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California has some of the most progressive environmental policies and greenhouse gas reduction goals in the world. 

Senate Bill (SB) 100 established a landmark policy requiring renewable energy and zero-carbon resources supply 100 

percent of electric retail sales to end-use customers by 2045. 

The California Public Utilities Commission initiated the High Distributed Energy Resources Grid Planning Rulemaking1 in 

July 2021 to prepare the electric grid for anticipated high adoptions of Distributed Energy Resources (DERs), including 

those associated with transportation and building electrification. 

The Electrification Impacts Study Part 1 (Part 1 Study) was prepared for review within the High DER Proceeding as a first 

step towards examining the potential impacts of high adoptions of DERs on the distribution grid, identifying where and 

when enhancements and investments could be needed, and estimating the potential costs of meeting these needs. 

The Part 1 Study presents a granular bottom-up load forecasting methodology that provides locational and temporal 

information on where and when distribution grid enhancements may be needed. Part 1 study also estimates potential 

system level costs under an unmitigated scenario. 

The preliminary results from the Part 1 Study estimate approximately $50 billion for distribution grid investments by 

2035 to accommodate a High DER grid future if measures are not taken to reduce costs and manage load. It is important 

to consider the system-level cost and load estimates presented in the Part 1 Study to be preliminary. 

It should be noted that the Part 1 Study estimates the potential costs of meeting infrastructure needs being exclusively 

met with distribution assets without considering new real-time dynamic rates and flexible load management strategies. 

California’s aging grid will also require upgrades in certain areas to ensure continuity of service to support current DERs 

and load, even in the absence of additional DERs. 

This study is a learning experience and a starting point to open the discussion on how to reimagine distribution grid 

planning for the twenty first century and consider the design and implementation of the distribution system needed to 

accommodate a High DER grid future. 

To meet this challenge, it is critical that we receive stakeholder participation in reviewing this study. The Energy Division 

staff underscore that this is a beginning point in the discussion, and welcome feedback and comments on the Part 1 

Study and the proposals for future iterations. 
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https://uploads-ssl.webflow.com/62a236e9692c48e1d16898b3/62d8509da2f405169ee10dd0_2022-0329_Electrification%20Impacts%20Study_Final%20Research%20Plan.pdf
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Acronyms and Definitions 

Acronyms 

AADT: Annual Average Daily Traffic 

 

AAEE: Additional Achievable Energy Efficiency 

AAFS: Additional Achievable Fuel Switching 

AB: Assembly Bill 

AC: Alternating Current 

 

ACC II: Advanced Clean Cars II 

 

ACS: American Community Survey (U.S. Census Bureau) 

AMI: Advanced Metering Infrastructure 

AUC ROC: Area Under the Receiver Operating Characteristic Curve 

BA: Balancing Authority 

BE: Building Electrification 

 

BESS: Battery Energy Storage System(s) 

BEV: Battery Electric Vehicle 

BTM: Behind-the-Meter 

 

C&I: Commercial and Industrial 

CARB: California Air Resources Board 

CAISO: California Independent System Operator 

CARE: California Alternate Rates for Energy 

CBECS: Commercial Buildings Energy Consumption Survey 

CCA: Community Choice Aggregator 
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CEC: California Energy Commission 

 

CEDARS: California Energy Data and Reporting System 

CPUC: California Public Utilities Commission 

D: Decision 

 

DC: Direct Current 

 

DCFC: Direct Current Fast Charging 

 

DDOR: Distribution Deferral Opportunity Report 

DER: Distributed Energy Resource 

DIDF: Distribution Investment Deferral Framework 

DOE: U.S. Department of Energy 

DPAG: Distribution Planning Advisory Group 

DPP: Distribution Planning Process 

EE: Energy Efficiency 

EV: Electric Vehicle 

EVI-Pro: Electric Vehicle Infrastructure Projection Tool 

EVSE: Electric Vehicle Service Equipment 

FTP: File Transfer Protocol 

 

GIS: Geographic Information System 

GNA: Grid Needs Assessment 

GVWR: Gross Vehicle Weight Rating 

HD: Heavy Duty 

HDV: Heavy-Duty Vehicle 
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HEIAWG: High Electrification Inter Agency Working Group 

ICE: Internal Combustion Engine 

IEPR: Integrated Energy Policy Report 

IOU: Investor-Owned Utility 

IRP: Integrated Resource Plan 

 

JASC: Joint Agency Steering Committee (CPUC, CEC, CAISO, CARB) 

kV: Kilovolt 

KVA: Kilovolt-Ampere 

kW: Kilowatt 

kWh: Kilowatt-Hour 

L1: Level 1 

L2: Level 2 

 

LATCH: Local Area Transportation Characteristics for Households Data 

LD: Light Duty 

LDV: Light-Duty Vehicle 

LOR: Load Offset Ratio 

LSE: Load-Serving Entity 

MD: Medium Duty 

MDV: Medium-Duty Vehicle 

 

MLR: Multilevel Logistic Regression 

MSS: Mobile Source Strategy 

MUD: Multi-Unit Dwelling 
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MVA: Megavolt-Ampere 

MW: Megawatt 

MWh: Megawatt-Hour 

 

NAICS: North American Industry Classification System 

NEM: Net Energy Metering 

NREL: National Renewable Energy Laboratory 

NSRDB: National Solar Radiation Database 

NWA: Non-Wires Alternative 

OIR: Order Instituting Rulemaking 

 

PCIA: Power Charge Indifference Adjustment 

PEV: Plug-in Electric Vehicle 

PG&E: Pacific Gas and Electric 

 

PHEV: Plug-in Hybrid Electric Vehicle 

PII: Personal Identifiable Information 

PR AUC: Precision Recall Area Under the Curve 

PV: Photovoltaic Solar Energy System 

R: Rulemaking 

 

RASS: Residential Appliance Saturation Study 

 

RCP 8.5: Representative Concentration Pathway 8.5 

SB: Senate Bill 

SCADA: Supervisory Control and Data Acquisition 

SCE: Southern California Edison 
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SDG&E: San Diego Gas & Electric 

SIP: State Implementation Plan 

SUD: Single-Unit Swelling 

SUV: Sport Utility Vehicle 

SSS: State SIP Strategy 

T&D: Transmission and Distribution 

TAC: Transmission Access Charge 

TB: Terabytes 

TOU: Time-of-Use 

 

UEC: Unit Energy Consumption 

U.S.: United States 

VIO: Vehicles in Operation 

VIUS: Vehicles in Use Survey 

VMT: Vehicle Miles Traveled 

ZEV: Zero-Emission Vehicle 
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Definitions 

8760: Generally refers to the number of hours in a typical (non-leap) year. 

 

Adoption model: A model that predicts the consumer's likelihood to adopt a new technology. The 

model considers multiple variables that can reliably predict the consumer’s ability and willingness 

to adopt a new technology such as the characteristics of early adopters, factors that drive market 

potential, and historical adoption rates. 

Adoption propensity score: The output from the adoption model. It is a measure of the rank of a 

customer’s likelihood to adopt relative to all other customers. 

 

Advanced metering infrastructure (AMI): A time-series energy consumption data measurement 

and collection system that includes advanced meters/smart meters at the customer site, 

communication networks between the customer and utility, and data collection and management 

systems that make the information available to the utility, customer, and authorized third-party 

vendors. 

Area under the receiver operating characteristic curve (AUC ROC): This metric summarizes 

performance over all adoption thresholds and is designed to quantify how well a model is able to 

separate adopting premises from non-adopting premises. AUC ROC quantifies how a model 

performs on the tradeoff between the true positive rate (e.g., predicting adoption at a premise 

where adoption actually occurred) and the false positive rate (e.g., predicting adoption at a 

premise where adoption did not actually occur). 

 

Bayesian: An approach to statistical inference that combines prior information about the 

distribution of an unknown value with posterior evidence from information contained in a sample. 

In data science, it is a popular technique for building models when labeled ground truth data is 

relatively limited, but there is subject matter understanding to build upon. 

Battery electric vehicle (BEV): Also known as an all-electric vehicle, BEVs use energy that is 

stored in rechargeable battery packs. BEVs sustain power through the batteries and must be 

plugged into an external electricity source to recharge. 

Behind-the-meter (BTM): BTM refers to customer-sited distributed energy resources (DERs) such 

as solar PV or battery storage that are connected to the distribution system on the customer’s side 

of the utility’s service meter. 

Behind-the-meter (BTM) tariff: A set of rate structures (energy based, demand based, or 

customer charge) and components (costs related to generation, delivery, transmission, and other 

costs) that apply to customers with DERs. 
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Building electrification (BE): Refers to the electrification of appliances and equipment in 

buildings (e.g., electric heat pump replacing gas heating, electric water heaters replacing gas water 

heaters, electric cooktops replacing gas cooktops).
2

 

Bottom-up forecast: A bottom-up method forecasts the generation and load impact from 

distributed energy resources (DERs) based on adoption models while considering the 

characteristics of early adopters, factors that drive market potential, and adoption rates applied to 

the remaining potential customers. The forecast is predicted at a granular level (i.e., at the 

customer premise level). 

California Independent System Operator (CAISO): CAISO is the electric grid operator for 

California’s electrical transmission system. 

 

Coincident peak load: The maximum energy use in an hour compared to all other hours in the 

year for a collection of loads, such as premises, feeders, or an entire service area. For example, a 

system coincident peak is the peak of the system for all customers in that system. 

Distributed energy resources (DERs): Includes distributed renewable generation resources, 

energy efficiency measures, energy storage devices, electric vehicles (EVs) and electric vehicle 

service equipment (EVSE), time-variant and dynamic rates, flexible load management technologies, 

and demand response technologies. Most DERs are connected to the distribution grid behind the 

customer’s electric meter, and some are connected in front of the customer’s electric meter. 

Demand modifiers: Refers to the expected hourly behavior from DERs that changes the 

customer’s overall energy use pattern. 

 

Demand response: Refers to any change in net electricity demand made by the customer in 

response to an economic incentive or grid signal to reduce, increase, or shift net-load relative to 

what the net-load would have been absent the signal. The change could be temporary or 

recurring. 

Distribution Planning Process: A process, typically done annually, to forecast electric distribution 

equipment upgrade, improvement, or maintenance needs to maintain safe, reliable, and 

affordable service while efficiently operating the existing electrical distribution grid. 

Electric vehicle service equipment (EVSE): The equipment that interconnects the electricity grid 

at a site to an EV. Sometimes used more broadly to mean charging station, whether alternating 

 

 

2

 Electrification of appliances and equipment in buildings is also referred to as fuel switching. Kevala uses 

building electrification (BE) throughout this Part 1 Study. 
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current (AC) or direct current (DC) but not including other behind-the-meter (BTM) charging- 

related infrastructure. EVSE equipment is classified as: 

● Level 1 (L1):120 volts AC 

● Level 2 (L2): 240 volts, AC 

● DC fast charger (DCFC): 480 volts DC and higher 

 

Energy burden: Percent share of the electricity bill costs with respect to the household income. 

 

Fleet EV: Fleet EVs are zero-emission vehicles owned by or registered to an entity (not an 

individual) and are used for business-related purposes. Fleet EVs can be LDVs, MDVs or HDVs. 

Fleet EVs only have BEV powertrains and can be one of 10 vehicle classes. 

Grid integration: The practice of developing efficient ways to deliver variable renewable energy 

to the grid. Robust integration methods look at how to maximize the cost-effectiveness of 

incorporating variable renewable energy into the power system while maintaining or increasing 

stability and reliability. 

Gross vehicle weight rating (GVWR): The gross vehicle weight rating of a vehicle is the maximum 

allowable weight of the fully loaded vehicle (including passengers and cargo), as rated by the 

automobile manufacturer. 

Integrated Energy Policy Report (IEPR): California Senate Bill (SB) 1389 requires the California 

Energy Commission (CEC) to conduct assessments and forecasts of all aspects of energy industry 

supply, production, transportation, delivery and distribution, demand, and prices. The CEC adopts 

an IEPR every two years and an update every other year. The energy and DER forecasts produced 

in the IEPR are used in the California utilities’ Distribution Planning Process. 

Integrated Resource Plan (IRP): A procurement plan used by utilities that details what resources 

are to be procured and how they will be procured to comply with California's climate and energy 

policies, adequately balance safety, reliability, and cost, while meeting the state’s environmental 

goals described in SB 350 and SB 100. 

Mean absolute error: Defined as the sum of absolute errors between predicted and actual 

values, divided by the sample size. A smaller value is better. 

Mean absolute percentage error: Average of the absolute percentage errors between the 

predicted and the actual values. It quantifies the relative versus the absolute typical difference, 

but it has limited usefulness if the actual values are near zero, where the mean absolute 

percentage error tends towards infinity. 
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Multilevel logistic regression (MLR): Logistic regression is a machine learning algorithm, similar 

to linear regression but designed to predict a binary outcome with a score in [0.0, 1.0] so that it 

can be applied to classification problems. A multilevel logistic regression separates the population 

into clusters before applying a logistic regression to the population belonging to each cluster and 

may be more effective if the differences between those clusters are consistently more substantial 

than the differences within the clusters. 

Net energy metering (NEM): Metering and billing arrangement designed to compensate any 

generation from DERs that is exported to the utility grid during times when it is not serving onsite 

load via a bill credit for excess generation. 

Net-load: The expected address-level energy use served by the investor-owned utility (IOU) or, in 

the case of reverse flow, the level of energy the customer is exporting to the grid and the IOU is 

expected to accept and distribute. It is the sum of actual energy use behind the meter plus or 

minus the demand-modifying behaviors from DERs. 

Node: A transmission node refers to the interface between the distribution and the transmission 

electric power systems. At transmission nodes, the distribution system is typically represented as 

an aggregate lumped load in transmission models. Nodes can also be referred as 

transmission/distribution interfaces or T-D interfaces. 

Non-coincident peak load: The maximum energy use of customers, groups of customers, or grid 

assets; it does not necessarily coincide with the hour of the coincident peak. For example, a 

customer’s peak load is considered non-coincident as it may differ from the system coincident 

peak. Similarly, a feeder coincident peak, or the peak on that feeder, may be non-coincident with 

the system peak. 

Non-wires alternative (NWA): An electricity grid investment or project that uses non-traditional 

transmission and distribution (T&D) solutions, such as DERs and load management technologies, 

to defer or replace the need for specific equipment upgrades, such as transmission lines or 

transformers. 

Order Instituting Rulemaking: Rulemaking proceeding opened by the California Public Utilities 

Commission (CPUC) to consider the creation or revision of rules, general orders, or guidelines 

affecting more than one utility or a broad sector of the industry. Comments, proposals, and 

testimony are submitted by parties to the Order Instituting Rulemaking in written form; oral 

arguments or presentations are sometimes allowed. 

Peak load: The maximum energy use in an hour compared to all other hours in the year. Peak can 

be used synonymously with coincident peak, which is the maximum energy use in an hour for a 
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collective group of customers. For example, a system coincident peak is the peak of the system for 

all customers in that system. Similarly, feeder peak is the peak load for all load connected to that 

feeder. The individual peaks of customers may differ from the coincident peak and are referred to 

as non-coincident peaks. 

Plug-in hybrid electric vehicle (PHEV): Vehicles powered by an internal combustion engine (ICE) 

and an electric motor that uses energy stored in a battery. The vehicle can be plugged into an 

electric power source to charge the battery. Some can travel nearly 100 miles on electricity alone, 

and all can operate solely on gasoline (like a conventional hybrid vehicle). 

Power charge indifference adjustment (PCIA): A charge or credit to community choice 

aggregator (CCA) customers that reflects the difference in the portfolio costs for each IOU and the 

market value of the portfolio. This mechanism is designed to ensure customers are indifferent to 

receiving services from a CCA versus the incumbent IOU, consistent with legislative requirements. 

PCIA rates are based on the year the customer moves to a CCA to ensure the departing customer 

is not responsible for incremental portfolio costs incurred after joining the CCA. These rates that 

vary based on year are referred to as the “vintage” of the PCIA rate. 

 

Precision: An evaluation metric that measures the adoption model’s ability to identify relevant 

data points, such as if a customer adopted. It is calculated by taking the number of true positives 

(number of times an actual adoption was predicted) divided by the number of true positives plus 

the number of false positives (the number of times an adoption was predicted that was not seen 

in the base data). 

Precision recall area under the curve: The area under the precision recall curve, which is used 

to assess the performance over all the adoption thresholds as represented by the precision and 

recall metrics. 

Premise: Contiguous geographic area used by a utility to track billing and usage. It contains 

service points and meters and should have an address assigned to it. 

Recall: An evaluation metric that measures the adoption model’s ability to identify all relevant 

cases within a dataset. It is calculated by taking the number of true positives divided by the 

number of true positives plus the number of false negatives. 

