12,552

 

453

 

Poly2D

 

21

 

14,451

 

2.41

 

97,454

 

4.31

 

13,504

 

452+453

 

Block

 

7183

 

22,314

 

2.74

 

171,073

 

3.32

 

18,255

 

452+453

 

Poly2D

 

38

 

24,060

 

2.37

 

159,958

 

4.09

 

21,037

 

%Difference

 

 

 

 

 

7.8

%

-13.3

%

-6.5

%

23.2

%

15.2

%

 

13



 

Figure 5 Histogram and cumulative frequency plot of GTs of all Kapika mineralized intervals

 

GRAPHIC

 

GRAPHIC

 

14



 

Figure 6 E-W long section with projection of Kapika zone intercepts

 

GRAPHIC

 

GRAPHIC

 

Mineralized intercepts and polygons in red. Blank intercepts and polygons in black. Extent of the projected resource block model in blue.

 

15



 

7-             Resource update

 

On January 20, 2012, we received from LSG a package with updated resource block models for the GR mineralized zones as well as updated DH data, mineralized solids and composites.

 

The updated DH database has values for  753 holes totalling 231,267 m. All those holes were in the previous DH database except (1) GW-08-18A (2) RIO-84-01 to 04 : those holes do not have survey data nor assay data and they are removed from the database (3) TH-114 to 115, 117 to 123, 124A to 131 : those 17 holes are likely new holes. Hole TW-97-52E does not have survey data either but we can use the azimuth (180) and dip (-47) at collar in the previous database. Collar coordinates range from 457,859x, 5,353,409y, 9999z to 464,543x, 5,356,883y, 10033z i.e. about 6.7x3.5km extension or more restricted to the sector with the mineralized zones of interest.

 

Like before, a majority of those drill holes (681 out of 753) dip from 42o to 77o to the south (N169 to N191). Drill hole length varies from 13 to 1364m with an average of 307m. We have 121,100 valid assay intervals along those holes.  Assay interval length varies from a mere 0.05m to 9.1m, with long intervals of very low grade (intervals with grades of at least 0.5 g/t are less than 3m long). Total meterage is 139,899m i.e. an average of 1.15m/interval. A majority of intervals (38%) are 1.5m long with significant groups of 1m intervals (32%) and 0.5m intervals (6%). Gold assay values range from 0 to 1350g/t (a 0.3m interval in TH-11-113) with an uncapped weighted average of 0.20 g/t. As before, holes tend to be on NS cross-sections with a E-W spacing as low as 20-25m between sections and a similar spacing between holes on the same section.

 

We have up to 1827 assay intervals in the 492 mineral intercepts of zones with holes vs. 1905 assay intervals in 475 intercepts before. Like before, their length ranges from 0.2m to 3.04m with an average of 0.93m. 1m is the most current length (33%) followed by 1.5m (15%) and 0.5m (13%). The gold grade of those assay intervals ranges from 0 to 1350g/t with a (length-weighted and uncapped) average of 5.29g/t (vs. 4.96 g/t before).

 

The capping scheme proposed on the Dec. 2011 version of the model is still valid. GTs of samples in main east and west zones (211 to 443) continue to show an obvious gap at 50m.g/t (Figure 7). Capping at that limit generates a gold loss of 12.9% (vs. 12.1% before). In the Kapika zones (452-453), the capping at 25m.g/t continues to generate a gold loss of 10.2% (vs. 9.6% before).

 

16



 

As usual, capped interval data have been composited into 1m composites with a minimum documented length of  0.5m and a dilution with zero grade of gaps. Like before, our composite data agree well with LSG composites (Table 6). Compared to previous composite data, we have exactly the same composites in the West zones and slightly less in the East and Kapika zones where previous intercepts in holes NZ-05-02 and 13 as well as KZ-05-01 to 03 with a poor intersection angle (they are dipping to east) have been dropped. Since those intercepts were generally low grade and the new capping scheme is less severe than the previous one, average composite grades increase in the East zones (5.02 g/t vs 4.55 g/t before) and the Kapika zones (3.84 g/t vs 3.11 g/t before).

 

Like before, the grade estimate of the portion of each block 3x2x3m within a given mineralized zone is interpolated by inverse distance squared from the capped grade of neighbour 1m composites in the same zone.  Interpolation is done in up to 5 runs (4 in Kapika zones 452 and 453) with relaxed search limitations from one run to the next until all blocks within interpreted zones are interpolated. Search ellipsoid size ranges from 15x15x8m (run 1) to 120x120x50m (run 5). Ellipsoids are generally striking E-W (from N260 to N272) and dipping to the north (from 62o to 85o). Minimum number of composites in the ellipsoid is 5 in at least 3 different holes (maximum number of composites from the same hole is 2) except for the last run 5 where blocks can be interpolated from 2 composites in the same hole (in that case, the block grade estimate is the average capped grade of those 2 composites). The maximum number of composites kept in the ellipsoid is 10 in all the runs.