Root mean squared error: The square root of the average squared difference between the 

predicted and actual values. It is similar to mean absolute error, but it is more sensitive to outliers 

where the prediction was far from the actual value. 
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System-level cost estimate: For the purposes of Part 1 of the Electrification Impacts Study, 

aggregate system-level costs for each investor-owned utility derived from premise-level load 

profiles that are applied to known utility infrastructure elements and utility-specific network unit 

costs (i.e., unit costs of traditional infrastructure). System-level cost estimates are designed to 

holistically quantify the level of traditional grid investment required to meet the different policy- 

based outcomes studied in this Part 1 Study in 2025, 2030, and 2035 for Pacific Gas and Electric, 

Southern California Edison, and San Diego Gas & Electric. With the potential inclusion of mitigation 

strategies in Part 2
3

 of the Electrification Impacts Study, this definition may be updated. 

Time-of-use (TOU) rate: A rate plan with rates that vary according to the time of day, season, and 

day type (weekday or weekend/holiday). TOU rates can encourage the efficient use of the system 

and can reduce the overall costs for the utility and its customers. 

Top-down allocation: A method for providing a transmission system-level aggregate load and 

DER forecast that disaggregates the load and DER forecast to distribution circuits based on utility 

data for the circuit (e.g., load, energy, or number of customers) or statistical propensity models. 

Vehicle duties: A vehicle duty refers to the three duty types that the U.S. Federal Highway 

Administration uses to categorize vehicles by gross vehicle weight rating (GVWR). The duty types 

are: 

● Light-duty vehicle (LDV): <10,000 GVWR 

● Medium-duty vehicle (MDV): 10,001-26,000 GVWR 

● Heavy-duty vehicle (HDV): > 26,001 GVWR 

 

Zero-emission vehicle (ZEV): Vehicles that produce no emissions from the onboard source of 

power (for example, hydrogen fuel cell vehicles and EVs). Electric vehicles are broken further into 

two categories: BEVs and PHEVs. 

 

 

 

 

 

 

 

 

 

 

 

3 
The Research Plan for the Electrification Impacts Study had identified Part 2 as an evaluation of the IOUs’ 

Grid Needs Assessment (GNA)/Distribution Deferral Opportunity Report (DDOR) filings and 

recommendations for near-term improvements, followed by a Staff Proposal. This step has been renamed 

as the GNA/DDOR Evaluation and Staff Proposal. As such, the next part of the Electrification Impacts Study 

will be referred to as Part 2 throughout this report (previously referred to as Part 3). 
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Executive Summary 
The California Public Utilities Commission (CPUC) recognizes that successfully achieving 

California’s electrification and decarbonization goals depends on an electricity grid that can 

support diverse electrification technologies at scale while maintaining system reliability and 

ensuring equity and affordability of electricity service for all Californians. This Electrification 

Impacts Study aims to provide in-depth analysis in support of the policy questions under 

deliberation at the CPUC. 

Specifically, the two-part Electrification Impacts Study series seeks to address the following 

question: what is the scope and scale of potential electric grid impacts and the associated 

costs necessary to support California’s ambitious electrification goals? 

This Part 1 Study provides preliminary estimates of the scope and scale of potential electric 

distribution grid impacts for Pacific Gas and Electric (PG&E), Southern California Edison (SCE), and 

San Diego Gas & Electric (SDG&E) from widespread transportation electrification and solar 

photovoltaic (PV) penetration by 2035. This study develops, for the first time, a highly granular 

load forecast for over 12 million premises across California for baseline load and distributed 

energy resource (DER) adoption, including PV, battery energy storage systems (BESS), energy 

efficiency (EE), building electrification (BE), and electric vehicles (EVs). 

 

Kevala, Inc. (Kevala) developed and analyzed a base, or reference case, calibrated to California’s 

Integrated Energy Policy Report (IEPR) and four unmitigated, policy-based alternate planning 

scenarios; these alternate scenarios focused on modeling transportation electrification loads 

under differing policy scenarios as transportation electrification is anticipated to be the most 

significant factor driving increased loads in the near term. 
4,

 
5

 The Part 1 Study also considered two 

different behind-the-meter (BTM) tariffs in the scenarios (described further in Section 1.2.3). 

It is important to highlight that this Part 1 analysis was conducted under unmitigated planning 

scenarios, which assume only traditional utility distribution infrastructure investments. The Part 1 

analysis assumed existing time-of-use (TOU) rates and BTM tariffs would be in place throughout 

 

 

 

 

4

 The planning scenarios, assumptions, and data constraints are described in Section 1.2.1 and Appendix 3. 

These constraints are expected to be addressed in follow-up studies. The follow-up study scenarios may be 

revised based on stakeholder and agency feedback. 

5 
BE loads are also expected to significantly impact the electric grid based on the California Air Resources 

Board’s (CARB’s) 2022 State Implementation Plan, which includes zero-emission measures for space and 

water heating to be implemented by 2030. BE scenarios are proposed to be part of future phases of the 

analysis planned for the High DER Proceeding (i.e., Part 2 of the Electrification Impacts Study). 
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the study timeframe. It did not consider alternatives or future potential mitigation strategies such 

as alternative time-variant rates or dynamic rates and flexible load management strategies. 

Follow-up analysis in the study series is proposed include additional statewide electrification 

scenarios with baseline load and transportation electrification methodologies and scenarios that 

will be updated with additional data. Kevala also proposes adding BE scenarios aligned to state 

policy targets and considering potential mitigation strategies in case studies that could inform 

ways of managing grid impacts and the costs of grid investments. 

Background and Study Objectives 

This report summarizes Kevala’s approach, results, and insights for Part 1 of the Electrification 

Impacts Study: Bottom-Up Load Forecasting and System-Level Electrification Impacts Cost 

Estimates. The CPUC commissioned the Electrification Impacts Study to support Rulemaking (R.) 

21-06-017: the Order Instituting Rulemaking (OIR) to Modernize the Electric Grid for a High Distributed 

Energy Resources Future.
6

 This OIR is focused on preparing the grid to accommodate a high DER 

future, capturing as much value as possible from DERs, and mitigating unintended negative grid 

impacts. This OIR is referred to as the High DER Proceeding throughout this report, while Part 1 of 

the two-part Electrification Impacts Study is referred to as the Part 1 Study. 

The Electrification Impacts Study was designed to inform a number of the scoping questions 

issued in the November 15, 2021, Scoping Ruling and was guided by the Electrification Impacts 

Study Research Plan (Research Plan),
7

 submitted to the CPUC on March 29, 2022. As defined in the 

Research Plan, the Electrification Impacts Study (split into two parts) will: 

● Enable the identification of grid enhancements and changes necessary to support 

California’s stated transportation and building electrification policy goals by 2035. 

● Consider alternatives for evaluating distribution capacity expansion and deferral options 

into the utilities’ Distribution Planning Process (DPP). 

● Explore increasing the granularity of technology adoption models in high electrification 

scenarios to inform the development of mitigation strategies which will seek to optimize 

grid planning, maximize the equity and reliability benefits, and minimize the costs of high 

electrification. 

 

 

6

 R.21-06-017, opened with an Order Instituting Rulemaking to Modernize the Electric Grid for a High Distributed 

Energy Resources Future, issued on July 2, 2021, 

https://apps.cpuc.ca.gov/apex/f?p=401:56:0::NO:RP,57,RIR:P5_PROCEEDING_SELECT:R2106017 

7

 The full scope of the Electrification Impacts Study is detailed in the Research Plan, dated March 29, 2022, 

https://uploads-ssl.webflow.com/62a236e9692c48e1d16898b3/62d8509da2f405169ee10dd0_2022-  

0329_Electrification%20Impacts%20Study_Final%20Research%20Plan.pdf 

https://apps.cpuc.ca.gov/apex/f?p=401%3A56%3A0%3A%3ANO%3ARP%2C57%2CRIR%3AP5_PROCEEDING_SELECT%3AR2106017
https://uploads-ssl.webflow.com/62a236e9692c48e1d16898b3/62d8509da2f405169ee10dd0_2022-0329_Electrification%20Impacts%20Study_Final%20Research%20Plan.pdf
https://uploads-ssl.webflow.com/62a236e9692c48e1d16898b3/62d8509da2f405169ee10dd0_2022-0329_Electrification%20Impacts%20Study_Final%20Research%20Plan.pdf
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● Improve clarity and transparency of electrification scenario inputs, methodologies, and 

outputs across state energy planning agency processes. 

This Part 1 Study is a granular customer electricity consumption data analysis designed to 

support electricity distribution grid planning processes that enable California to meet its state 

energy goals. This part of the study builds the foundation for a novel framework for distribution 

planners and policymakers to evaluate grid needs and value grid solutions based on the hyper- 

granular location of electrification needs. The scope of this Part 1 Study includes the customers 

and grid infrastructure for the three large California investor-owned utilities (IOUs): PG&E, SCE, 

SDG&E. 

This Part 1 Study is intended to address two main objectives: 

 

1. Estimating system-level unmitigated grid infrastructure costs associated with achieving 

California electrification policies over longer timeframes than current distribution planning 

processes (inclusive of distribution grid requirements down to the service transformer 

level). 

2. Demonstrating and assessing new planning and analytic methods, including scenario 

planning, that enable more granular forecasting accuracy, ability to estimate where and 

when electrification loads will occur, and the potential impact of DER growth on forecasts. 

Part 28

 of the Electrification Impacts Study proposes to build on the Part 1 results. Leveraging 

additional data, Part 2 proposes updating the load forecast developed in Part 1 and creating a 

framework for estimating utility-specific grid investment and assessing programmatic 

enhancements (e.g., TOU rate structures) and their costs under various scenarios with high DER— 

namely transportation and BE forecasts, grid integration technologies such as advanced DER 

controls and flexible load management, and the implications of managed DER growth. 

Data Availability and Assumptions 

Central to this study was the collection, ingestion, mapping, and analysis of many data sources. 

Over 100 terabytes of time series data, geospatial and utility grid network data, and 

socioeconomic data were collected and joined (or linked) to enable Kevala’s modeling of each 

premise. The analysis described in this report relied on these multiple, voluminous datasets and 

on specific sets of assumptions about each DER type and rate structures and designs that have 

 

8 
The Research Plan for the Electrification Impacts Study had identified Part 2 as an evaluation of the IOUs’ 

Grid Needs Assessment (GNA)/Distribution Deferral Opportunity Report (DDOR) filings and 

recommendations for near-term improvements, followed by a Staff Proposal. This step has been renamed 

as the GNA/DDOR Evaluation and Staff Proposal. As such, the next part of the Electrification Impacts Study 

will be referred to as Part 2 throughout this report (previously referred to as Part 3). 
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since changed. Updated data beyond the study period used for this report is now available, and 

certain programmatic assumptions have evolved since the Research Plan parameters of this 

analysis were finalized in 2022.
18 

All of the data elements requested and applied for this study are 

identified in the Research Plan and further described in Section 1.2.1 and Appendix 2 of this 

report. The methods and results documented in this report either discuss data types and uses or 

depict aggregated data in charts and graphics. None of the methods or findings documented in 

this report are considered confidential. 

The Part 1 Study used the following modeling approach applied to the data received: 

 

● Estimate each customer’s load over the study period using machine learning based on the 

actual customer data received to date. 

● Develop a premise-specific load profile that reflects adoption of EE, PV, BESS, BE, and EVs. 

● Calibrate the results of this modeling to the California Energy Commission’s (CEC’s) 2021 

Integrated Energy Policy Report’s (IEPR’s) system-level forecasts to ensure consistency with 

the IOUs’ GNAs and the IEPR.
9

 

● Aggregate premise-level load profiles that include DER-specific adoption up to the IOU 

service territory level. 

● Identify the magnitude and location of DER adoption and resulting high electrification 

anticipated for a base case and four alternate scenarios focusing on two DER types, 

transportation electrification and net energy metering (NEM) BTM tariffs for 2025, 2030, 

and 2035.
10

 

● Identify system-level grid impacts, costs, and affordability of electricity service for 

customers. 

 

 

9

 This approach is similar to how the IOUs ensure the forecast used for annual GNA/DDOR preparation does 

not exceed the IEPR demand forecast. However, the GNA/DDOR process for calibrating to the IEPR is 

complicated by the known loads issue, as described in Section 3 (pp. 26-34) of the 2022 Independent 

Professional Engineer Post DPAG Report. 
10

 NEM BTM tariffs refer to a hypothetical alternative compensation structure for BTM PV based on the 

December 2021 Proposed Decision for R.20-08-020 and incorporate a monthly grid access charge and 

specific export rate. In December 2022, the CPUC adopted the Net Billing Tariff in proceeding Decision (D.) 

22-12-056, which has a different structure than the scenarios included in this study; therefore, the results 

of these scenarios do not reflect what will happen with the newly adopted Net Billing Tariff. For Part 2 of the 

Electrification Impacts Study, the 2022 Net Billing Tariff (adopted December 15, 2022 by D.22-12-056) will be 

used for analytical purposes. 

The transportation electrification scenario inputs, drawn from CARB and CEC projections as discussed in 

Appendix 9, incorporate a range of different zero-emission vehicle (ZEV) adoption levels, including personal 

vehicles and medium- and heavy-duty freight and port vehicles that were incorporated into the CEC’s 2021 

Updated IEPR. 

https://docs.cpuc.ca.gov/PublishedDocs/Published/G000/M500/K043/500043682.PDF
https://docs.cpuc.ca.gov/PublishedDocs/Published/G000/M500/K043/500043682.PDF
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For this Part 1 Study, Kevala created different combinations of transportation electrification and 

NEM BTM tariff outcomes for the scenarios. These two specific DERs were selected for the 

scenario analysis, in part, to isolate the impact of these two relatively meaningful and dynamic 

DERs. Further, at the time the Part 1 analysis was finalized, transportation electrification and NEM 

BTM tariffs had existing or pending state-defined policy goal projections and definitions that 

served to tie the scenarios studied to actual or proposed state policies. This is not to suggest other 

DERs such as BE or PV will not be studied or impactful for California’s electrification efforts; rather, 

the goal of Part 1 of the Electrification Impacts Study is to isolate and identify the likely grid 

impacts from two specific DERs for which there is less program data or for programs that are 

changing. 

 

Further, this study applied existing BTM tariff assumptions and modified BTM tariff assumptions, 

as described in Section 1.2.3. The existing BTM assumptions were based on the NEM 2.0 Tariff, 

and the modified BTM tariff design was based on the December 13, 2021 Proposed Decision for 

proceeding R.20-08-020.
11 

This was the best available information at the time of the Research 

Plan’s completion. For Part 2 of the Electrification Impacts Study, the 2022 Net Billing Tariff 

(adopted December 15, 2022 by Decision (D.) 22-12-056) will be used for analytical purposes. 

Results 

California’s electricity grid is changing rapidly, driven by significant changes at the premise level. 

Customer programs and rate designs tailored to elicit individual customer behaviors and 

responses, changing customer technologies, ambitious statewide energy policy goals, and 

localized wildfire and climate change impacts all contribute to dynamic electricity grid changes 

that are unique to each premise. The results of this Part 1 Study build the foundation for an 

improved framework for distribution planners and policymakers to evaluate grid needs and value 

grid solutions based on the hyper-granular location of electrification needs. 

The results of this Part 1 Study illustrate how consolidating these extensive data sources yields 

important insights into where and when distribution grid enhancements are likely to be 

needed to support the premise-level impacts of grid electrification, which is critical as California 

enters a period of capacity expansion and DER proliferation to support state policy goals. These 

results also help to understand the quality and scope of utility data and to challenge some 

 

 

 

11 
Modified BTM tariff assumptions were based on the December 13, 2021, Proposed Decision for 

proceeding R.20-08-020 (Order Instituting Rulemaking to Revisit Net Energy Metering Tariffs). The Proposed 

Decision was not adopted by the Commission; it is available at: 

https://docs.cpuc.ca.gov/PublishedDocs/Efile/G000/M430/K903/430903088.PDF. Instead, D.22-12-056 

adopted the Net Billing Tariff. 

https://docs.cpuc.ca.gov/PublishedDocs/Efile/G000/M430/K903/430903088.PDF
https://docs.cpuc.ca.gov/PublishedDocs/Published/G000/M500/K043/500043682.PDF
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traditional DER program assumptions. The following summarizes these and other results of 

Kevala’s Part 1 Study. 

 

Grid Requirements and Associated Costs 

Electric distribution grid requirements and their associated costs increase significantly 

beyond the traditional distribution grid planning cycle, risking stranded investments or 

missed investment opportunities altogether if datasets are not connected and analyzed 

holistically. 

● Across these unmitigated load scenarios, Kevala estimates up to $50 billion in 

traditional electricity distribution grid infrastructure investments by 2035 (see Figure 

ES-1). This estimate reflects distribution grid needs across the PG&E, SCE, and SDG&E 

service territories under the policy assumptions used in this report. These costs are 

estimated with a focus on traditional utility distribution infrastructure investments. Existing 

TOU rates and BTM tariffs were assumed. The study did not consider alternatives or future 

mitigation strategies such as alternative time-variant or dynamic rates and flexible load 

management strategies. 