 

Average block grade estimates (weighted by block percentage in zone) have not changed much (Table 6). Overall average block grade continues to be more than the average composite grade (5.12 g/t vs 4.79 g/t, a 6% difference) but most of the difference is in the deep (and scarcely drilled) zone 4800-S3D (443) zone with an average block grade of 8.37 g/t to compare to an average composite grade of 6.14 g/t. Actually, if we do not take that zone into account, the average block grade (4.57 g/t) is less than the average composite grade (4.71 g/t). However, because of the significant 33% reduction of the interpreted extent of the 4800-S3D zone (443) as well as a 25% reduction of zone 4800-S1D (441) and to a lesser extent zones 4800-S1 (411 with 9% reduction) and 4800-S2 (412 with 8% reduction), estimated overall gold ounces are down to 1.27Moz from 1.42Moz before. The extent of the 4800-N1 has increased by 9%.

 

From the files received, it is not clear how block resources are categorized but it looks like based on interpolation run number with blocks interpolated in runs 1 and 2 in the indicated category (about 10% of ounces at no cut-off), blocks interpolated in runs 3 and 4 in the inferred category (about 86% of ounces at no cut-off) and blocks interpolated in run 5 dropped from the resource pool (only about 4% of ounces at no cut-off). We favour a classification based on the spacing between intercepts of the same zone on the E-W long section i.e. indicated blocks are those which project within a contour drawn on that long section plane around joint polygons of influence of a 30-35m radius (i.e. 40-50m spacing between intercepts) around intercepts. We have no problem of having reported resources only in blocks estimated above 1.5 g/t Au (actually they capture 98% of the ounces at no cut-off but with an average grade about 11% higher i.e. 5.7 g/t instead of 5.1 g/t).

 

17



 

Table 6 Comparison of average composite and block grades in the different zones

 

Zone

 

Nzone

 

Nb SGS
composites

 

Average SGS
composites
g/tAuc

 

Nb LSG
composites

 

Average LSG
Composites
g/t Auc

 

Nb. blocks

 

Tonnage
t

 

Grade
g/tAuc

 

Metal
OzAu

 

W1A

 

211

 

119

 

4.19

 

119

 

4.19

 

27,435

 

671,323

 

4.42

 

95,514

 

W1A1

 

212

 

38

 

4.24

 

38

 

4.24

 

7,831

 

192,012

 

4.54

 

28,046

 

W1B

 

221

 

81

 

3.83

 

81

 

3.83

 

11,363

 

287,091

 

3.69

 

34,055

 

W1B1

 

222

 

9

 

4.15

 

9

 

4.15

 

1,438

 

34,506

 

4.03

 

4,476

 

Total West

 

 

 

247

 

4.08

 

247

 

4.08

 

48,067

 

1,184,932

 

4.25

 

162,091

 

4800

 

400

 

269

 

4.76

 

270

 

4.73

 

32,087

 

799,876

 

4.60

 

118,285

 

4800-N1

 

401

 

270

 

5.09

 

268

 

5.13

 

27,150

 

716,765

 

4.71

 

106,468

 

4800-N2

 

402

 

63

 

6.15

 

63

 

6.15

 

8,106

 

200,895

 

4.61

 

29,762

 

4800-N4

 

404

 

38

 

3.20

 

38

 

3.20

 

10,781

 

287,838

 

3.66

 

33,843

 

4800-S1

 

411

 

349

 

5.10

 

350

 

5.06

 

68,332

 

1,833,565

 

4.84

 

285,275

 

4800-S2

 

412

 

46

 

3.27

 

46

 

3.27

 

19772

 

540,820

 

3.30

 

57,360

 

4800-S1A

 

421

 

91

 

4.90

 

91

 

4.90

 

11,947

 

292,623

 

4.50

 

42,378

 

4800-S1D

 

441

 

60

 

5.44

 

60

 

5.44

 

21,213

 

578,700

 

6.16

 

114,620

 

4800-S3D

 

443

 

92

 

6.14

 

92

 

6.14

 

39,694

 

1,117,157

 

8.37

 

300,799

 

Total East

 

 

 

1278

 

5.03

 

1278

 

5.02

 

239,082

 

6,368,239

 

5.32

 

1,088,790

 

4800-N5A

 

452

 

45

 

3.01

 

46

 

3.06

 

2,500

 

57,207

 

3.38

 

6217

 

4800-N5B

 

453

 

81

 

4.26

 

83

 

4.27

 

4646

 

112,207

 

3.78

 

13,635

 

Total Kapika

 

 

 

126

 

3.81

 

129

 

3.84

 

7,146

 

169,414

 

3.64

 

19,852

 

Grand Total

 

 

 

1651

 

4.79

 

1654

 

4.79

 

294,295

 

7,722,585

 

5.12

 

1,270,733

 

 

18



 

Figure 7 Log cumulative frequency curves of GTs of zone samples in the updated model

 

GRAPHIC

 

GRAPHIC

 

19



 

8-             Statistical analysis of QAQC assay data for LSG samples

 

What follows is a statistical analysis of QAQC data for gold assays in GR drill holes by LSG in 2010-2011. Those data are in file Master_List_QAQC_Thorne_43-101.xlsx, made available to us on January 23, 2012.