● Kevala examined several scenarios
12

 for this Part 1 Study. Both of the High Transportation 

Electrification scenarios would result in almost doubling the current rate of spend reported 

by the IOUs in the GNA reports for capacity requirements related to feeders, transformer 

banks, and substations.
13

 These Part 1 Study costs reflect the impact of unmitigated loads. 

● Secondary transformer and service upgrades alone are a non-negligible contribution to the 

total grid capacity upgrade costs, comprising an estimated $15 billion of the $50 billion 

identified previously and are currently not accounted for in the IOUs’ annual GNA reports. 

PG&E’s distribution circuits are projected to reach capacity sooner than SCE and SDG&E. 

SDG&E is expected to have the least number of feeders reaching full capacity by 2035, with 

22% compared to SCE’s 36% and PG&E’s 48% of feeders. 

● The system-level peak load increase from 2025 to 2035 is 56%, on average, across the three 

IOUs and High Transportation Electrification scenarios
14

 (see Figure ES-2); this dramatic 

 

12

 Kevala generated premise-specific forecasts for five scenarios. The base case represents a premise-level 

forecast that calibrates the baseline load forecast and the individual demand modifier forecasts to the 2021 

IEPR mid-mid case. Each of the four alternate scenarios considers a different combined projection for NEM 

BTM tariffs and the speed and scope of transportation electrification. 

13

 This Part 1 Study evaluates upgrades at the substation, transformer bank, feeder, and service transformer 

level. It does not include line section upgrades related to the primary lines between the feeder head and the 

service transformers. 

14

 These High Transportation Electrification scenarios are based on the expected level of transportation 

electrification necessary to meet California’s policy goals, such as the transportation electrification goals 
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increase in peak load for the scenarios considered in Part 1 is primarily due to 

transportation electrification impacts, with over 60% of this demand coming from light-duty 

vehicles (LDVs).
15

 Peak load is the primary driver of the grid capacity upgrades considered 

in this Part 1 Study. 

● The average percent change in peak load from 2025 to 2035 for the High Transportation 

Electrification scenarios is more dramatic for PG&E (69%), followed by SDG&E (53%) and 

SCE (44%). 

Figure ES-1: Estimated total capacity upgrade costs for the three large California IOUs, including new 

substations, transformer banks, feeders, and service transformers (Source: Kevala) 

 

 
 
 
 
 
 
 
 
 

 

promulgated in Executive Order N-79-20 and incorporated into CARB regulation in 2022. The main 

difference between the High Transportation Electrification and Accelerated High Transportation 

Electrification scenarios is the speed at which transportation electrification will occur in 2030 and 2035. 

15

 Kevala can revisit considering BE targets aligned with state and federal policy goals and incentives in the 

Part 2 Study. 

https://www.gov.ca.gov/wp-content/uploads/2020/09/9.23.20-EO-N-79-20-Climate.pdf


Part 1: Bottom-Up Load Forecasting and System-Level Electrification Impacts Cost Estimates, Kevala, Inc. ES-8 

R.21-06-017 ALJ/ML2/KHY/fzs 
 

 

 

Figure ES-2: Peak demand percent change by IOU, study year, and scenario (Source: Kevala) 

 

 

Transportation Electrification Grid Impacts 

Of the DERs selected in this Part 1 Study for alternate scenario development—transportation 

electrification and NEM BTM tariffs—transportation electrification results in significantly 

greater distribution grid impacts relative to the BTM tariffs assumed in the Part 1 Study.16

 

● Transportation electrification grid requirements and costs escalate in earnest in 2030 and 

dramatically increase by 2035 regardless of scenario. The current DPP looks out only five 

years. This planning framework may not be able to plan for the expected rapid increase in 

transportation electrification-related infrastructure due to the lead times involved for 

 

 

 

16

 To distinguish between the two BTM tariff scenarios, the existing BTM rate design assumed that the NEM 

2.0 Tariff structure would persist through the study period. The modified BTM rate design includes a 

monthly grid access charge of $5/kW and an export rate that offsets the generation rate identified. This 

structure was consistent with the proposed decision in the proceeding to reform NEM (R.20-08-020) issued 

on December 13, 2021. Rather than modeling the exact proposal in that proposed decision, Kevala chose 

this simplified structure as a scenario because it was generally consistent with the proposed decision at the 

time. Since the study was conducted, the CPUC adopted a final Decision on December 15, 2022 to reform 

NEM by creating a Net Billing Tariff. 



Part 1: Bottom-Up Load Forecasting and System-Level Electrification Impacts Cost Estimates, Kevala, Inc. ES-9 

R.21-06-017 ALJ/ML2/KHY/fzs 
 

 

 

electric distribution grid infrastructure, including mitigation strategies to large capital 

expenses. 

● The NEM BTM tariff scenario used in this Part 1 Study has relatively minimal impact on total 

electrification grid upgrade costs. 

Granular Approach 

The premise-level approach taken in this Part 1 Study enables a robust assessment of utility 

distribution grid needs, including: 

● The What: Identification of a broader scope of infrastructure needs than other studies and 

an understanding of the relative contribution to net-load of the DERs studied. 

● The When: A longer planning time horizon than the current DPP. 

● The Where: The ability to analyze premise-level data and aggregate up provides 

transparency and opportunities for multiple scenario analysis, including specific locational 

grid needs and the demographic characteristics of those needs. 

● The How Much: Differences in unit cost assumptions and grid need calculations between 

utilities that require further transparency and analysis. 

 

Recommendations for Distribution Planning Process Improvements 

This Part 1 report also proposes recommendations for improvements on DPPs. The substantial 

difference between the estimated capacity expansion costs, in the several tens of billions of 

dollars, in this study and the recent filings by the IOUs suggest there is a disconnect between the 

data and the current planning process and framework that, to date, results in minimal-to-no 

deferral opportunities being implemented. 

Also, the significant future grid requirements identified in this study enable the examination of all 

least-cost options for meeting the reliability, resiliency, and most equitable solutions for those grid 

requirements on a location-specific basis. Those solutions could include traditional utility 

distribution upgrades and investments, as well as alternative time-variant rates or dynamic rates, 

and flexible load management strategies. 

In this Part 1 Study, Kevala has demonstrated that it is possible to disaggregate load and DER 

growth at a premise level: 

● Over a 15-year time horizon, which is a longer forecast time horizon (to 2035) than is 

currently performed for regulatory filings. 

● Incorporating multiple scenarios for each of the three IOU service territories in less than 

one year (the timeframe to conduct the study). 
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Recommendation 1: PG&E, SCE, and SDG&E should increase the planning horizon for 

their distribution planning filings. The expected adoption rate of technologies at the grid 

edge (i.e., at the premise level) in the long term to meet federal and state decarbonization and 

electrification policies may require the distribution planning horizon to be increased to align 

with the CEC’s IEPR planning horizon (15 years)
17

 and the California Independent System 

Operator’s (CAISO’s) transmission planning horizons (10 years for annual planning and 20 

years for transmission outlook). Increasing the planning horizon for distribution planning 

filings should help to prepare more efficiently for a distribution grid that can maximize the 

cost-effectiveness of incorporating DERs and load management technologies to increase 

system capacity and reliability. 

Recommendation 2: PG&E, SCE, and SDG&E should incorporate additional policy-based 

demand scenarios into their DPPs and annual GNA/DDOR filings. For example, scenarios 

can consider managed charging assumptions or different rates of EV and BE adoption to better 

understand the impact of higher or lower electrification loads on planned investments for grid 

infrastructure. As this Part 1 Study shows, an uncertain load and DER future requires scenario 

planning that would result in multiple load and DER scenarios being disaggregated in the DPP 

to better inform the overbuilding and underbuilding risks involved in planning for grid 

infrastructure needs. 

 

● Identifying significant potential capacity costs previously not identified in current utility 

distribution planning filings. 

As such, Kevala proposes the following key recommendations: 

 

 

 

This Part 1 Study, by leveraging advanced metering infrastructure (AMI) consumption data and 

performing a premise-level modeling of load and DER potential futures, was able to estimate grid 

upgrades for the scenarios considered at the service transformer level across the PG&E, SCE, and 

SDG&E territories. Kevala recommends that the DPP consider secondary distribution 

 

 

17 
As stated in the 2021 IEPR at p. 2, “For the 2021 forecast, these energy demand forecasts are extended 

out beyond 10 years to 2035 to provide planners with a longer forecasting horizon and support planning for 

transportation electrification goals.” The 2021 and 2022 IEPRs went beyond 10 years to 2035 (15 years), and 

the 2021 IEPR also included long-term energy demand scenarios to 2050 (30 years) because of increasing 

policy and planning focus on climate change. See also Public Utilities Code Section 454.57(e)(1), which as of 

2022, requires “at least 15 years” to ensure adequate lead time for permitting and construction of approved 

transmission facilities. 

https://leginfo.legislature.ca.gov/faces/codes_displaySection.xhtml?lawCode=PUC&sectionNum=454.57
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Recommendation 3: PG&E, SCE, and SDG&E should provide an estimate of secondary 

distribution infrastructure grid needs to support future state electrification goals in the 

GNA/DDOR filings, so that secondary infrastructure can be accounted for and proactively 

planned in a high DER future. 

Recommendation 4: PG&E, SCE, and SDG&E should provide information in the GNA 

regarding distribution planning areas located in transmission- and sub-transmission- 

constrained nodes,20 and DDOR planned investment cost estimates should consider 

associated higher voltage upgrade costs that may be triggered by the distribution investment. 

 

infrastructure grid needs,
18

 as described in Recommendation 3, so that such grid upgrades do not 

become a bottleneck for electrification and are proactively planned for in a cost-effective way. 

 

 

The scope of this Part 1 Study, in terms of understanding the impact on the unmitigated load and 

DER growth in the scenario considered, stopped at the distribution substation level. However, it is 

becoming important to also understand the impacts on the sub-transmission and transmission 

infrastructure. In addition to the recommendations from its evaluation of the IOUs’ 2022 GNAs 

and DDORs,
19

 Kevala recommends that the DPP should be able to map the transmission and 

distribution nodes that are at risk of large capacity grid infrastructure needs, as identified in this 

Part 1 Study, to enable coordinated and integrated planning of grid infrastructure and mitigation 

strategies between the distribution and transmission planning processes. 

 

 

Improving California’s understanding of where and when electricity grid enhancements will be 

needed will likely require additional changes on multiple policy fronts. Data collection and 

integration across California load-serving entities (LSEs) beyond the three IOUs studied in this 

Electrification Impacts Study, for example, would enable more complete forecasting for DER 

 

18 
The secondary grid is the part of the electric distribution system between the primary feeder and the 

customer. The secondary distribution system includes distribution service transformers and secondary main 

and service conductors to the customer meter. The primary distribution grid is the feeder lines between the 

substation and the distribution service transformer. 

19

 See Kevala’s Distribution Investment Deferral Framework: Evaluation and Recommendations report, provided 

to the R.21-06-017 service list on November 14, 2022. The report can be found here: https://uploads- 

ssl.webflow.com/62a236e9692c48e1d16898b3/63729a90e35f9cb53c617a14_DIDF%20Evaluation%20and%2   

0Recommendations_Kevala_11.14.22.pdf. 

20 
A transmission node refers to the interface between the distribution and transmission electric power 

systems. At transmission nodes, the distribution system is typically represented as an aggregate lumped 

load in transmission models. 

https://uploads-ssl.webflow.com/62a236e9692c48e1d16898b3/63729a90e35f9cb53c617a14_DIDF%20Evaluation%20and%20Recommendations_Kevala_11.14.22.pdf
https://uploads-ssl.webflow.com/62a236e9692c48e1d16898b3/63729a90e35f9cb53c617a14_DIDF%20Evaluation%20and%20Recommendations_Kevala_11.14.22.pdf
https://uploads-ssl.webflow.com/62a236e9692c48e1d16898b3/63729a90e35f9cb53c617a14_DIDF%20Evaluation%20and%20Recommendations_Kevala_11.14.22.pdf
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technologies like EVs that transcend traditional utility boundaries. Specific technology and 

program policy modifications and regulatory process changes that enable enhanced scenario 

planning can also be effective tools to increase transparency and manage grid integration risks. 

Kevala’s observations relating to additional policy-related changes related to data, DER forecasting 

methodologies, and distribution planning processes gleaned in the course of completing this Part 

1 Study are outlined in Section 4 of this report. 

CPUC Energy Division Staff are conducting a stakeholder review process that will include formal 

comments to receive input on the current study (Part 1 of the Electrification Impacts Study) and 

the scope of the future analysis (Part 2 of the Electrification Impacts Study). 

Considerations for the Part 2 Study 

There are numerous areas of focus to consider in Part 2 of this Electrification Impacts Study. 

Kevala’s options for evolving the premise-based analysis began in this Part 1 Study and will be 

further refined for inclusion in the Part 2 Study. These options are provided in Section 4.3, and 

they center on: 

● Improvements and updates to certain methodologies developed for Part 1, particularly for 

transportation electrification and BE. 

● Development of scenarios that reflect the most recent policy goals, programs, adopted 

IEPR demand forecast, and targets adopted by state agencies, in particular those related to 

BE.
21

 

● Potential localized detailed case studies to be identified in Part 2 that would be designed to 

show the geographic, demographic, and economic impacts on specific customer groups in 

identified geographic regions. 

● Additional and improved data, both from the three IOUs that were the foundation of this 

Part 1 Study and from other LSEs and regulatory agencies across California. 

 

The Part 2 Study will be designed to support the Phase 1, Track 2 questions identified in the High 

DER Rulemaking Scoping Memo
22

 by building on the framework created in Part 1. 

 

 

 

 

21

 “Appendix F - Building Decarbonization,” California Air Resources Board Draft 2022 Scoping Plan, May 

2022, and reflected in the CEC IEPR 2022 as described in “Scoping Order for the 2022 Integrated Energy 

Policy Report Update,” California Energy Commission Docket No. 22–IEPR–01. 

22

 “Assigned Commissioner’s Scoping Memo and Ruling” for R.21-06-017, Order Instituting Rulemaking to 

Modernize the Electric Grid for a High Distributed Energy Resources Future, effective November 15, 2021, 

https://docs.cpuc.ca.gov/PublishedDocs/Efile/G000/M422/K949/422949772.PDF. 

https://docs.cpuc.ca.gov/PublishedDocs/Efile/G000/M422/K949/422949772.PDF
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1. Introduction 
This report summarizes Kevala, Inc.’s (Kevala’s) approach, results, and insights for Part 1 of the 

Electrification Impacts Study: Bottom-Up Load Forecasting and System-Level Electrification 

Impacts Cost Estimates.
23

 The California Public Utilities Commission (CPUC) commissioned the 

Electrification Impacts Study to support Rulemaking (R.) 21-06-017: the Order Instituting Rulemaking 

(OIR) to Modernize the Electric Grid for a High Distributed Energy Resources Future.
24

 This OIR is 

focused on preparing the grid to accommodate a high distributed energy resource (DER) future, 

capturing as much value as possible from DERs and mitigating unintended negative grid impacts. 

(This OIR is referred to as the High DER Proceeding throughout this report, while Part 1 of the two- 

part Electrification Impacts Study is referred to as the Part 1 Study.) The Part 1 Study was guided 

by the Electrification Impacts Study Research Plan (Research Plan), submitted to the CPUC on March 

29, 2022. The Research Plan stated the following goals: 

● Enable the identification of grid enhancements and changes necessary to support 

California’s stated transportation and building electrification policy goals by 2035. 

● Consider alternatives for evaluating distribution capacity expansion and deferral options 

into the utilities’ Distribution Planning Process (DPP). 

● Explore increasing the granularity of technology adoption models in high electrification 

scenarios to inform the development of mitigation strategies which will seek to optimize 

grid planning, maximize the equity and reliability benefits, and minimize the costs of high 

electrification. 

● Improve clarity and transparency of electrification scenario inputs, methodologies, and 

outputs across state energy planning agency processes. 