 

8-1 Standards

 

From March 2010 (hole TH-10-01) to early January 2012 (hole TH-11-130), up to 2437 standard pulps have been submitted to the ALS Canada Ltd. assay lab. Summary statistics of standard results are on Table 7. Up to 16 standards have been used by LSG. Most commonly used standards are O-2Pd with a low target value of 0.885 g/t and O-6Pc with a medium target value of 1.52 g/t. In addition to the target value, standard deviation (StDev) and corresponding “gates” of target +/- 3 standard deviations (Min and Max), the table lists :

 

+ the number of results for the standard (Nb)

+ the mean result (Average)

+ the % relative difference between the mean result and the target (%Diff.)

+ a flag to indicate if the difference between the mean result and the target is significant at the 95% confidence level given the quoted standard deviation and the number of results (Sig. = 1 if significant). The difference is significant if its absolute value exceeds 2*StDev/Nb 0.5

+ the percentage of results below and above the target (PBelow and PAbove)

+ the percentage of results outside the Min/Max “gates” of Target+/- 3*StDev.

 

Relative differences between mean result and target range from -2.7% to +1.4%. Relative differences for the two most used standards quoted above are of the order of 1%. Nevertheless, with the quoted standard deviations of standards, some average relative differences (6 out of 16) are found to be significant at the 95% confidence level. As usual with standards, the quoted standard deviations are likely to be undervalued since derived from results in ideal conditions (round robin involving several labs). There is no specific trend for the sign of difference i.e. we have negative and positive differences for low grade and high grade standards. All together, average (weighted by number of results) difference is almost null (average result of 1.685 g/t vs. average target of  1.683 g/t Au) hence there is no sign of an overall bias in the results for standards.

 

The overall proportion of results above target is about the same as below target (52% vs. 48%) while the overall proportion of results beyond gates keeps low (less than 2%)

 

20



 

Table 7 Statistics of results for standard pulps with LSG samples to ALS

 

Standard

 

Target

 

StdDev

 

Min

 

Max

 

Nb

 

Average

 

%Diff.

 

Sig.

 

PBelow

 

PAbove

 

POutside

 

 

 

g/tAu

 

g/tAu

 

g/tAu

 

g/tAu

 

 

 

g/tAu

 

%

 

 

 

%

 

%

 

%

 

O-10c

 

6.660

 

0.183

 

6.110

 

7.080

 

43

 

6.586

 

-1.1

%

1

 

65.1

%

34.9

%

2.3

%

O-10Pb

 

7.150

 

0.193

 

6.570

 

7.730

 

13

 

7.106

 

-0.6

%

0

 

53.8

%

46.2

%

7.7

%

O-15h

 

1.019

 

0.025

 

0.945

 

1.093

 

123

 

1.018

 

-0.1

%

0

 

48.8

%

51.2

%

0.8

%

O-15Pa

 

1.020

 

0.027

 

0.940

 

1.100

 

198

 

0.992

 

-2.7

%

1

 

86.1

%

13.9

%

6.1

%

O-15Pb

 

1.060

 

0.030

 

0.970

 

1.140

 

292

 

1.056

 

-0.4

%

1

 

57.5

%

42.5

%

1.7

%

O-18c

 

3.52

 

0.107

 

3.200

 

3.840

 

19

 

3.529

 

0.3

%

0

 

39.5

%

60.5

%

0.0

%

O-18Pb

 

3.630

 

0.070

 

3.420

 

3.840

 

29

 

3.653

 

0.6

%

0

 

39.7

%

60.3

%

3.4

%

O-2Pd

 

0.885

 

0.029

 

0.797

 

0.973

 

472

 

0.882

 

-0.3

%

1

 

53.0

%

47.0

%

1.1

%

O-53Pb

 

0.623

 

0.021

 

0.559

 

0.687

 

64

 

0.621

 

-0.4

%

0

 

47.7

%

52.3

%

3.1

%

O-54Pa

 

2.900

 

0.110

 

2.570

 

3.230

 

58

 

2.904

 

0.1

%

0

 

40.5

%

59.5

%

1.7

%

O-60b

 

2.570

 

0.107

 

2.250

 

2.890

 

87

 

2.572

 

0.1

%

0

 

38.5

%

61.5

%

1.1

%

O-61d

 

4.760

 

0.143

 

4.330

 

5.190

 

73

 

4.825

 

1.4

%

1

 

28.1

%

71.9

%

0.0

%

O-66a

 

1.237

 

0.054

 

1.075

 

1.399

 

248

 

1.239

 

0.2

%

0

 

48.0

%

52.0

%

1.6

%

O-67a

 

2.238

 

0.096

 

1.950

 

2.526

 

111

 

2.252

 

0.6

%

0

 

39.6

%

60.4

%

1.8

%

O-68a

 

3.890

 

0.147

 

3.450

 

4.330

 

101

 

3.876

 

-0.4

%

0

 

48.0

%

52.0

%

3.0

%

O-6Pc

 

1.520

 

0.067

 

1.320

 

1.720

 

506

 

1.540

 

1.3

%

1

 

28.3

%

71.7

%

0.8

%

All

 

1.683

 

 

 

 

 

 

 

2437

 

1.685

 

0.0

%

 

 

47.8

%

52.2

%

1.8

%

 

8-2      Blanks

 

From March 2010 (hole TH-10-02) to December 2011 (hole TH-11-129), up to 2430 blanks have been submitted to the ALS Canada Ltd assay lab. The only statistics which can be derived from results for blanks is the proportion of them above a given threshold. Traditionally, this threshold is five times the detection limit which in the case of GR looks like 0.0025 g/tAu hence a threshold of 0.0125 g/tAu. This in fact pretty low and we generally prefer to use a “practical” threshold of 0.1 g/t Au.