The Research Plan outlined a multi-part study approach, as shown in Figure 1.
25

 

 

 

 

 

 

 

23

 The full scope of the Electrification Impacts Study is detailed in the Research Plan, dated March 29, 2022, 

https://uploads-ssl.webflow.com/62a236e9692c48e1d16898b3/62d8509da2f405169ee10dd0_2022-  

0329_Electrification%20Impacts%20Study_Final%20Research%20Plan.pdf 

24

 R.21-06-017, opened with an Order Instituting Rulemaking to Modernize the Electric Grid for a High Distributed 

Energy Resources Future, issued on July 2, 2021, 

https://apps.cpuc.ca.gov/apex/f?p=401:56:0::NO:RP,57,RIR:P5_PROCEEDING_SELECT:R2106017 

25 
The Research Plan for the Electrification Impacts Study had identified Part 2 as an evaluation of the IOUs’ 

Grid Needs Assessment (GNA)/Distribution Deferral Opportunity Report (DDOR) filings and 

recommendations for near-term improvements, followed by a Staff Proposal. This step has been renamed 

as the GNA/DDOR Evaluation and Staff Proposal. As such, the next part of the Electrification Impacts Study 

will be referred to as Part 2 throughout this report (previously referred to as Part 3). 

https://uploads-ssl.webflow.com/62a236e9692c48e1d16898b3/62d8509da2f405169ee10dd0_2022-0329_Electrification%20Impacts%20Study_Final%20Research%20Plan.pdf
https://uploads-ssl.webflow.com/62a236e9692c48e1d16898b3/62d8509da2f405169ee10dd0_2022-0329_Electrification%20Impacts%20Study_Final%20Research%20Plan.pdf
https://apps.cpuc.ca.gov/apex/f?p=401%3A56%3A0%3A%3ANO%3ARP%2C57%2CRIR%3AP5_PROCEEDING_SELECT%3AR2106017
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Figure 1: The Electrification Impacts Study parts and deliverables (Source: Kevala) 

 

This Part 1 Study is a granular customer electricity consumption data analysis across all customer 

classes designed to support electricity distribution grid planning processes that enable California 

to meet its state energy goals. This part of the study builds the foundation for an improved 

framework for distribution planners and policymakers to evaluate grid needs and value grid 

solutions based on the hyper-granular location of electrification needs. 

Part 2 of the Electrification Impacts Study is designed to build on these Part 1 results, leveraging 

additional data to develop an updated framework for estimating localized grid requirements and 

mitigations that will facilitate the electrification of California’s energy system. 

The local grid impacts and associated costs developed through this Part 1 Study are indicative of 

the scope and scale of potential unmitigated loads and the associated traditional grid buildout to 

support electrification. These results are not comprehensive. In Part 2, Kevala proposes to update 

the data used, refine key elements of analysis, and identify potential mitigations for specific 

locations to build out a localized distribution planning framework. 

The scope of this Part 1 Study includes the customers and grid infrastructure for the three large 

California investor-owned utilities (IOUs): Pacific Gas and Electric Company (PG&E), Southern 

California Edison (SCE), and San Diego Gas & Electric Company (SDG&E). The small multi- 

jurisdictional utilities located in California (PacifiCorp, Liberty Utilities, and Bear Valley Electric 

Service) are not included in this study. Figure 2 shows the service territories of the six IOUs in 

California for reference. 
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Figure 2: California investor-owned utilities (Source: ArcGIS) 

 
This report contains the scope, approach, and Kevala’s results from this Part 1 Study. It is 

organized in the following sections: 

 

● Section 1 presents an overview of the High DER Proceeding; the data inputs, modeling 

approach, and DER scenarios developed and used for the Part 1 Study; and the literature 

review Kevala conducted on load and DER forecasting to inform its work. 

● Section 2 presents the results of Kevala’s electrification cost, net-load, and DER adoption 

and behavior scenarios. 

● Section 3 discusses Kevala’s approach, including data ingestion and management, the 

baseline net-load methodology, and the modeling and calibration methodologies for 

estimating the hourly demand-side modifiers and electrification grid upgrade costs. 

● Section 4 summarizes Kevala’s recommendations for improvements to the DPPs and for 

planning for Part 2 of the Electrification Impacts Study. 

 

The report also includes several appendices that provide further detail on Kevala’s methodology 

and IOU-specific results. 

 

CPUC Energy Division Staff are conducting a stakeholder review process that will include formal 

comments to receive input on the current study (Part 1 of the Electrification Impacts Study) and 

the scope of the future analysis (Part 2 of the Electrification Impacts Study). 
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1.1. High DER Proceeding Overview 

The CPUC recognizes that successfully achieving California’s electrification and 

decarbonization goals depends on an electricity grid that can support diverse electrification 

technologies at scale while maintaining grid reliability and the affordability of electricity 

service for all Californians. As stated in the July 2021 High DER Proceeding, DER growth is 

expected to continue to increase in California, especially due to policies and programs driving 

transportation electrification and its associated DERs (i.e., electric vehicles (EVs) and electric 

vehicle service equipment (EVSE)). By 2025, EVSE infrastructure in the United States is forecasted 

to result in more annual DER capacity additions than solar.
26

 In California, state-specific 

transportation electrification and climate goals are expected to result in millions of EV-related 

DERs by 2030.
27

 In addition, state legislation, CPUC proceedings, and local building reach codes are 

expected to further drive building and mobility electrification. For example, Senate Bill (SB) 1477
28

 

and Assembly Bill (AB) 3232,
29

 designed to reduce greenhouse gas emissions from buildings and 

support local electrification laws, are likely to further drive DER penetration and electrification. 

The High DER Proceeding does not seek to set policy on the overall number of DERs. Rather, it 

focuses on preparing the grid to accommodate what is expected to be a high DER future, 

capture as much value as possible from DERs, and mitigate unintended negative impacts. 

As such, this Electrification Impacts Study is focused on grid preparation, and specifically on 

estimating the scope and scale of grid impacts from electrification while investigating new 

methods and tools, consistent with the DER Action Plan 2.0, to “align the CPUC’s vision and 

actions to maximize ratepayer and societal value of an anticipated high DER future.”30

 The 

 

 

 

 

 

26

 Ben Kellison and Fei Wang, “What the Coming Wave of Distributed Energy Resources Means for the US 

Grid,” Greentech Media, June 18, 2020, https://www.greentechmedia.com/articles/read/coming-wave-of-der- 

investments-in-us. 

27

 On August 25, 2022, the California Air Resources Board (CARB) codified the light-duty vehicle (LDV) goals 

set out in Governor Newsom’s Executive Order N-79-20 by approving the Advanced Clean Cars II rule (ACC 

II). ACC II establishes an annual roadmap for achieving 100% of new cars and light trucks sold in California to 

be zero-emission vehicles (ZEVs), including plug-in hybrid electric vehicles (PHEVs). 

28

 SB 1477 was passed on September 13, 2018 and sets new state policy standards for low-emission 

buildings and sources of heat energy. 

https://leginfo.legislature.ca.gov/faces/billTextClient.xhtml?bill_id=201720180SB1477 

29

 AB 3232 was passed on September 13, 2018 and sets new state policy standards for zero-emission 

buildings and sources of heat energy. 

https://leginfo.legislature.ca.gov/faces/billTextClient.xhtml?bill_id=201720180AB3232 

30

 California Public Utilities Commission, “Final CPUC DER Action Plan 2.0,” adopted April 21, 2022, 

https://docs.cpuc.ca.gov/PublishedDocs/Published/G000/M467/K470/467470758.PDF. 

https://www.greentechmedia.com/articles/read/coming-wave-of-der-investments-in-us
https://www.greentechmedia.com/articles/read/coming-wave-of-der-investments-in-us
https://leginfo.legislature.ca.gov/faces/billTextClient.xhtml?bill_id=201720180SB1477
https://leginfo.legislature.ca.gov/faces/billTextClient.xhtml?bill_id=201720180AB3232
https://docs.cpuc.ca.gov/PublishedDocs/Published/G000/M467/K470/467470758.PDF
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follow-up parts to this study described 

previously will refine Part 1 estimates and 

explore potential methods to mitigate 

forecast electrification loads. 

The Electrification Impacts Study was 

designed to inform and support several 

scoping questions for the High DER 

Proceeding.
31

 Specifically, the CPUC’s 

“Assigned Commissioner’s Scoping Memo 

and Ruling” in the High DER Proceeding
32

 

outlined the key questions to be answered by 

this study (see sidebar). 

These scoping questions indicate a need to 

review existing electric distribution planning 

processes—and the data used in each of 

those disparate processes—to ensure they 

are sufficient for timely selection and 

deployment of traditional distribution 

infrastructure and DER solutions to meet grid 

needs. Dynamic factors such as new 

customer and utility technologies, changing 

customer behaviors, and extreme weather 

events are likely to require much more 

precise and timely distribution planning 

processes to meet California’s ambitious 

electrification requirements while minimizing 

costs and barriers of equitably distributing 

the benefits of electrification. 

The CPUC’s current electric utility annual DPP 

GNA evaluates necessary grid investments 

 

31

 Proceeding R.21-06-017, opened with an Order Instituting Rulemaking to Modernize the Electric Grid for a 

High Distributed Energy Resources Future, issued on July 2, 2021, 

https://apps.cpuc.ca.gov/apex/f?p=401:56:0::NO:RP,57,RIR:P5_PROCEEDING_SELECT:R2106017 

32

 “Assigned Commissioner’s Scoping Memo and Ruling” for R.21-06-017, Order Instituting Rulemaking to 

Modernize the Electric Grid for a High Distributed Energy Resources Future, effective November 15, 2021, 

https://docs.cpuc.ca.gov/PublishedDocs/Efile/G000/M422/K949/422949772.PDF. 

https://apps.cpuc.ca.gov/apex/f?p=401%3A56%3A0%3A%3ANO%3ARP%2C57%2CRIR%3AP5_PROCEEDING_SELECT%3AR2106017
https://docs.cpuc.ca.gov/PublishedDocs/Efile/G000/M422/K949/422949772.PDF
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based on a single forecast scenario and informs the CPUC of the utilities’ plans to invest in grid 

infrastructure to meet these needs. The forecast used for the GNA is tied to the California Energy 

Commission’s (CEC’s) latest adopted Integrated Energy Policy Report (IEPR) forecast,
33

 which 

provides a statewide forecast of energy needs based on an integrated process with multiple 

California stakeholders. As described in the following section, this Part 1 Study takes a different, 

premise-based (or bottom-up) approach to forecasting baseline load and anticipating the impacts 

that meeting the state’s ambitious electrification goals could have on the distribution grid if not 

identified and mitigated. This analysis takes a bottom-up approach, which means the forecast is 

based off address-specific estimates of energy use. Kevala took this approach to reflect that the 

implications of electrification start at the address level and must be analyzed at this level to more 

accurately understand the impacts to the distribution system. Exploring this bottom-up approach 

compared to current approaches to bottom-up that apply expected load growth and DER 

adoption at higher aggregation levels allows for an understanding of capacity needs and 

subsequent capital costs for all asset types in the distribution system (such as secondary 

transformers, feeders, and feeder banks). In other words, the bottom-up approach enables 

identification and assessment of grid impacts and costs not commonly identified through existing 

approaches. 

1.2. Part 1 Study Overview and Constraints 

This Part 1 Study was designed to anticipate distribution grid impacts due to electrification based 

on a geographically and temporally granular approach that reflects the unique effects of 

electrification on each utility circuit for the three large electric IOUs in California. Over 100 

terabytes of time series data, geospatial and utility grid network data, and socioeconomic data 

across all customer classes for each IOU were collected and linked to enable Kevala’s modeling of 

each premise. Data ingestion, identification, and joining comprised the great majority of the Part 1 

analysis. 

1.2.1. Data Overview and Constraints 

Kevala’s baseline net-load forecast is based on each IOU’s advanced metering infrastructure (AMI) 

data, which comprised over 60% of the total data ingested and was the most readily joinable with 

geospatial data. While AMI data enabled the development of the baseline net-load forecast, 

ideally it would be linked and validated by supervisory control and data acquisition (SCADA) 

data to provide the most accurate premise-specific grid requirements. For this Part 1 Study, 

 

33

 SB 1389 (Bowen and Sher, Chapter 568, Statutes of 2002) requires the CEC to: "[C]onduct assessments 

and forecasts of all aspects of energy industry supply, production, transportation, delivery and distribution, 

demand, and prices. The Energy Commission shall use these assessments and forecasts to develop energy 

policies that conserve resources, protect the environment, ensure energy reliability, enhance the state's 

economy, and protect public health and safety." (Pub. Res. Code § 25301(a)). 
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Kevala was unable to collect and validate all IOU SCADA data and community choice aggregator 

(CCA) enrollment for SDG&E.
34

 Also, key connectivity and cost data was received late in the 

analysis with minimal processing time in order to be used for Part 1.
35

 Kevala is working with the 

IOUs to complete those datasets for Part 2, which will enable even more accurate 8760 modeling. 

Other constraints in key datasets available for this Part 1 study include: 

● Lack of data for other California utilities outside CPUC jurisdiction (i.e., municipal utilities). 

Having access to this data would enable projecting requirements that cross traditional 

utility boundaries, especially for large infrastructure requirements such as airports or ports 

that host or are likely to host EV fleets. 

● Limited data on distributed generation and other historical DER program performance 

data, constraining the ability to develop data-driven adoption for nascent technologies 

such as batteries. 

● Non-availability of IOU location-specific cost data required the use of generic unit costs that 

did not take into account terrain, property value, and other location-specific cost drivers. 

● Lack of data on address-specific vehicle registrations and granular locational driving 

patterns required the use of the IOUs’ limited EV rate enrollment data as well as Census 

block group-level vehicle registration data and Census tract-level driving pattern data. 

● Kevala did not use future costs of distribution capacity additions, DERs, and future rate 

designs or levels that were in development and therefore assumed they would remain 

constant 2022 values over time for the purposes of the Part 1 analysis.
36 

1.2.2. Modeling Overview and Constraints 

The modeling approach started with estimating each customer’s load over the study period, 

using machine learning based on the actual customer data received to date to develop a premise- 

specific load profile that reflects adoption of energy efficiency (EE), photovoltaics (PV), 

battery energy storage systems (BESS), building electrification (BE), and EVs.
37

 Kevala then 

calibrated the results of this modeling to the IEPR’s system-level forecasts to ensure 

 

34 
CCA rates were incorporated into the bill calculations for PV payback and equity for SCE and PG&E; the 

then-current CCA rates were acquired via the CCA websites. Vintaging for the power charge indifference 

adjustment (PCIA) was not incorporated due to the lack of vintage data for CCA customers. 

35

 PG&E data was generally the most complete and was received first; key datasets required for grid needs 

and cost analysis for SCE and SDG&E were not received until October 2022. 

36 
Rate levels only impacted payback estimates for PV and equity estimates for energy justice. Similarly, DER 

cost estimates only impacted PV payback. 

37 
Baseline load growth (expected load growth due to economic and weather factors) was incorporated into 

modeled load profiles. Load growth for commercial and industrial customers was assigned to existing 

premises while load growth for residential assumed new premises with a commensurate load profile 

proximate to the premise. 
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consistency with the IOUs’ GNAs and the IEPR.
38

 Essentially, premise-level load profiles that 

include DER-specific adoption were then aggregated up to the IOU service territory level; this 

aggregated load was not allowed to exceed the IEPR demand forecast prepared for each IOU 

service territory. 

Next, these calibrated premise-level forecasts were used to identify the magnitude and 

location of DER adoption and resulting high electrification anticipated for a base case and 

four alternate scenarios focusing on two DER types: transportation electrification and net 

energy metering (NEM) behind-the-meter (BTM) tariffs for 2025, 2030, and 2035. As detailed in 

the Research Plan, Kevala selected transportation electrification and NEM BTM tariffs for the Part 

1 Study scenarios to isolate the impact of two relatively dynamic DERs for which alternate 

scenarios tied to then-existing state programs or projections could be defined. NEM BTM tariffs 

refer to a hypothetical alternative compensation structure for BTM solar PV based on the 

December 2021 Proposed Decision for proceeding R.20-08-020 and incorporates a monthly grid 

access charge and specific export rate. This is not to suggest other DERs such as BE or PV will not 

be studied or impactful for California’s electrification efforts; rather, the goal of the Electrification 

Impacts Study Part 1 is to identify the likely grid impacts from DERs for which there is less 

program data or for programs that are changing. For example, in December 2022, the CPUC 

adopted the Net Billing Tariff in Decision (D.) 22-12-056, which has a different structure than the 

scenarios included in this study; therefore, the results of these scenarios do not reflect what will 

happen with the newly adopted Net Billing Tariff. The transportation electrification scenario 

inputs, drawn from California Air Resources Board (CARB) and CEC projections (as discussed in 

Appendix 9), incorporate a range of different ZEV vehicle adoption levels, including personal 

vehicles and medium- and heavy-duty freight and port vehicles. 

Finally, by aggregating up to the service transformer, feeder, transformer bank, and 

distribution substation levels for the premise-level forecasts, the magnitude and location of 

electrification impacts were determined and used to identify system-level grid impacts, 

costs, and affordability of electricity service for customers. 

 

 

 

 

 

 

 

 

 

38

 This approach is similar to how the IOUs ensure the forecast used for the annual GNA/DDOR does not 

exceed the IEPR demand forecast. However, the GNA/DDOR process for calibrating to the IEPR is 

complicated by the known loads issue, as described in Section 3 (pp. 26-34) of the 2022 Independent 

Professional Engineer Post DPAG Report. 
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Specifically, in this Part 1 Study, Kevala used machine learning of IOU-specific datasets to develop: 

 

● Hourly baseline net-load39 estimates for each customer of the three large electric IOUs 

for 2025, 2030, and 2035. 

● Hourly premise-specific (i.e., customer-level) net-load forecasts for the base case and four 

scenarios (discussed in Section 1.2.3) that incorporate the adoption and behavior profiles 

of DERs for 2025, 2030, and 2035. 

● Initial distribution capacity expansion and system-level cost estimates for the base 

case and each scenario in 2025, 2030, and 2035. 

● Aggregated load profiles and cost estimates at the service transformer, feeder, and 

distribution substation levels for the base case and four scenarios to provide insights into 

distribution planning capacity upgrades and costs. 

● Net-load aggregated to each IOU’s service territory to provide future insights into 

transmission planning investments. 

 

The hourly premise-specific net-load forecast serves as the backbone to understanding the 

impacts of electrification on distribution planning and grid infrastructure needs. While the 

premise-level forecast was continuous from 2022 through 2035 (i.e., premise-specific hourly load 

forecasts were generated over the 13-year time period), Kevala selected the forecast years of 

2025, 2030, and 2035 for the in-depth cost and equity analyses because: 

● 2025 captures the current distribution planning cycle (five years through approximately 

2025). 

● 2030 (a mid-range year) captures when DERs and the distribution system are likely to be 

the predominant resources for meeting grid needs. 

● 2035 (an outer year) is the timeframe in which transmission solutions could be capable of 

addressing grid needs. 

1.2.3. DER Scenarios 

In coordination with the CPUC, CEC staff, and their other consultants, Kevala used the 2021 IEPR 

for IOU service territory-level load and demand-side modifiers to inform the load and DER targets 

for the premise-level load and DER calibration to the different scenarios. The 2022 IEPR had not 

yet been adopted by the time of the Part 1 Research Plan completion in March 2022. Kevala 

 

 

 

39

 Net-load references the customer’s metered load and is what is expected to be delivered by the IOU or, in 

the case of reverse flow, the level of energy the customer is exporting to the grid and the IOU is expected to 

accept and distribute. Because baseline net-load is the customer’s metered load, it reflects customer load 

with the impact of any DERs applicable to that customer, bundled into the metered load amount. 
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generated the premise-specific forecasts for a base case, based on the 2021 IEPR mid-mid case 

forecast or likely scenario through 2035,
40

 and four additional scenarios: 

● Base Case 2021 IEPR (mid-mid case) 

● High Transportation Electrification + Existing BTM Tariffs
41 

● High Transportation Electrification + Modified BTM Tariffs
42 

● Accelerated High Transportation Electrification + Existing BTM Tariffs 

● Accelerated High Transportation Electrification + Modified BTM Tariffs 

 

The base case represents a premise-level forecast that calibrates the baseline load forecast and 

the individual demand modifier forecasts to the 2021 IEPR mid-mid case. Each of the four 

alternate scenarios considers a different combined projection for BTM tariffs and the speed and 

scope of transportation electrification. These scenarios are based on the expected level of 

electrification necessary to meet California’s policy goals, such as the transportation electrification 

goals promulgated in Executive Order N-79-20 and incorporated into CARB regulation in 2022.
43

 

Although the 2022 IEPR
44

 had not been adopted at the time of the Part 1 Research Plan 

completion in March 2022, ongoing coordination with the CPUC Energy Division and CEC staff 

enabled the transportation electrification assumptions of the two High Transportation 

Electrification scenarios to be similar to those applied to the adopted 2022 IEPR demand forecast 

mid-mid case. The 2022 IEPR demand forecast mid-mid case (i.e., now called the Planning 

 

 

 

 

40

 The IEPR mid-mid scenario includes mid-level adoption scenarios for EE and building and transportation 

electrification. EE and fuel substitution (BE) aligns to the adopted CPUC goals for proceeding R.13-11-005. 

Mid-mid refers to Scenario 3 when referring to additional achievable energy efficiency (AAEE) or additional 

achievable fuel switching (AAFS) load modifiers applied to the mid baseline forecast. 

41

 The existing BTM rate design assumptions are based on the NEM 2.0 tariff. 

42 
The modified BTM rate design assumptions are based on the December 13, 2021, Proposed Decision for 

the proceeding titled, Order Instituting Rulemaking to Revisit Net Energy Metering Tariffs Pursuant to Decision 16- 

01-044, and to Address Other Issues Related to Net Energy Metering (R.20-08-020). The Proposed Decision was 

not adopted by the Commission; it is available at: 

https://docs.cpuc.ca.gov/PublishedDocs/Efile/G000/M430/K903/430903088.PDF. Instead, D.22-12-056 

adopted the Net Billing Tariff. 

43 
Governor Gavin Newsom signed Executive Order N-79-20 on September 23, 2020, establishing the state’s 

goals related to decarbonizing the transportation sector. CARB subsequently adopted its ACC II regulations, 

which became effective on November 30, 2022. Pursuant to this regulation, all new passenger cars, trucks, 

and SUVs sold in California will be zero emissions by 2035 (see https://ww2.arb.ca.gov/our- 

work/programs/advanced-clean-cars-program/advanced-clean-cars-ii). 

44 
CEC, 2022 Integrated Energy Policy Report Update, February 2023, https://www.energy.ca.gov/data- 

reports/reports/integrated-energy-policy-report/2022-integrated-energy-policy-report-update. 

https://docs.cpuc.ca.gov/PublishedDocs/Efile/G000/M430/K903/430903088.PDF
https://docs.cpuc.ca.gov/PublishedDocs/Published/G000/M500/K043/500043682.PDF
https://www.gov.ca.gov/wp-content/uploads/2020/09/9.23.20-EO-N-79-20-Climate.pdf
https://ww2.arb.ca.gov/our-work/programs/advanced-clean-cars-program/advanced-clean-cars-ii
https://ww2.arb.ca.gov/our-work/programs/advanced-clean-cars-program/advanced-clean-cars-ii
http://www.energy.ca.gov/data-
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Forecast)
45

 reflected transportation electrification levels similar to the Interagency Working Group 

High Electrification Scenario, which was adopted as a 2021 IEPR demand scenario by the CEC on 

May 24, 2022 (Resolution No. 22-0524-5). 

Transportation electrification and PV are the only demand modifiers that reflect different 

assumptions for the scenario analyses. Specifically, transportation electrification scenarios 

assume different levels of EV targets; for PV, the NEM BTM tariff was modified to reflect key 

components of anticipated NEM reform at the time the study was conducted. This approach was 

designed to isolate the impact of two factors likely to impact the distribution grid, recognizing 

there are other factors as well, and to maintain consistency with the 2021 IEPR mid-mid case to 

the greatest extent possible. Kevala can revisit considering BE targets aligned with state and 

federal policy goals and incentives in the Part 2 Study. 

Table 1 shows the base case and four scenarios in more detail. Section 3.4.7 describes the CEC 

scenarios and files used to calibrate the different scenarios. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

45 
Refer to the 2022 IEPR at p. 46: https://www.energy.ca.gov/sites/default/files/2023- 

02/Adopted_2022_IEPR_Update_with_errata_ada.pdf. 

https://www.energy.ca.gov/filebrowser/download/4171
https://www.energy.ca.gov/sites/default/files/2023-02/Adopted_2022_IEPR_Update_with_errata_ada.pdf
https://www.energy.ca.gov/sites/default/files/2023-02/Adopted_2022_IEPR_Update_with_errata_ada.pdf
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Table 1: Demand and adoption scenarios used in the Part 1 Study (Source: Kevala) 

Scenario (1) Base 

Case 

2021 

IEPR 

(2) High 

Transportation 

Electrification + 

Existing BTM 

Tariffs* 

(3) High 

Transportation 

Electrification + 

Modified BTM 

Tariffs* 

(4) Accelerated 

High 

Transportation 

Electrification + 

Existing BTM 

Tariffs 

(5) Accelerated 

High 

Transportation 

Electrification + 

Modified BTM 

Tariffs 

Input Name Demand Forecast/DER Growth Forecast Calibration Target 

Peak demand 2021 IEPR mid-mid case forecast 

EE46 
2021 IEPR mid-mid case forecast 

BE47 
2021 IEPR mid-mid case forecast 

PV 48 
2021 IEPR mid-mid case forecast 

BESS 2021 IEPR mid-mid case forecast 

Rates Held constant through study period at early 2022 levels for each IOU
49

 

Demand Response50
 Assumed to be integrated in the peak forecast 

ZEV Adoption 

Forecast 

Source 

 
LDV 

 
CEC 2021 

IEPR mid 

scenario 

CARB 2021 Advanced Clean Cars II 

(ACC II) 

 
CEC 2021 IEPR bookend scenario 

MDV/ 

HDV 

 
CARB 2020 State SIP Strategy (SSS) 

 
CEC 2021 IEPR high scenario 

 

 

46

 For EE, the 2021 IEPR mid-mid scenario uses AAEE Scenario 3. 

47

 For BE, the 2021 IEPR mid-mid scenario uses AAFS Scenario 3. 

48

 While the solar PV and energy storage growth forecasts are listed as using 2021 IEPR mid-mid 

assumptions, these forecasts will change with any modification in BTM rate design, which is listed as a 

separate demand modifier. Further, the same adoption propensity score cut-off was used for PV between 

the two BTM scenarios because the purpose of the Modified BTM scenario was to identify the change in 

adoption propensity and where PV systems would be adopted given different NEM considerations. 

49

 Rates and DER costs were held constant, implying the relationship between rates and the cost of DERs 

remains constant throughout the study period. Assumptions regarding where IOU rates and costs will go in 

future years is outside the scope of this study; as a result, rate increase assumptions will mirror cost 

changes in DERs generally. 

50

 The base forecast includes demand response expectations that are already incorporated into IOU 

forecasts. As a result, Kevala did not complete separate modeling of demand response in Part 1 because it 

was expected to be negligible in the overall forecast. Kevala can revisit demand response in the Part 2 case 

studies as a mitigation to alleviate distribution system constraints. 
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Scenario (1) Base 

Case 

2021 

IEPR 

(2) High 

Transportation 

Electrification + 

Existing BTM 

Tariffs* 

(3) High 

Transportation 

Electrification + 

Modified BTM 

Tariffs* 

(4) Accelerated 

High 

Transportation 

Electrification + 

Existing BTM 

Tariffs 

(5) Accelerated 

High 

Transportation 

Electrification + 

Modified BTM 

Tariffs 

Input Name Demand Forecast/DER Growth Forecast Calibration Target 

ZEV Adoption 

Total Vehicle 

Count 

(2022-2035, 

Three IOUs)51
 

LDV 3,172,598 10,013,953 9,530,034 

 

MDV/ 

HDV 

 

227,140 

 

218,710 

 

230,876 

BTM Rate Design Existing 

BTM rate 

design
52

 

Existing BTM 

rate design 

Modified BTM 

rate design
53

 

Existing BTM 

rate design 

Modified BTM 

rate design 

*The two High Transportation Electrification scenarios incorporate transportation electrification 

assumptions similar to those applied to the 2022 IEPR demand forecast mid-mid case (i.e., the 2022 IEPR 

Planning Forecast). At the time the Part 1 Study was developed, the 2022 IEPR had not yet been adopted, so 

the 2021 IEPR mid-mid case was used for the Part 1 base case. 

 

To distinguish between the two BTM tariff scenarios, the existing BTM rate design assumed that 

the NEM 2.0 Tariff structure would persist through the study period. The time-of-use (TOU) 

periods, rate differentials among TOU periods, and the cost of BTM PV installations remained 

unchanged as well. The underlying assumption for this scenario is that the relationship between 

the cost of PV installations and rates remains unchanged. The modified BTM rate design includes 

a residential monthly grid access charge of $5/kW and an export rate that offsets the generation 

rate identified. This structure was consistent with the Proposed Decision in the proceeding to 

reform NEM (R.20-08-020) issued on December 13, 2021. Rather than modeling the exact proposal 

in that Proposed Decision, Kevala chose this simplified structure as a scenario because it was 

generally consistent with the Proposed Decision at the time. Since the study was conducted, the 

 

51

 The values in this table represent the forecasted ZEV adoption counts from 2022 to 2035 that the model 

allocated based on the CARB and CEC ZEV adoption forecasts. These values exclude all ZEV counts prior to 

2022, thus they do not represent the total cumulative ZEV counts for all three IOUs. 

52

 Existing BTM rate design assumptions based on NEM 2.0 Tariff. 

53

 Modified BTM rate design assumptions are based on the December 13, 2021, Proposed Decision for the 

proceeding titled, Order Instituting Rulemaking to Revisit Net Energy Metering Tariffs Pursuant to Decision 16-01- 

044, and to Address Other Issues Related to Net Energy Metering (R.20-08-020). The Proposed Decision was not 

adopted by the Commission; it is available at: 

https://docs.cpuc.ca.gov/PublishedDocs/Efile/G000/M430/K903/430903088.PDF. Instead, D.22-12-056 

adopted the Net Billing Tariff. 

https://docs.cpuc.ca.gov/PublishedDocs/Efile/G000/M430/K903/430903088.PDF
https://docs.cpuc.ca.gov/PublishedDocs/Published/G000/M500/K043/500043682.PDF
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CPUC adopted a final Decision on December 15, 2022 to reform NEM by creating a Net Billing 

Tariff.
54

 

1.3. Summary of the Literature Review on Load and DER Forecasting 

Kevala conducted a literature review to determine how other technical studies have approached 

questions regarding the electric grid’s readiness to support higher electricity loads. Specifically, 

Kevala was interested in publicly available studies that have modeled high electrification futures 

for similar geographic scope and temporal periods as this study. Each study included in the review 

presented at least two electrification scenarios involving various DERs. The literature review 

included nine existing studies; these studies focused on individual cities or service areas (Los 

Angeles, Washington, DC, PG&E’s service area in northern California) and on the United States as a 

whole during similar forecasting periods (approximately 2016-2050). 

The literature review presented outcomes on several topics relevant to this study including 

transmission and distribution (T&D), environmental justice, load flexibility, EE, BE, EVs, and 

decarbonization. These studies are briefly summarized below: 

● The two studies that focused on individual cities—the National Renewable Energy 

Laboratory’s (NREL’s) LA100 study,
55

 released in March 2021, and the Brattle Group’s 

Assessment of Electrification Impacts on the Pepco DC System study,
56

 released in August 

2021—resulted in annual peak demand growth scenarios within 1% of each other, ranging 

from 1.0% to 1.7% annually. 

● The sole service area study, the Energy Institute at Haas’ Can Distribution Grid Infrastructure 

Accommodate Residential Electrification and Electric Vehicle Adoption in Northern California?,
57

 

released in June 2022, focused on EV and residential electrification through 2050, 

presenting increased loads and total upgrade costs. 

 

 

 

 
 

54 
CPUC’s D.22-12-056 can be found at: 

https://docs.cpuc.ca.gov/PublishedDocs/Published/G000/M500/K043/500043682.PDF. 

55

 NREL, LA100: The Los Angeles 100% Renewable Energy Study, March 2021, https://maps.nrel.gov/la100/la100- 

study/report. 

56

 Brattle Group, Assessment of Electrification Impacts on the Pepco DC System, prepared for Pepco, August 

2021, 

https://www.pepco.com/Documents/1167%20%20Pepco%27s%20Electrification%20Study%20%20082721.p 

df 

57

 Energy Institute at Haas, Can Distribution Grid Infrastructure Accommodate Residential Electrification and 

Electric Vehicle Adoption in Northern California?, June 2022, https://haas.berkeley.edu/wp- 

content/uploads/WP327.pdf 

https://docs.cpuc.ca.gov/PublishedDocs/Published/G000/M500/K043/500043682.PDF
https://maps.nrel.gov/la100/la100-study/report
https://maps.nrel.gov/la100/la100-study/report
https://www.pepco.com/Documents/1167%20%20Pepco%27s%20Electrification%20Study%20%20082721.pdf
https://www.pepco.com/Documents/1167%20%20Pepco%27s%20Electrification%20Study%20%20082721.pdf
https://haas.berkeley.edu/wp-content/uploads/WP327.pdf
https://haas.berkeley.edu/wp-content/uploads/WP327.pdf
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● The three studies focused nationally on varying DER scenarios—NREL’s Electrification 

Futures Study series,
58

 released between 2018 and 2021; Brattle Group’s The Coming 

Electrification of the North American Economy,59

 released in March 2019; and Princeton 

University and Evolved Energy Research’s Net-Zero America: Potential Pathways, 

Infrastructure, and Impacts,60

 released in October 2021—ranged greatly in nationwide 

energy demand forecasts because they did not encompass the same DER scenarios. 

● Three studies—CEC’s Electric Vehicle Charging Infrastructure Assessment Analyzing Charging 

Needs to Support Zero-Emission Vehicles in 2030,
61

 released in May 2021; the Institute of 

Transportation Studies, University of California, Davis, and Cadmus Group’s Distribution grid 

impacts of electric vehicles: A California case study,62

 released in December 2021; and Boston 

Consulting Group’s Revving Up the Grid for Electric Vehicles,63

 released in December 2019— 

focused solely on EV growth. 