 

We have 78 results (3.2%) above 0.0125 g/t Au and 6 results (0.2%) above 0.1 g/t (up to 1.74 g/t Au). Based on our experience, we find that performance quite acceptable.

 

8-3      Duplicates

 

Pulp duplicates are assays from another split of the same pulp selected at random from the lab for its own quality control purposes. Up to 1823 lab duplicates at the ALS Canada Ltd lab from March 2010 (hole TH-10-01) to early January 2012 (hole TH-11-128) and with an original and a duplicate grade can be identified in the supplied database.

 

The statistic of interest with duplicates at the same lab is either the correlation coefficient of originals and duplicates (preferably with a log scale) or the average relative difference of originals and duplicates above a given threshold (very low grades tend to generate high relative differences with an undue influence on the average relative difference). In this case we use a threshold of 0.5g/tAu.

 

For the ALS pulp duplicates, the average relative difference is a mere 4.3% with a correlation coefficient of 0.999 which is very good. Correlation plot is on top of Figure 8.

 

21



 

Coarse duplicates are normally assays from a new pulp made out of the crushed and ground (but not pulverized) reject of the original sample. Up to 2125 coarse duplicates from May 2010 to December 2011 have been assayed at the ALS Canada Ltd lab with an original and a duplicate grade. As expected, we see more differences between duplicated and original values with the coarse duplicates than with the pulp duplicates. For those coarse duplicates the average relative difference is 22.7% with a correlation coefficient of 0.991 which is also quite good. The scatter plot at the bottom of Figure 8 illustrates the lower reproduction of original values in the coarse duplicates.

 

8-4 Check assays

 

From data supplied, check assays look like pulp rejects originally assayed by ALS which have been sent to the SGS lab for another fire assay. We can identify 1421 complete check assay samples from March 2010 (hole TH-10-01) to December 2011 (hole TH-11-88). Original (ALS) values range from 0.0025 to 85.6 g/t with an average of 0.98 g/t while check (SGS) values range from 0.0025 to 79 g/t with a mean of 0.98 g/t. Despite the similarity of mean raw data, a T-test of paired data run on log grade (to respect some normality of parent population) shows that the differences of means is significant at the 95% confidence level (T= -4.21 with a limit at -1.96 — the correlation coefficient of log data is 0.98) with the mean log SGS value of -1.06 significantly higher than the mean ALS value of -1.08. A sign test confirms the presence of a significant bias between the two sets (we have 39.7% of pairs with original value more than duplicate value with a 95% lower confidence limit at 47.3%). In other words, SGS values are generally slightly more than the ALS values

 

The correlation plot of check and original values is on Figure 9. It shows a generally good agreement between original and check data except for a few outlier pairs with fairly different values and which may need some explanation.

 

8-5 Conclusions

 

Despite the high variability of gold grades from GR samples, the QAQC data of samples from LSG holes in 2010-2011 and analyzed at the ALS Canada Ltd. lab tend to indicate that the quality of those sample grade values is more than satisfactory. Although we have significant differences between mean results and target values for some standards, we do not see any overall bias from the results of standards. Blanks show a few cases of likely contamination but the proportion of real failures keeps extremely low (0.2%). Lab and coarse duplicates show better than expected sample errors i.e. about 5% relative difference for pulp duplicates and 20% relative difference for coarse duplicates. Check pulp samples at the SGS lab indicate that there is a possibility that ALS values are slightly conservative.

 

22



 

Figure 8 Correlation plots of pulp and coarse duplicates

 

GRAPHIC

 

GRAPHIC

 

23



 

Figure 9 Correlation plots of check and original assays

 

GRAPHIC

 

9-             Statistical analysis of historical QAQC assay data

 

What follows is a statistical analysis of historical QAQC data for gold assays in GR drill holes by previous operators of LSG, mostly from 2003-2006 (from dates of certificates available). Those data are in file Master_List_Historic_QAQC_Thorne_43-101.xlsx, made available to us on January 23, 2012.

 

9-1      Standards

 

Results from standard pulps have been separated according to the three labs used to process samples from the GR DHs at that time i.e. : Accurassay Laboratories, ALS Canada Ltd. and Swastika Laboratories Ltd. Summary statistics of standard results for each lab are on Tables 8 to 10. In addition to the target value, standard deviation (StDev) and corresponding “gates” of target +/- 3 standard deviations (Min and Max), the table lists :

 

+ the number of results for the standard (Nb)

+ the mean result (Average)

+ the % relative difference between the mean result and the target (%Diff.)