Most relevant to the Part 1 Study is that, of all the studies reviewed, only one used a bottom-up 

analysis of electrification impacts that included secondary infrastructure: NREL’s LA100 study. The 

remaining studies used a more traditional top-down and holistic approach. This finding further 

emphasizes the importance of the proof-of-concept in applying a premise-level forecast to 

improve distribution planning, a key goal of the Part 1 Study. Appendix 1 contains the full 

literature review. As noted in Section 1.1, this analysis takes a bottom-up approach, which means 

the forecast is based off address-specific estimates of energy use. Kevala took this approach to 

reflect that the implications of electrification start at the address level and must be analyzed at 

this level to more accurately understand the impacts to the distribution system. This approach 

 

 

 

 

58

 NREL, NREL Electrification Futures Study, 2018-2021, https://www.nrel.gov/analysis/electrification- 

futures.html 

59

 Brattle Group, The Coming Electrification of the North American Economy, prepared for WIRES, March 2019, 

https://wiresgroup.com/wp-content/uploads/2020/05/2019-03-06-Brattle-Group-The-Coming-Electrification-   

of-the-NA-Economy.pdf 

60

 Princeton University, Evolved Energy Research, Net-Zero America: Potential Pathways, Infrastructure, and 

Impacts, October 2021, https://netzeroamerica.princeton.edu/?explorer=pathway&state=national&table=e- 

positive&limit=200 

61

 CEC, Electric Vehicle Charging Infrastructure Assessment Analyzing Charging Needs to Support Zero-Emission 

Vehicles in 2030, May 2021, https://www.ourenergypolicy.org/resources/electric-vehicle-charging- 

infrastructure-assessment-analyzing-charging-needs-to-support-zero-emission-vehicles-in-2030/ 

62

 Institute of Transportation Studies, University of California, Davis and Cadmus Group, Distribution grid 

impacts of electric vehicles: A California case study, December 2021, 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8749456/ 

63

 Boston Consulting Group, Revving Up the Grid for Electric Vehicles, December 2019, 

https://www.bcg.com/publications/2019/costs-revving-up-the-grid-for-electric-vehicles 

https://www.nrel.gov/analysis/electrification-futures.html
https://www.nrel.gov/analysis/electrification-futures.html
https://wiresgroup.com/wp-content/uploads/2020/05/2019-03-06-Brattle-Group-The-Coming-Electrification-of-the-NA-Economy.pdf
https://wiresgroup.com/wp-content/uploads/2020/05/2019-03-06-Brattle-Group-The-Coming-Electrification-of-the-NA-Economy.pdf
https://netzeroamerica.princeton.edu/?explorer=pathway&state=national&table=e-positive&limit=200
https://netzeroamerica.princeton.edu/?explorer=pathway&state=national&table=e-positive&limit=200
https://www.ourenergypolicy.org/resources/electric-vehicle-charging-infrastructure-assessment-analyzing-charging-needs-to-support-zero-emission-vehicles-in-2030/
https://www.ourenergypolicy.org/resources/electric-vehicle-charging-infrastructure-assessment-analyzing-charging-needs-to-support-zero-emission-vehicles-in-2030/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8749456/
https://www.bcg.com/publications/2019/costs-revving-up-the-grid-for-electric-vehicles
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enables the identification and assessment of grid impacts and costs not commonly identified 

through existing approaches. 
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2. Results 
California’s electricity grid is changing rapidly, driven by significant changes at the premise level. 

Customer programs and rate designs tailored to elicit individual customer behaviors and 

responses, changing customer technologies, ambitious statewide energy policy goals, and 

localized wildfire and climate change impacts all contribute to dynamic electricity grid changes 

that are unique to each premise. The results of this Part 1 Study indicate that these impacts, in the 

aggregate, could result in tens of billions of dollars in additional necessary investments, across 

discrete locations, to support California’s electrification goals. 

California has already invested billions of dollars in infrastructure and technologies to capture, 

track, and report energy data—from AMI and SCADA technologies to EV registrations and driving 

patterns. The results of this Part 1 Study illustrate how consolidating these extensive data sources 

yields important insights into where and when distribution grid enhancements are likely to 

be needed to support the premise-level impacts of grid electrification, which is critical as 

California enters a period of capacity expansion and DER proliferation to support state policy 

goals. These results also help to understand the quality and scope of utility data and to challenge 

some traditional DER program assumptions. This section summarizes the following and other 

results of Kevala’s Part 1 Study: 

● Electric distribution grid requirements and their associated costs increase 

significantly beyond the traditional distribution grid planning cycle, risking stranded 

investments or missed investment opportunities altogether if datasets are not 

connected and analyzed holistically. 

○ Across these unmitigated load scenarios, Kevala estimates up to $50 billion in 

traditional electricity distribution grid infrastructure investments by 2035. 

This estimate reflects distribution grid needs across the PG&E, SCE, and SDG&E 

service territories under the policy assumptions used in this report. These costs are 

estimated with a focus on traditional utility distribution infrastructure investments. 

Existing TOU rates and BTM tariffs were assumed. The study did not consider 

alternatives or any of the existing and future mitigation strategies such 

as alternative time-variant or dynamic rates and flexible load management 

strategies. 

○ Kevala examined several scenarios
64

 for this Part 1 Study. Both of the High 

Transportation Electrification scenarios would result in almost doubling the current 

 

64

 Kevala generated premise-specific forecasts for five scenarios. The base case represents a premise-level 

forecast that calibrates the baseline load forecast and the individual demand modifier forecasts to the 2021 
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rate of spend reported by the IOUs in the GNA reports for capacity requirements 

related to feeders, transformer banks, and substations.
65

 These Part 1 Study costs 

reflect the impact of unmitigated loads.
66

 

○ Secondary transformer and service upgrades alone are a non-negligible 

contribution to the total grid capacity upgrade costs, comprising about $15 billion of 

the $50 billion identified previously. Such grid upgrades are important to be 

considered so that they do not become a bottleneck for electrification and are 

proactively planned for in a cost-effective way. 

○ The system-level peak load increase from 2025 to 2035 is 56%, on average, across 

the three IOUs and High Transportation Electrification scenarios;
67

 this dramatic 

increase in peak load for the scenarios considered in Part 1 is primarily due to 

transportation electrification impacts, with over 60% of this demand coming from 

light-duty vehicles (LDVs).
68

 Peak load is the primary driver of the grid capacity 

upgrades considered in this Part 1 Study. 

○ The average percent change in peak load from 2025 to 2035 for the High 

Transportation Electrification scenarios is more dramatic for PG&E (69%), followed 

by SDG&E (53%) and SCE (44%). 

○ Data tracking and reporting gaps across state regulatory agency datasets and load- 

serving entities (LSEs) should be filled to develop timely forecast scenarios that 

reflect the dynamic changes to the electricity grid. 

● Of the DERs selected in this Part 1 Study for alternate scenario development— 

transportation electrification and BTM tariffs—transportation electrification results in 

significantly greater distribution grid impacts relative to the BTM tariffs assumed in 

the Part 1 Study. 

 

 

IEPR mid-mid case. Each of the four alternate scenarios considers a different combined projection for NEM 

BTM tariffs and the speed and scope of transportation electrification. 

65

 This Part 1 Study evaluates upgrades at the substation, transformer bank, feeder, and service transformer 

level. It does not include line section upgrades related to the primary lines between the feeder head and the 

service transformers. 

66

 Rates and existing TOU periods were held constant. Assumptions regarding where IOU rates and costs 

will go in future years is outside the scope of this study. 

67

 These High Transportation Electrification scenarios are based on the expected level of transportation 

electrification necessary to meet California’s policy goals, such as the transportation electrification goals 

promulgated in Executive Order N-79-20 and incorporated into CARB regulation in 2022. The main 

difference between the High Transportation Electrification and Accelerated High Transportation 

Electrification scenarios is the speed at which transportation electrification will occur in 2030 and 2035. 

68

 Kevala can revisit considering BE targets aligned with state and federal policy goals and incentives in the 

Part 2 Study. 

https://www.gov.ca.gov/wp-content/uploads/2020/09/9.23.20-EO-N-79-20-Climate.pdf
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○ Transportation electrification grid requirements and costs escalate in earnest in 

2030 and dramatically increase by 2035 regardless of scenario. The current 

distribution planning process looks out only five years. This planning framework 

may not be able to plan for the expected rapid increase in transportation 

electrification-related infrastructure due to the lead times involved for electric 

distribution grid infrastructure, including mitigation strategies to large capital 

expenses. 

○ The NEM BTM tariff scenario used in this Part 1 Study has relatively minimal impact 

on the adoption of PVs and thus on the total electrification grid upgrade costs 

resulting from the Part 1 analysis. 

● The premise-level approach taken in this Part 1 Study enables a robust assessment 

of utility distribution grid needs, including: 

○ The What: Identification of a broader scope of infrastructure needs than other 

studies and an understanding of the relative contribution to net-load of the DERs 

studied. 

○ The When: A longer planning time horizon than the current DPP. 

○ The Where: The ability to analyze premise-level data and aggregate up provides 

transparency and opportunities for multiple scenario analysis, including specific 

locational grid needs and the demographic characteristics of those needs. 

○ The How Much: Differences in unit costs and grid need calculations between 

utilities that require further transparency and analysis. 

 

The following sections provide details of the results of Kevala’s Part 1 analysis. 

 

● Section 2.1 provides an overview of the indicative costs of the electrification scenarios for 

2025, 2030, and 2035. 

● Section 2.2 outlines the results of Kevala’s net-load modeling. 

● Section 2.3 discusses the DER-specific adoption and behavior results for BTM PV, BESS, EE 

and BE, and EVs and EVSE. 

● Section 2.4 provides an overview of the equity and electricity burden implications of 

Kevala’s Part 1 analysis. 

 

2.1. Costs of Electrification Scenarios 

Kevala estimates in this Part 1 analysis total potential, unmitigated distribution system investment 

costs across all three study IOUs of up to $50 billion in 2035 for the High Transportation 

Electrification and Accelerated High Transportation Electrification scenarios (see Figure 3). As of 

2022, the 2021 IEPR base case is no longer a projected state outcome for transportation 
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electrification loads. The adopted 2022 IEPR mid-mid case (i.e., Planning Forecast)
69

 reflects 

transportation electrification assumptions similar to the two High Transportation Electrification 

scenarios that Kevala modeled. These cost estimates reflect Kevala’s distribution grid 

infrastructure and premise-specific forecast of long-term load and DER growth for the scenarios. 

Figure 3: Total capacity upgrade costs for the three large California IOUs, including new substations, 

transformer banks, feeders, and service transformers (Source: Kevala) 

 

 

For each of the four alternate scenarios (not including the Base Case 2021 IEPR), total cost levels 

by 2035 are approximately the same. The cost differences between the High Transportation 

Electrification and Accelerated High Transportation Electrification alternate scenarios in 2025 and 

2030 are the result of different assumptions for those alternate scenarios about the pace of 

transportation electrification between 2025 and 2030, and 2030 and 2035. The different 

assumptions about the pace of transportation electrification are key drivers of anticipated 

distribution upgrade requirements across the 2025-2035 period. 

Regardless of the pace of transportation electrification, Figure 3 shows that the incremental cost 

of electrification between 2025 and 2035 is about $40 billion. In other words, the difference 

between 2025 and 2035 levels for each of the four alternate scenarios is the same regardless of 

 

 

69 
CEC, 2022 Integrated Energy Policy Report Update, February 2023, https://www.energy.ca.gov/data- 

reports/reports/integrated-energy-policy-report/2022-integrated-energy-policy-report-update. 

https://www.energy.ca.gov/data-reports/reports/integrated-energy-policy-report/2022-integrated-energy-policy-report-update
https://www.energy.ca.gov/data-reports/reports/integrated-energy-policy-report/2022-integrated-energy-policy-report-update
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alternate scenario. In every alternate scenario, transportation electrification is the key driver of 

grid impacts. Further, the BTM tariff scenario did not result in a significant impact to distribution 

system upgrade costs in this analysis. 

These cost estimates, derived using distribution system design principles consistent with the 

design principles used by each of the respective IOUs, are based on circuit-specific analyses of 

four categories of distribution infrastructure: 

● Distribution substations 

● Transformer banks 

● Feeders 

● Service transformers 

 

The other electrification impacts studies of which Kevala is aware, including the IOUs’ GNA 

analyses, stop at the feeder level and do not include costs associated with service transformers. 

For comparison purposes, Figure 4 illustrates the total and incremental costs if the costs of 

secondary service transformers were excluded from Kevala’s estimate to be consistent with other 

publicly available studies: 

● The total costs of primary distribution infrastructure capacity upgrades are approximately 

$35 billion in the High Transportation Electrification and Accelerated High Transportation 

Electrification scenarios in 2035.
70

 

● The incremental costs of the transportation electrification scenarios by 2035 are $30 

billion in new substations, transformer banks, and feeders. 

 

For more information on the approach, methods, and assumptions to determine capacity 

infrastructure upgrade costs, refer to Section 3.5. 

 

 

 

 

 

 

 

 

 

 

 

70 
Although the adopted mid-mid case of the 2022 IEPR (i.e., the Planning Forecast) effectively makes the 

2021 IEPR Base Case used for Part 1 Study less relevant as of the time of the Part 1 report issuance in 2023, 

it is worth footnoting that the total costs of primary distribution infrastructure capacity upgrades in 2035 

pursuant to the 2021 IEPR Base Case was estimated to be approximately $22 billion for Part 1. The cost of 

secondary infrastructure capacity upgrades was estimated to be approximately $9 billion for a combined 

total of $31 billion under the Base Case. 
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Figure 4: Capacity upgrade costs for the three large California IOUs, including new substations, transformer 

banks, and feeders only (excluding service transformers) (Source: Kevala) 
 

 
2.1.1. Benchmarking Part 1 Upgrade Costs to 2022 Distribution Investment Deferral 

Framework 

Kevala compared the capacity upgrade costs estimates for the Base Case 2021 IEPR scenario in 

2025 to the IOUs’ DDOR planned investments required by capacity grid deficiencies identified in 

the GNA reports (see Figure 5). Kevala’s estimated cost for new substations, transformer banks, 

and feeder values (in dark blue) can be compared to the 2022 estimates from the IOUs in the 

DDOR capacity planned investments (in gray). 

● For PG&E, Kevala’s capacity upgrade cost estimate for primary infrastructure is $4.2 billion 

versus PG&E’s estimate of $5.3 billion. 

● For SCE, Kevala’s primary infrastructure estimate for capacity upgrades is $3 billion versus 

SCE’s reported planned investments of $2.2 billion. For SDG&E, the primary capacity 

upgrades estimated by Kevala are higher than SDG&E’s. Kevala proposes further 

investigating these differences in Part 2 when looking at mitigation strategies for capacity 

grid requirements. 

On top of the primary infrastructure, Kevala estimated additional upgrades required at the 

secondary distribution level by estimating the cost of service transformers that would need to be 

replaced. This non-negligible cost could be included in the Distribution Investment Deferral 
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Framework (DIDF) in order for DERs to be able to capture the value of deferring or avoiding 

service transformer costs in the future. 

Figure 5: Capacity upgrade costs by IOUs for the Base Case 2021 IEPR scenario in 2025 for new substations, 

transformer banks, and feeders compared to the DDOR planned investments identified by the IOUs through 

2026 in the 2022 DIDF (Source: Kevala) 

 
 

2.1.2. Capacity Upgrade Costs by IOU 

Figure 6 shows the total upgrade costs for new substations, transformer banks, feeders, and 

service transformers by IOU and scenario. The upgrade costs by county for Scenario 2, High 

Transportation Electrification + Existing BTM Tariffs are included in Figure 7, Figure 8, and Figure 9. 

These maps illustrate how electrification impacts on grid infrastructure requirements will not be 

geographically homogeneous, and the importance of beginning to understand where and when 

the bottlenecks will occur so the grid does not become an impediment to transportation 

electrification. 
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Figure 6: Total capacity upgrade costs by IOU and scenario, including new substations, transformer banks, 

feeders, and service transformers (Source: Kevala) 
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Figure 7: Total capacity upgrade costs for PG&E by county for Scenario 2, High Transportation Electrification 

+ Existing BTM Tariffs (Source: Kevala) 

 

 

 

 

Figure 8: Total capacity upgrade costs for SCE by county for Scenario 2, High Transportation Electrification + 

Existing BTM Tariffs (Source: Kevala) 
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Figure 9: Total capacity upgrade costs for SDG&E by county for Scenario 2, High Transportation 

Electrification + Existing BTM Tariffs (Source: Kevala) 

 

 

 

 

Total grid upgrade costs by IOU for all scenarios are included in Table 2; these costs are further 

identified by specific grid asset type in Table 3 and Table 4. The difference in costs by IOU are 

primarily driven by the peak load magnitude served and the number of overloaded assets in the 

system, and secondarily by the unit cost assumptions of new grid infrastructure. 

Table 2: Estimate of total grid upgrade costs, including service transformers (Source: Kevala) 

 
 

Scenario 

Total Grid Upgrade Costs ($000,000) 

2025 2030 2035 

PG&E SCE SDG&E PG&E SCE SDG&E PG&E SCE SDG&E 

(1) Base Case 

2021 IEPR 

 
$6,155 

 
$4,921 

 
$254 

 
$11,153 

 
$7,964 

 
$572 

 
$17,876 

 
$11,814 

 
$1,152 

(2) High 

Transportation 

Electrification 

+ Existing BTM 

Tariffs 

 
 

$5,255 

 
 

$4,673 

 
 

$202 

 
 
$13,407 

 
 

$9,206 

 
 

$738 

 
 
$27,599 

 
 
$20,330 

 
 

$3,123 
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Scenario 

Total Grid Upgrade Costs ($000,000) 

2025 2030 2035 

PG&E SCE SDG&E PG&E SCE SDG&E PG&E SCE SDG&E 

(3) High 

Transportation 

Electrification 

+ Modified 

BTM Tariffs 

 
 

$5,308 

 
 

$4,694 

 
 

$203 

 
 
$13,546 

 
 

$9,205 

 
 

$738 

 
 
$27,623 

 
 
$20,380 

 
 

$3,134 

(4) 

Accelerated 

High 

Transportation 

Electrification 

+ Existing BTM 

Tariffs 

 
 

$7,801 

 
 

$5,626 

 
 

$344 

 
 

$17,760 

 
 

$11,147 

 
 

$1,140 

 
 

$27,647 

 
 

$19,914 

 
 

$3,149 

(5) 

Accelerated 

High 

Transportation 

Electrification 

+ Modified 

BTM Tariffs 

 
 
 

$7,886 

 
 
 

$5,641 

 
 
 

$344 

 
 
 
$17,834 

 
 
 
$11,321 

 
 
 

$1,140 

 
 
 
$27,615 

 
 
 
$19,936 

 
 
 

$3,149 

 

Table 3: Estimate of new substation, transformer bank, and feeder costs (Source: Kevala) 

 
 

Scenario 

New Substation + Transformer Bank + Feeder Costs ($000,000) 

2025 2030 2035 

PG&E SCE SDG&E PG&E SCE SDG&E PG&E SCE SDG&E 

(1) Base Case 

2021 IEPR 

 
$4,256 

 
$3,086 

 
$171 

 
$7,930 

 
$5,374 

 
$359 

 
$13,010 

 
$8,307 

 
$776 

(2) High 

Transportation 

Electrification 

+ Existing BTM 

Tariffs 

 
 

$3,677 

 
 

$2,994 

 
 

$148 

 
 

$9,315 

 
 

$6,238 

 
 

$442 

 
 

$19,141 

 
 
$14,662 

 
 

$2,149 

(3) High 

Transportation 

Electrification 

+ Modified 

BTM Tariffs 

 
 

$3,727 

 
 

$3,012 

 
 

$148 

 
 

$9,451 

 
 

$6,233 

 
 

$442 

 
 

$19,160 

 
 
$14,709 

 
 

$2,161 
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Scenario 

New Substation + Transformer Bank + Feeder Costs ($000,000) 

2025 2030 2035 

PG&E SCE SDG&E PG&E SCE SDG&E PG&E SCE SDG&E 

(4) 

Accelerated 

High 

Transportation 

Electrification 

+ Existing BTM 

Tariffs 

 
 

$5,189 

 
 

$3,466 

 
 

$195 

 
 

$12,104 

 
 

$7,449 

 
 

$620 

 
 

$18,896 

 
 

$14,133 

 
 

$2,109 

(5) 

Accelerated 

High 

Transportation 

Electrification 

+ Modified 

BTM Tariffs 

 
 

$5,272 

 
 

$3,479 

 
 

$195 

 
 

$12,174 

 
 

$7,620 

 
 

$620 

 
 

$18,858 

 
 

$14,151 

 
 

$2,109 

 

Table 4: Estimate of service transformer costs (Source: Kevala) 

 
 

Scenario 

Service Transformer Upgrade Costs ($000,000) 

2025 2030 2035 

PG&E SCE SDG&E PG&E SCE SDG&E PG&E SCE SDG&E 

(1) Base Case 

2021 IEPR 

 
$1,899 

 
$1,835 

 
$83 

 
$3,223 

 
$2,590 

 
$214 

 
$4,866 

 
$3,507 

 
$375 

(2) High 

Transportation 

Electrification 

+ Existing BTM 

Tariffs 

 
 

$1,579 

 
 

$1,679 

 
 

$55 

 
 

$4,092 

 
 

$2,968 

 
 

$295 

 
 

$8,458 

 
 

$5,668 

 
 

$974 

(3) High 

Transportation 

Electrification 

+ Modified 

BTM Tariffs 

 
 

$1,581 

 
 

$1,681 

 
 

$55 

 
 

$4,096 

 
 

$2,972 

 
 

$296 

 
 

$8,463 

 
 

$5,670 

 
 

$974 

(4) 

Accelerated 

High 

Transportation 

Electrification 

+ Existing BTM 
Tariffs 

 
 

$2,612 

 
 

$2,160 

 
 

$149 

 
 

$5,656 

 
 

$3,698 

 
 

$519 

 
 

$8,751 

 
 

$5,781 

 
 

$1,040 
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Scenario 

Service Transformer Upgrade Costs ($000,000) 

2025 2030 2035 

PG&E SCE SDG&E PG&E SCE SDG&E PG&E SCE SDG&E 

(5) 

Accelerated 

High 

Transportation 

Electrification 

+ Modified 

BTM Tariffs 

 
 

$2,614 

 
 

$2,162 

 
 

$149 

 
 

$5,660 

 
 

$3,701 

 
 

$520 

 
 

$8,758 

 
 

$5,784 

 
 

$1,041 

 

Figure 10 shows the aggregated number of grid assets analyzed in this Part 1 Study for the three 

IOUs, along with the average percentage of overloaded assets by asset category.
71

 

Figure 10: Percentage of overloaded assets, averaged across the three IOUs and Scenarios 2-5 (Source: 

Kevala) 
 

 
Figure 11 shows the percentage of overloaded feeders over time by scenario and IOU. PG&E has a 

higher number of feeders that reach the capacity threshold, while SDG&E has the lowest 

percentage of feeders reaching capacity. 

 

 

 

 

71

 The percentage of overloaded assets in Figure 11 is averaged across the four High Transportation 

Electrification and Accelerated High Transportation Electrification scenarios (Scenarios 2-5). 
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Figure 11: Percentage of overloaded feeders by IOU and scenario in 2025, 2030, and 2035 (Source: Kevala) 
 

 

2.2. Net-Load Results 

The Part 1 Study enables both: 

 

● An aggregated view of total energy (GWh) and peak load (GW) for each IOU by scenario for 

each of the three years of the study period. 

● A more localized view of specific grid impacts for each IOU by scenario. 

 

Figure 12 and Figure 13 illustrate the aggregate total load growth for each IOU, regardless of 

scenario, from 2025 to 2035. 
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Figure 12: Energy by IOU, study year, and scenario (Source: Kevala) 
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Figure 13: Peak demand by IOU, study year, and scenario (Source: Kevala) 
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Figure 14 and Figure 15 provide a different lens into total energy and peak load growth by 

illustrating the dramatic load growth results for each IOU on a percent change basis from 2025 to 

2030, and from 2025 to 2035. Peak load is the primary driver of the grid capacity upgrades 

considered in this Part 1 Study. The detailed data from these figures are shown in Table 5 and 

Table 6. The peak load increase for the Base Case 2021 IEPR scenario alone by 2035 is between 

20% and 30%; for the High Transportation Electrification and Accelerated High Transportation 

Electrification scenarios, the peak load increase is between 40% and 70% by 2035 depending on 

the IOU. 

Figure 14: Energy percent change by IOU, study year, and scenario (Source: Kevala) 
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Figure 15: Peak demand percent change by IOU, study year, and scenario (Source: Kevala) 
 

 
 

This dramatic increase in peak load is due primarily to transportation electrification impacts. 

Figure 16 and Figure 17 show the hourly net-load profile for PG&E on the peak day in 2035 for the 

Base Case 2021 IEPR and the High Transportation Electrification + Existing BTM Tariffs scenarios, 

respectively; these figures illustrate the large contribution to peak load from EVSE charging 

infrastructure as well as the shift to a nighttime peak load. 

Figure 18 and Figure 19 show the personal and fleet EVSE infrastructure charging demand 

contribution on the peak day for the Base Case 2021 IEPR and the High Transportation 

Electrification + Existing BTM Tariffs scenarios, respectively, and show the impact of the TOU 

residential tariffs assumed in the modeling and previously described in Section 1.2; the figures 

also show the overall large contribution of EVSE charging infrastructure to the system peak load. 
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Figure 16: PG&E hourly net-load profile by customer sector and by load type for Scenario 1, Base Case 2021 

IEPR, for the peak day, August 15, 2035 (Source: Kevala) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 17: PG&E hourly net-load profile by customer sector and by load type for Scenario 2, High 

Transportation Electrification + Existing BTM Tariffs, for the peak day, August 15, 2035 (Source: Kevala) 
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Figure 18: PG&E hourly EVSE profile for Scenario 1, Base Case 2021 IEPR, for the peak day, August 15, 2035 

(Source: Kevala) 

 
Figure 19: PG&E hourly EVSE profile for Scenario 2, High Transportation Electrification + Existing BTM Tariffs, 

for the peak day, August 15, 2035 (Source: Kevala) 
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Table 5: Annual energy by study year, IOU, and scenario (Source: Kevala) 

 
 

Scenario 

Annual GWh 

2025 2030 2035 

PG&E SCE SDG&E PG&E SCE SDG&E PG&E SCE SDG&E 

(1) Base Case 

2021 IEPR 

 
95,963 

 
109,008 

 
20,208 

 
107,137 

 
120,960 

 
22,644 

 
126,778 

 
140,634 

 
26,689 

(2) High 

Transportation 

Electrification 

+ Existing BTM 

Tariffs 

 
 

94,489 

 
 

107,837 

 
 

19,910 

 
 

111,023 

 
 

123,990 

 
 

23,547 

 
 

146,071 

 
 

156,615 

 
 

31,127 

(3) High 

Transportation 

Electrification 

+ Modified 

BTM Tariffs 

 
 

95,006 

 
 

108,149 

 
 

19,920 

 
 

111,847 

 
 

124,601 

 
 

23,578 

 
 

147,115 

 
 

157,424 

 
 

31,181 

(4) 

Accelerated 

High 

Transportation 

Electrification 

+ Existing BTM 

Tariffs 

 
 

98,840 

 
 

111,270 

 
 

20,863 

 
 

116,797 

 
 

128,213 

 
 

24,792 

 
 

145,178 

 
 

155,070 

 
 

30,898 

(5) 

Accelerated 

High 

Transportation 

Electrification 

+ Modified 

BTM Tariffs 

 
 

99,357 

 
 

111,581 

 
 

20,873 

 
 

117,621 

 
 

128,823 

 
 

24,823 

 
 

146,222 

 
 

155,880 

 
 

30,952 

 
Table 6: Annual peak demand by study year, IOU, and scenario (Source: Kevala) 

 
 

Scenario 

Annual Peak Demand (GW) 

2025 2030 2035 

PG&E SCE SDG&E PG&E SCE SDG&E PG&E SCE SDG&E 

(1) Base Case 

2021 IEPR 

 
17.88 

 
22.14 

 
4.15 

 
19.63 

 
25.46 

 
4.43 

 
24.28 

 
27.37 

 
4.96 



Part 1: Bottom-Up Load Forecasting and System-Level Electrification Impacts Cost Estimates, Kevala, Inc. 38 

R.21-06-017 ALJ/ML2/KHY/fzs 
 

 

 
 

 
 

Scenario 

Annual Peak Demand (GW) 

2025 2030 2035 

PG&E SCE SDG&E PG&E SCE SDG&E PG&E SCE SDG&E 

(2) High 

Transportation 

Electrification 

+ Existing BTM 

Tariffs 

 
 

17.64 

 
 

21.98 

 
 

4.11 

 
 

20.77 

 
 

25.95 

 
 

4.59 

 
 

30.70 

 
 

32.57 

 
 

6.46 

(3) High 

Transportation 

Electrification 

+ Modified 

BTM Tariffs 

 
 

17.66 

 
 

22.06 

 
 

4.11 

 
 

20.78 

 
 

26.02 

 
 

4.60 

 
 

30.72 

 
 

32.57 

 
 

6.46 

(4) 

Accelerated 

High 

Transportation 

Electrification 

+ Existing BTM 

Tariffs 

 
 

18.40 

 
 

22.49 

 
 

4.22 

 
 

22.43 

 
 

26.72 

 
 

4.92 

 
 

30.34 

 
 

31.99 

 
 

6.40 

(5) 

Accelerated 

High 

Transportation 

Electrification 

+ Modified 

BTM Tariffs 

 
 

18.42 

 
 

22.53 

 
 

4.22 

 
 

22.44 

 
 

26.75 

 
 

4.92 

 
 

30.36 

 
 

31.99 

 
 

6.41 

 

 

2.3. Adoption and Behavior DER Results 

To convert the baseline net-load forecast to the net-load forecast, Kevala modeled geospatial 

adoption and behaviors for all of the demand-side modifiers included in this Part 1 Study (BTM, 

PV, BESS, BE, EE, and EVs/EVSE). The approach ultimately required estimating the load size (i.e., 

peak demand), behavior of the modifier (i.e., energy use), and adoption of the modifier (did a 

premise experience the demand modifier size and behavior implications?). The approach used for 

each demand modifier was slightly modified depending on the calibration target. Specifically: 

● The calibration targets for PV, EE, BE, and BESS were a capacity target (MW). 

● The calibration target for EVs and EVSE used the number of vehicles (consistent with CARB 

forecasts to meet state transportation electrification requirements). 
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Kevala identified premises where economic and demographic characteristics (such as income 

level) correlated with DER adoption and then the likelihood of adoption based on other factors 

(e.g., rent versus own, multi-unit dwelling versus single occupant) as well as technology cost 

curves, program and incentive features, etc.; Kevala then applied a probability distribution for 

each technology type’s adoption. Kevala also simulated the behavior of the demand-side 

modifiers, resulting in a forecasted net-load that reflects the behavior of EE programs and DERs. 

The DER-specific results and key insights associated with each DER-specific methodology are 

summarized in the following subsections. 

2.3.1. BTM PV 

Using multiple datasets that integrate weather, geospatial, and socioeconomic data enables 

granular PV adoption and behavior results. Specifically, for PV, consideration of Census block 

group land area, customer class, maximum baseline load, and median household income, in 

combination with the traditional method of calculating payback period, enabled Kevala to 

generate holistic customer PV adoption forecasts. Similarly, using actual weather data to model PV 

behavior enables consideration of weather correlations between the load and DER forecasts, 

which are not captured in current forecasts based on typical, averaged load shapes. 

A primary question of the PV adoption modeling is the impacts that the existing BTM tariffs or 

modified BTM tariffs are anticipated to have on long-term BTM PV adoption. The Existing BTM 

Tariffs scenarios assumed the existing NEM 2.0 rate design would continue through the study 

horizon and calibrated PV adoption to the 2021 IEPR mid-mid case forecast. In contrast, the 

Modified BTM Tariffs scenarios assumed a new tariff with a monthly grid access charge of $5/kW 

and an export rate that offset the generation rate, which was based on but not identical to the 

proposal in the NEM reform proceeding at the time.
72

 The Modified BTM tariffs are anticipated to 

increase a customer’s payback period. The Modified BTM Tariffs scenario was calibrated using the 

same cutoff adoption propensity score (see Section 3.4.2) that was used to calibrate the Existing 

BTM Tariffs scenario adoptions to the 2021 IEPR by year and locale. Due to the change in payback 

period, some customers fall below the adoption threshold and switch from adopters to non- 

adopters in the Modified BTM Tariffs scenario. 

 

 

 

 

72

 Modified BTM tariff assumptions were based on the December 13, 2021, Proposed Decision for the 

proceeding titled, Order Instituting Rulemaking to Revisit Net Energy Metering Tariffs Pursuant to Decision 16-01- 

044, and to Address Other Issues Related to Net Energy Metering (R.20-08-020). The Proposed Decision was not 

adopted by the Commission; it is available at: 

https://docs.cpuc.ca.gov/PublishedDocs/Efile/G000/M430/K903/430903088.PDF. Instead, Decision D.22-12- 

056 adopted the Net Billing Tariff. 

https://docs.cpuc.ca.gov/PublishedDocs/Efile/G000/M430/K903/430903088.PDF
https://docs.cpuc.ca.gov/PublishedDocs/Published/G000/M500/K043/500043682.PDF
https://docs.cpuc.ca.gov/PublishedDocs/Published/G000/M500/K043/500043682.PDF
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By comparing these two scenarios, Kevala can estimate the potential extent of the modified BTM 

tariff’s impact on PV adoptions. Figure 20 shows the outcomes for these two scenarios through 

2035, including the number of PV systems and the total installed PV capacity (MW DC) over all 

three IOUs. By 2035, total installed PV capacity under the modified BTM tariffs (26.6 GW DC) is 

only 4.3% lower than total installations under the existing BTM tariffs (27.8 GW DC). To 

understand further this relatively small difference between the two scenarios, payback period 

should be understood in the context of Kevala’s premise-specific adoption model. While payback 

period is one consideration in making an adoption decision, other factors can also play a part, 

including social trends and barriers to or ease of access. 