+ a flag to indicate if the difference between the mean result and the target is significant at the 95% confidence level given the quoted standard deviation and the number of results (Sig. = 1 if significant). The difference is significant if its absolute value exceeds 2*StDev/Nb 0.5

+ the percentage of results below and above the target (PBelow and PAbove)

+ the percentage of results outside the Min/Max “gates” of Target+/- 3*StDev.

 

24



 

It should be noted that :

 

+ target values, standard deviation and gates are not available for some of the standards (CDN-BL-3/4, CDN-CM-4, CDN-GS-14 and CGS-1/21) hence results from those standards are not used to derive the overall statistics of the lab performance.

+ reported standard deviations and gates for some of the standards have been standardized to reflect a standard deviation to target ratio of about 2-4% and gates equal to the target plus or minus 3 standard deviations

+ some odd results are not reported and used in the statistical compilation. By odd results, we mean a result which is an order of magnitude different from the target value. For example, Accurassay returned a 13.7 g/t for the CDN-GS-1P5 standard with a target value of 1.37 g/t. Those odd results likely originate from transcription errors (or the lab wrongly guessing the value of the standard). We have 7 of those odd results for Accurassay returns, 2 for ALS returns and none for Swastika returns.

 

In all three cases, there is no specific trend for the sign of difference between average result and target value i.e. we have negative and positive differences for low grade and high grade standards.

 

The worse overall statistics are with results from the Accurassay lab: on average, the relative difference between returned and target value is -7.8% and we generally have more returns below target (70.8%) than above target (29.2%). Also the overall proportion of returns outside the gates is very high (57.1%). In other words, both the accuracy and precision of Accurassay results are not adequate. Fortunately, Accurassay has a tendency to undervalue the true grade of standards hence the routine pulps that were submitted to it.

 

The performance of the ALS lab is much better : average difference is a mere -0.9%, proportions of results below and above target are respectively 54.1% and 45.9% while the overall proportion of results outside the gates is only 9.7%. In other words, ALS is very slightly under-valuing the grade of samples.

 

The performance of the Swastika lab is about the same as that of ALS :  average difference is a mere +0.7%, proportions of results below and above target are respectively 39.0% and 61.0% while the overall proportion of results outside the gates is only 15.8%. In other words, Swastika is very slightly over-valuing the grade of samples.

 

25



 

Table 8 Statistics of historical results for standard pulps from the Accurassay lab

 

Standard

 

Target

 

StdDev

 

Min

 

Max

 

Nb

 

Average

 

%Diff.

 

Sig.

 

PBelow

 

PAbove

 

POutside

 

 

 

g/tAu

 

g/tAu

 

g/tAu

 

g/tAu

 

 

 

g/tAu

 

%

 

 

 

%

 

%

 

%

 

CDN-BL-3

 

0.000?

 

 

 

 

 

 

 

4

 

0.200

 

 

 

 

 

 

 

 

 

 

 

CDN-GS-14

 

0.000?

 

 

 

 

 

 

 

3

 

1.896

 

 

 

 

 

 

 

 

 

 

 

O-52P

 

0.183

 

0.01

 

0.167

 

0.199

 

5

 

0.176

 

-3.6

%

1

 

60.0

%

40.0

%

40.0

%

CDN-GS-P3

 

0.3

 

0.01

 

0.260

 

0.340

 

2

 

0.281

 

-6.3

%

1

 

100.0

%

0.0

%

0.0

%

O-51P

 

0.43

 

0.013

 

0.391

 

0.469

 

3

 

0.430

 

0.0

%

0

 

33.3

%

66.7

%

66.7

%

CDN-GS-P5B

 

0.44

 

0.01

 

0.400

 

0.480

 

18

 

0.383

 

-12.9

%

1

 

88.9

%

11.1

%

55.6

%

CDN-GS-P7A

 

0.77

 

0.02

 

0.710

 

0.830

 

16

 

0.665

 

-13.6

%

1

 

81.3

%

18.8

%

62.5

%

CDN-GS-1P5A

 

1.37

 

0.04

 

1.250

 

1.490

 

16

 

1.233

 

-10.0

%

1

 

68.8

%

31.3

%

56.3

%

O-6Pb

 

1.425

 

0.052

 

1.270

 

1.580

 

4

 

1.373

 

-3.6

%

1

 

100.0

%

0.0

%

0.0

%

CDN-GS-2B

 

2.03

 

0.04

 

1.910

 

2.150

 

14

 

1.771

 

-12.8

%

1

 

85.7

%

14.3

%

71.4

%

CDN-GS-2C

 

2.06

 

0.05

 

1.910

 

2.210

 

4

 

2.080

 

0.9

%

0

 

25.0

%

75.0

%

50.0

%

O-17Pb

 

2.56

 

0.12

 

2.210

 

2.910

 

3

 

2.760

 

7.8

%

1

 

0.0

%

100.0

%

0.0

%

O-18Pa

 

3.36

 

0.10

 

3.060

 

3.670

 

5

 

3.460

 

3.0

%

1

 

40.0

%

60.0

%

40.0

%

CDN-GS-3B

 

3.47

 

0.09

 

3.210

 

3.730

 

17

 

3.403

 

-1.9

%

1

 

64.7

%

35.3

%

58.8

%

CDN-GS-3C

 

3.58

 

0.10

 

3.270

 

3.890

 

3

 

3.592

 

0.3

%

0

 

33.3

%

66.7

%

66.7

%

O-61Pa

 

4.46

 

0.13

 

4.060

 

4.860

 

4

 

4.394

 

-1.5

%

0

 

50.0

%

50.0

%

25.0

%

CDN-GS-5C

 

4.74

 

0.09

 

4.460

 

5.020

 

15

 

4.216

 

-11.1

%

1

 

86.7

%

13.3

%

80.0

%

O-61Pb

 

4.75

 

0.13

 

4.360

 

5.140

 

4

 

4.830

 

1.7

%

0

 

50.0

%

50.0

%

25.0

%

CDN-GS-5D

 

5.06

 

0.08

 

4.810

 

5.310

 

5

 

4.614

 

-8.8

%

1

 

100.0

%

0.0

%

80.0

%

CDN-GS-6P5

 

6.74

 

0.15

 

6.290

 

7.190

 

3

 

5.769

 

-14.4

%

1

 

66.7

%

33.3

%

66.7

%

O-62Pa

 

9.64

 

0.29

 

8.772

 

10.508

 

1

 

10.444

 

8.3

%

1

 

0.0

%

100.0

%

100.0

%

CDN-GS-10A

 

9.78

 

0.18

 

9.250

 

10.310

 

10

 

8.097

 

-17.2

%

1

 

80.0

%

20.0

%

80.0

%

O-62Pb

 

11.33

 

0.35

 

10.270

 

12.390

 

2

 

11.967

 

5.6

%

1

 

0.0

%

100.0

%

0.0

%

All

 

3.020

 

 

 

 

 

 

 

154

 

2.783

 

-7.8

%

 

 

70.8

%

29.2

%

57.1

%

 

26



 

Table 9 Statistics of historical results for standard pulps from the ALS lab

 

Standard

 

Target

 

StdDev

 

Min

 

Max

 

Nb

 

Average

 

%Diff.

 

Sig.

 

PBelow

 

PAbove

 

POutside

 

 

 

g/tAu

 

g/tAu

 

g/tAu

 

g/tAu

 

 

 

g/tAu

 

%

 

 

 

%

 

%

 

%

 

CDN-BL-3

 

0.000?

 

 

 

 

 

 

 

15

 

0.003

 

 

 

 

 

 

 

 

 

 

 

CDN-BL-4

 

0.000?

 

 

 

 

 

 

 

11

 

0.020

 

 

 

 

 

 

 

 

 

 

 

CDN-CM-4

 

 

 

 

 

 

 

 

 

13

 

1.185

 

 

 

 

 

 

 

 

 

 

 

O-51P

 

0.43

 

0.013

 

0.391

 

0.469

 

2

 

0.437

 

1.5

%

0

 

50.0

%

50.0

%

50.0

%

CDN-GS-P5B

 

0.44

 

0.01

 

0.400

 

0.480

 

12

 

0.416

 

-5.4

%

1

 

91.7

%

8.3

%

0.0

%

CDN-CGS-15

 

0.57

 

0.02

 

0.510

 

0.630

 

11

 

0.564

 

-1.0

%

0

 

72.7

%

27.3

%

9.1

%

O-50P

 

0.727

 

0.022

 

0.662

 

0.792

 

1

 

0.790

 

8.7

%

1

 

0.0

%

100.0

%

100.0

%

CDN-CGS-19

 

0.74

 

0.02

 

0.670

 

0.810

 

9

 

0.743

 

0.3

%

0

 

33.3

%

66.7

%

0.0

%

CDN-GS-P7A

 

0.77

 

0.02

 

0.710

 

0.830

 

14

 

0.746

 

-3.1

%

1

 

71.4

%

28.6

%

14.3

%

CGS-13

 

1.01

 

0.04

 

0.900

 

1.120

 

15

 

1.011

 

0.1

%

0

 

56.7

%

43.3

%

13.3

%

CDN-GS-1P5A

 

1.37

 

0.04

 

1.250

 

1.490

 

14

 

1.476

 

7.8

%

1

 

7.1

%

92.9

%

35.7

%

CDN-CM-2

 

1.42

 

0.04

 

1.290

 

1.550

 

11

 

1.396

 

-1.7

%

0

 

54.5

%

45.5

%

0.0

%

CDN-CM-1

 

1.85

 

0.05

 

1.690

 

2.010

 

16

 

1.862

 

0.6

%

0

 

37.5

%

62.5

%

0.0

%

CDN-GS-2C

 

2.06

 

0.05

 

1.910

 

2.210

 

16

 

2.046

 

-0.7

%

0

 

65.6

%

34.4

%

0.0

%

O-17Pb

 

2.56

 

0.12

 

2.210

 

2.910

 

4

 

2.510

 

-2.0

%

0

 

50.0

%

50.0

%

0.0

%

O-18Pa

 

3.36

 

0.10

 

3.060

 

3.670

 

2

 

3.445

 

2.5

%

0

 

0.0

%

100.0

%

0.0

%

CDN-GS-3D

 

3.41

 

0.08

 

3.160

 

3.660

 

14

 

3.399

 

-0.3

%

0

 

42.9

%

57.1

%

0.0

%

CDN-GS-3C

 

3.58

 

0.10

 

3.270

 

3.890

 

13

 

3.537

 

-1.2

%

0

 

38.5

%

61.5

%

7.7

%

O-61Pb

 

4.75

 

0.13

 

4.360

 

5.140

 

1

 

4.710

 

-0.8

%

0

 

100.0

%

0.0

%

0.0

%

CDN-GS-5D

 

5.06

 

0.08

 

4.810

 

5.310

 

13

 

4.945

 

-2.3

%

1

 

76.9

%

23.1

%

23.1

%

CDN-GS-6P5

 

6.74

 

0.15

 

6.290

 

7.190

 

15

 

6.551

 

-2.8

%

1

 

73.3

%

26.7

%

6.7

%

O-62Pa

 

9.64

 

0.29

 

8.772

 

10.508

 

1

 

9.990

 

3.6

%

0

 

0.0

%

100.0

%

100.0

%

O-62Pb

 

11.33

 

0.35

 

10.270

 

12.390

 

1

 

11.450

 

1.1

%

0

 

0.0

%

100.0

%

0.0

%

All

 

2.416

 

 

 

 

 

 

 

185

 

2.394

 

-0.9

%

 

 

54.1

%

45.9

%

9.7

%

 

27



 

Table 10 Statistics of historical results for standard pulps from the Swastika lab

 

Standard

 

Target

 

StdDev

 

Min

 

Max

 

Nb

 

Average

 

%Diff.

 

Sig.

 

PBelow

 

PAbove

 

POutside

 

 

 

g/tAu

 

g/tAu

 

g/tAu

 

g/tAu

 

 

 

g/tAu

 

%

 

 

 

%

 

%

 

%

 

CDN-CM-4

 

 

 

 

 

 

 

 

 

13

 

1.152

 

 

 

 

 

 

 

 

 

 

 

CGS-1

 

 

 

 

 

 

 

 

 

1

 

0.530

 

 

 

 

 

 

 

 

 

 

 

CGS-21

 

 

 

 

 

 

 

 

 

18

 

0.987

 

 

 

 

 

 

 

 

 

 

 

CDN-BL-4

 

0?

 

 

 

 

 

 

 

14

 

0.078

 

 

 

 

 

 

 

 

 

 

 

CDN-CGS-14

 

0?

 

 

 

 

 

 

 

1

 

0.720

 

 

 

 

 

 

 

 

 

 

 

O-52P

 

0.183

 

0.01

 

0.167

 

0.199

 

3

 

0.193

 

5.6

%

1

 

33.3

%

66.7

%

100.0

%

O-51P

 

0.43

 

0.013

 

0.391

 

0.469

 

3

 

0.443

 

3.1

%

0

 

33.3

%

66.7

%

100.0

%

CDN-CGS-15

 

0.57

 

0.02

 

0.510

 

0.630

 

18

 

0.582

 

2.0

%

1

 

66.7

%

33.3

%

16.7

%

O-50P

 

0.727

 

0.022

 

0.662

 

0.792

 

2

 

0.760

 

4.5

%

1

 

0.0

%

100.0

%

100.0

%

CDN-CGS-19

 

0.74

 

0.02

 

0.670

 

0.810

 

19

 

0.746

 

0.8

%

0

 

50.0

%

50.0

%

26.3

%

CGS-13

 

1.01

 

0.04

 

0.900

 

1.120

 

22

 

1.005

 

-0.5

%

0

 

47.7

%

52.3

%

4.5

%

CDN-GS-1D

 

1.05

 

0.03

 

0.950

 

1.150

 

28

 

1.063

 

1.2

%

1

 

41.1

%

58.9

%

7.1

%

O-15Pz

 

1.27

 

0.04

 

1.150

 

1.390

 

4

 

1.310

 

3.1

%

0

 

37.5

%

62.5

%

25.0

%

CDN-CM-2

 

1.42

 

0.04

 

1.290

 

1.550

 

21

 

1.461

 

2.9

%

1

 

19.0

%

81.0

%

0.0

%

O-6Pb

 

1.425

 

0.05

 

1.27

 

1.58

 

6

 

1.362

 

-4.4

%

1

 

66.7

%

33.3

%

0.0

%

CDN-CM-1

 

1.85

 

0.05

 

1.690

 

2.010

 

19

 

1.848

 

-0.1

%

0

 

23.7

%

76.3

%

0.0

%

O-17Pb

 

2.56

 

0.12

 

2.21

 

2.91

 

7

 

2.613

 

2.1

%

0

 

14.3

%

85.7

%

0.0

%

CDN-GS-3E

 

2.97

 

0.09

 

2.700

 

3.240

 

26

 

3.041

 

2.4

%

1

 

50.0

%

50.0

%

30.8

%

O-18Pa

 

3.36

 

0.10

 

3.06

 

3.67

 

7

 

3.421

 

1.8

%

0

 

7.1

%

92.9

%

0.0

%

CDN-GS-3D

 

3.41

 

0.08

 

3.160

 

3.660

 

2

 

3.650

 

7.0

%

1

 

0.0

%

100.0

%

0.0

%

CDN-GS-4A

 

4.42

 

0.15

 

3.960

 

4.880

 

23

 

4.421

 

0.0

%

0

 

39.1

%

60.9

%

8.7

%

O-61Pa

 

4.46

 

0.13

 

4.06

 

4.86

 

2

 

4.690

 

5.2

%

1

 

0.0

%

100.0

%

0.0

%

O-61Pb

 

4.75

 

0.13

 

4.36

 

5.14

 

5

 

4.726

 

-0.5

%

0

 

40.0

%

60.0

%

0.0

%

CDN-GS-7A

 

7.2

 

0.20

 

6.600

 

7.800

 

26

 

7.295

 

1.3

%

1

 

32.7

%

67.3

%

3.8

%

O-62Pa

 

9.64

 

0.29

 

8.772

 

10.508

 

4

 

10.185

 

5.7

%

1

 

0.0

%

100.0

%

100.0

%

CDN-GS-10C

 

9.71

 

0.22

 

9.060

 

10.360

 

23

 

9.909

 

2.1

%

1

 

37.0

%

63.0

%

39.1

%

CDN-GS-11A

 

11.21

 

0.29

 

10.340

 

12.080

 

17

 

11.029

 

-1.6

%

1

 

41.2

%

58.8

%

5.9

%

O-62Pb

 

11.33

 

0.35

 

10.27

 

12.39

 

5

 

10.698

 

-5.6

%

1

 

100.0

%

0.0

%

20.0

%

All

 

3.815

 

 

 

 

 

 

 

292

 

3.842

 

0.7

%

 

 

39.0

%

61.0

%

15.8

%

 

28



 

9-2      Blanks

 

Results from blanks are also separated according to lab. The only statistics which can be derived from results for blanks is the proportion of them above a given threshold. Traditionally, this threshold is five times the detection limit which in the case of GR looks like 0.0025 g/tAu hence a threshold of 0.0125 g/tAu. This in fact pretty low and we generally prefer to use a “practical” threshold of 0.1 g/t Au.

 

We have 188 blank returns from Accurassay with 10.1% above 0.0125 g/t and 2.1% above 0.1 g/t.

We have 276 blank returns from ALS with 2.5% above 0.0125 g/t and 0.4% above 0.1 g/t.

We have 451 blank returns from Swastika with 13.7% above 0.0125 g/t and 0.4% above 0.1 g/t.

 

Like with standards, the best performance is with ALS followed by Swastika and Accurassay. Based on our experience, we find the performance of ALS and Swastika quite acceptable.

 

9-3      Duplicates

 

There are not that many historical duplicate results, all together only 49. They involve: (1) 3 duplicates at ALS with originals at ALS (2) 10 duplicates at Swastika with originals at ALS (3) 2 duplicates at ALS with originals at Swastika (4) 34 duplicates at Swastika with originals at Swastika. Except for the last set, those duplicates are not enough for a meaningful statistical comparison, especially after considering that duplicated assays are generally fairly low grade.

 

In the set of duplicates and originals at Swastika, we have one odd pair (a 0.05 g/t duplicated as 2.68 g/t) with the rest showing a reasonable agreement between original and duplicated values (Figure 10). The average relative difference for the 11 pairs above 0.1 g/t is 25.1%

 

9-4 Conclusions

 

Despite the high variability of gold grades from GR samples, the QAQC data of samples from pre-LSG holes (2003-2006) and analyzed at the ALS and Swastika labs tend to indicate that the quality of those sample grade values is satisfactory. Although we have significant differences between mean results and target values for some standards, we do not see any overall bias from the results of standards. Blanks show a few cases of likely contamination but the proportion of real failures keeps low (0.4%).

 

Based on results for standards and blanks, the quality (both accuracy and precision) of assays at the Accurassay lab is more questionable. Fortunately, the results for standards at that lab indicate that gold values from that lab are likely to undervalue the true gold grade of submitted samples.

 

29



 

Figure 10 Correlation plot of historical duplicates at Swastika

 

GRAPHIC

 

30



 

Appendix : polygonal maps of zones on long section

 

GRAPHIC

 

31



 

GRAPHIC

 

32



 

GRAPHIC

 

GRAPHIC

 

33



 

GRAPHIC

 

34



 

GRAPHIC

 

35



 

GRAPHIC

 

GRAPHIC

 

 

36



 

GRAPHIC

 

37



 

GRAPHIC

 

38



 

GRAPHIC

 

39



 

GRAPHIC

 

40



 

GRAPHIC

 

41