Figure 20: Total PV installations over all three IOUs by year, comparing the scenarios with existing BTM 

tariffs or modified BTM tariffs. The left-hand axis shows the incremental number of PV systems added per 

year, while the right-hand axis shows the cumulative installed capacity (MW).
73 (Source: Kevala) 

 

 

In developing its PV adoption model, Kevala considered not only payback period but also the 

customer’s peak load
74

 and demographic information available through the U.S. Census to identify 

those features most closely correlated with historical PV adoptions in California. Table 7 lists the 

seven features selected as inputs to the PV adoption model; these were selected based on the 

available data sources to find the collection of features that together produce the most accurate 

PV adoption predictions, validated against historical interconnection data.
75

 The table ranks these 

features according to their feature importance, which is a score that indicates how important that 

feature was when attempting to recreate historical PV adoption decisions. 

 

 

 

73

 The modeled jump in PV adoptions in 2022 is due to discrepancies between the interconnection data of 

historical PV installations, which is current as of April 2021 and also has known data gaps, and the 2022 IEPR 

PV production estimate. To reconcile those two data sources, Kevala sees 2022 as an adjustment year, after 

which adoptions proceed much more gradually according to the IEPR forecast. 

74

 Peak load might be a motivator particularly for non-residential customers that incur demand charges. 

75

 It is important to note that these features can only model correlation with PV adoption decisions, but not 

causation. 
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Table 7: Financial, electricity demand, and demographic features used in the PV adoption model, listed in 

order of their feature importance (Source: Kevala) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Out of the seven features, payback period is not the top predictor—it ranks fifth. When looking at 

historical adopters in California, the average payback periods of premises that have adopted PV is 

only a year or two shorter than those that are non-adopters. Figure 21 shows the distributions of 

historical payback periods calculated by Kevala, comparing adopters and non-adopters for each 

IOU. While more adopters have shorter payback periods, there are also adopters throughout the 

range of payback periods, including some relatively longer ones. So while shorter payback period 

is correlated with adopting PV, it is not the sole or in some cases likely even the main predictor in 

California. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

76

 Census Block Group Land Area is a proxy for rural/urban/suburban. Suburban and rural premises have 

higher historical PV adoptions than urban premises. 

Feature Importance Order Feature Source 

 

1 

 

Census Block Group Land Area
76

 

U.S. Census Bureau, American Community 

Survey (ACS) 

2 Residential or Non-residential Rates / Parcel 

3 Maximum baseline (gross) load AMI 

4 Median Household Income U.S. Census Bureau, ACS 

5 Payback period Rates 

6 Population density U.S. Census Bureau, ACS 

7 Percentage owner occupied U.S. Census Bureau, ACS 
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Figure 21: Distributions of payback periods in the historical data used to train each IOU’s PV adoption 

model. Historical payback periods are calculated with bill and system costs adjusted to 2016 values. (Source: 

Kevala) 

 
Kevala’s PV adoption model then carried these trends in payback period and adoption forward 

when predicting future adoptions. Figure 22 illustrates the predicted payback periods of future 

adopters compared to those not predicted to adopt by 2035. As expected, calculated payback 

periods under the modified BTM tariffs are longer than under the existing BTM tariffs, but the 

difference is only about a year or less, on average. Therefore, the modified BTM tariffs lead to 

lower adoption propensity scores—but not dramatically lower. The vast majority of customers still 

adopt PV even with the higher payback period, leading to the relatively low 4.3% reduction in 

installed capacity overall. 
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Figure 22: Distributions of forecasted payback periods of (a) forecasted adopters by 2035 and (b) non- 

adopters over all three IOUs, showing the residential and commercial sectors. Forecast payback periods are 

calculated with bill and system costs using 2022 values. (Source: Kevala) 

 

 

 

 

 

 

 

To visualize the detailed, premise-level PV size and adoption modeling, Figure 23 illustrates each 

PV system predicted for adoption in the area shown by 2035 under the existing BTM tariffs. 

Comparing neighboring residential and commercial and industrial (C&I) areas, differences in PV 

size and concentration are evident. The residential area is densely packed with small (~3 kW DC-6 

kW DC) systems. In contrast, the C&I area, which has higher loads and much larger parcels, is 

scattered with large (> 12 kW DC) PV systems. This level of geographic fidelity underpins the rest of 

the feeder and IOU-aggregate results. 
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Figure 23: PV system adoption in a primarily urban area of PG&E’s service territory by 2035, existing BTM 

tariffs. (Source: Kevala) 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Zooming out to the state level, the final distribution of systems throughout all three IOUs are 

mapped in Figure 24 for 2025, 2030, and 2035 for the Existing BTM Tariffs scenario. PV adoption 

overlaps the population centers as expected, with densely populated areas receiving a higher and 

higher concentration of PV installations over the course of the forecasting horizon. 

A few impacts of the calibration method on the results are important to note. First, as Figure 25 

shows, the average size of PV systems adopted decreases over the forecasting horizon. This trend 

is likely caused by the adoption model and calibration method.
77

 The adoption model includes 

premises’ peak load as a predictor of adoption—premises with high loads are assigned larger 

potential PV systems by the sizing algorithm and higher adoption propensity scores by the 

adoption model. When adoption propensity scores are ranked during calibration, these premises 

are ranked higher and adopt first. This also contributes to the clustering of late adopters in 

densely populated areas for premises with low load, where the proposed PV system sized to offset 

that load is very small. 

 

 

 

 

 

 

 

 

 

77 
The Part 1 Study looked at each DER adoption independently and therefore will not capture those 

premises that install up to 150% of load. Kevala can examine PV sizing in Part 2. Further, Kevala did not 

make any assumptions about customers expanding their current PV systems. 
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Figure 24: Concentration of PV adoptions throughout California in (a) 2025, (b) 2030, and (c) 2035 under the 

Existing BTM Tariffs scenario (Source: Kevala) 
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Figure 25: Average size (kW DC) of PV systems adopted by year in the forecasting horizon by IOU (Source: 

Kevala) 

 

 
Second, Figure 20 shows, there is a significant jump in adoptions in 2022, before the rest of the 

years smoothly follow the 2021 IEPR targets for the Existing BTM Tariffs scenario. This jump is due 

to discrepancies between the interconnection data of historical PV installations, which is known to 

have data gaps, and the 2021 IEPR estimate of PV production for that year. To reconcile those two 

data sources, Kevala sees 2022 as an adjustment year, after which adoptions proceed much more 

gradually for 2025, 2030, and 2035. 

Kevala also examined the percent contribution of PV to the net-load of the feeder. Figure 26 

shows the distribution of the ratio of PV peak load and the net-load in the peak hours. This figure 

is a box and whiskers chart. The x-axis shows the individual scenarios by study year while the y- 

axis shows the range of percent contribution of the DER to peak load. Peak load is the estimate of 

the maximum load on a feeder after the DERs have been adopted. The “x” in each block denotes 

the median, while the boxes designate the range of the lower and upper quartiles. The wider the 

range of values, the more diverse the impact. This figure shows the values for 2025, 2030, and 

2035. The values for 2025 demonstrate that the distribution of PV contribution to the peak load 

from the Part 1 Study is narrower, for all scenarios, than the distribution of the same ratio for the 

GNA. The figure also shows that the contribution to peak load of PV by 2035 is greatly reduced. 

That is, even though PV peak capacity is increasing over this period, the peak of net-load peak is 

also moving to hours in the late evening when PV capacity is not able to contribute to reducing 

that peak load. 
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Figure 26: Distribution of PV capacity contribution to peak load (Source: Kevala) 
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Key takeaways from the PV analysis include: 

 

● Changing from the existing BTM tariffs to the modified BTM tariffs is estimated to only 

reduce installed PV capacity by 4.3% by 2035. 

● Shorter payback period is correlated with PV adoptions, but it is not the only or main 

predictor of adoption in California. 

● Due to the current calibration method, the size of PV systems adopted is modeled as 

decreasing over time, which might overlap with a real-world trend, and a jump in adoptions 

is modeled in 2022, which is due to data discrepancies. 

2.3.2. BTM BESS 

To model BTM BESS, Kevala integrated multiple datasets including socioeconomic and geospatial 

datasets and Kevala’s own premise-level PV models. Distributed BESS adoption and operation is 

tightly tied to PV adoption and usage. By using the outputs of the PV adoption and behavior 

models as inputs to the BESS models, Kevala was able to directly capture the interactions between 

these DERs with much higher resolution and granularity than is commonly used. 

In developing the BESS adoption model, whether or not a premise has PV was by far the most 

important feature for predicting BESS adoption. In tandem, for residential customers, Kevala 

assumed that residential BESS systems are operated to maximize self-consumption of PV. Based 

on the real-world correlation and this behavior modeling assumption, Kevala further assumed 

BTM BESS must be adopted with PV for residential premises—that is, BESS must be adopted 

simultaneously with or after PV. In contrast, the model permits non-residential premises to adopt 

BESS systems with or without PV, assuming non-residential premises will use BESS to minimize 

peak demand periods and thus demand charges. 

Figure 27 illustrates the BESS adoption results through 2035 for PG&E. The majority of BESS 

systems are adopted by residential premises. Additionally, almost all BESS adoption includes a PV 

as well. This is in part due to the high rate of adoption seen in historical data, exacerbated by 

Kevala’s assumption requiring residential BESS to be adopted with PV and that most adopters are 

residential; this assumption may change due to resiliency-based adoption. While shown here for 

PG&E, the trends seen in SDG&E and SCE are the same. 
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Figure 27: (a) MW BESS adopted by customer class and (b) MW BESS adopted with or without PV for PG&E. 

Trends are similar for the other two IOUs. (Source: Kevala) 

 

 
 
Figure 28 maps these BESS adoptions throughout all three IOUs for 2025, 2030, and 2035. The 

concentration of BESS systems follows that of PV systems in highly populated areas, with the 

highest concentrations seen in the Bay and San Diego areas by 2035. 
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Figure 28: Concentration of BESS adoptions throughout California in (a) 2025, (b) 2030, and (c) 2035 under 

the Existing BTM Tariffs scenario (Source: Kevala) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
BESS is one of the most versatile DERs in terms of its control algorithms, and while the most 

popular control algorithms are yet to be determined as the industry matures, its behavior profile 

depends entirely on the current modeling assumptions. For example, Figure 29 illustrates the 

baseline load, net-load, and demand modifier profiles for a residential premise with PV, BESS, and 

two Level 2 (L2) EV chargers.
78

 Under current modeling assumptions, the BESS is assumed to 

optimize self-consumption of PV generation given the baseline load profile. This results in a flat, 

net-zero net-load profile around midday on many days. However, the BESS control algorithm used 

for the Part 1 Study did not account for EV charging, thus any evening demand spike caused by EV 

 

 

78

 Figure 29 is based on modeled data and is illustrative based on the specific assumptions described. 

Different seasonal, time horizon, or specific DER adoption projections—for example, policy-based building 

electrification targets adopted by CARB in 2022 and reflected in demand scenarios adopted in the 2022 

IEPR—can be explored in the Part 2 Study. 
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charging was not directly mitigated by the BESS. Specifically, the customer’s BESS is not assumed 

to be used for the customer’s EV charging needs; however, the customer is expected to discharge 

their BESS during the high price evening peak while charging their EV during the lower priced late 

evening or early morning hours. 

Figure 29: Baseline load, net-load, and demand modifier profiles for residential premise that has adopted 

PV, BESS, two large EVs, and two L2 chargers (Source: Kevala) 

 
 
 
 
 
 
 
 
 
 

Kevala also examined the percent contribution of BESS to the net-load of the feeder. A box and 

whiskers chart, Figure 30 shows the distribution of the ratio of BESS peak load and the net-load in 

the peak hours. This figure shows the values for 2025, 2030, and 2035. The values for 2025 

demonstrate that the distribution of BESS contribution to peak load from the Part 1 Study is 

slightly narrower, for all scenarios, than the distribution of the same ratio for the GNA. The figure 

also shows that the contribution to the peak load of BESS by 2035 increases. That is, BESS 

discharging can be adjusted to offset the peak load if given the right signal to charge at low net- 

load periods and discharge during high periods. 
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Figure 30: Distribution of BESS capacity contribution to peak load (Source: Kevala) 
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Key takeaways from the BESS analysis include: 

 

● Over 1 million customers have installed PV systems across the three IOUs, providing a 

wealth of information on adoption propensity, while only a fraction of those customers 

have installed batteries. This may impact the quality of future adoption predictions based 

on this data. 

● The vast majority of BESS are predicted to be adopted along with PV, which reflects a real- 

world trend, is consistent with the recent Self-Generation Incentive Program (SGIP) Battery 

Storage Market Assessment Study, and is reflected in Kevala’s assumption in the Part 1 

Study that residential premises that adopt storage also adopt PV. 

● BESS behavior is assumed to optimize self-consumption of PV (residential) or reduce peak 

demand periods (non-residential). 

2.3.3. EE and BE 

To model EE and BE, Kevala integrated multiple datasets including socioeconomic, state studies of 

BE- and EE-estimated savings, and premise-level AMI data. Distributed EE adoption and energy 

savings are highly correlated to premise consumption. Due to limited data on BE participation and 

potential, Kevala assumed BE adoption to be driven by the same factors that drive EE. 

The EE and BE adoption calibration follows the 2021 IEPR consumption-level forecast by sector 

and IOU service territory. EE and BE program delivery and adoption are highly variable by sector 

due to sector-specific behaviors and the various IOU and state-targeted programs. Furthermore, 

the 2021 IEPR demand modifiers for EE (additional achievable energy efficiency, or AAEE) and BE 

(additional achievable fuel switching, or AAFS) are derived from detailed analysis. These analyses, 

for example, result in zero AAFS impacts over the forecast period for the agricultural sector. Even 

if Kevala adoption modeling indicates potential for the agricultural sector, the top-down target 

adoption rate will be zero. 

The end result of the EE analysis provides insights into the impact of EE to offset electrification at a 

feeder level. The electrification comes from BE and EVs (see Section 2.2). 

Energy Efficiency 

Because EE has been a prevalent demand-side resource for a few decades, the value is embedded 

in the baseline forecast; therefore, only future, newly adopted EE is included. EE potential is highly 

variable on a premise-by-premise level, so the current results focus on the feeder-level impacts. 
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One significant outcome of the analysis is that the current adoption propensity model targets 

larger energy-consuming premises first based on historical data analytics.
79

 Results tend to lean 

heavily on the larger residential premises. 

Kevala also examined the percent contribution of EE to the net-load of the feeder. A box and 

whiskers chart, Figure 31 shows the distribution of the ratio of EE peak load and the net-load in 

the peak hours. This figure shows the values for 2025, 2030, and 2035. The values for 2025 

demonstrate that the distribution of EE contribution to peak load from the Part 1 Study is much 

narrower, for all scenarios, than the distribution of the same ratio for the GNA. The figure also 

shows that the contribution to the peak load of EE in 2030 is greater as EE is forecasted to 

increase in the 2021 IPER; however, it does not continue to increase through 2035 as net-load 

increases during that same time due to increased electrification, particularly for the High 

Transportation Electrification scenarios. That is, because EE savings are highly correlated to energy 

use at the premise, the contribution of EE toward reducing the net-load remains significant even 

as the timing of the peak load shifts to later in the day. 
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 See Appendix 7 for adoption evaluation parameters. 
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Figure 31: Distribution of EE capacity contribution to peak load (Source: Kevala) 
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Key takeaways from the EE analysis include: 

 

● Nearly 100% of PG&E and SDG&E residential premises adopt EE. 

● SCE has a lower penetration because residential premise adoption depends on the 

distribution of residential unit energy consumption. 

● The high level of residential adoption reflects the mix of EE—codes and standards 

programs, behavior, and operations and maintenance. 

● Current analysis is less about independent premise-level adoption and more to reflect 

what happens at a feeder. 

Building Electrification 

BE potential is highly variable on a premise-by-premise level and depends on existing non- 

electricity end uses. For residential customers, there is a need to consider existing electric panel 

service levels, adding barriers that do not exist for EE. For the current study, results focus on the 

feeder-level impacts. 

Because BE uses the same adoption propensity model as EE, the model targets larger energy- 

consuming premises first based on historical data analytics.
80

 Results tend to lean heavily on the 

larger premises, reducing commercial penetration; however, the patchiness of adoption reflects 

the cyclical nature of non-residential adoption and the novelty of commercial adoption of BE
81

 

(industrial adoption is small in the IEPR forecast). 

As with EE and other DERs, Kevala examined the percent contribution of BE to the net-load of the 

feeder. A box and whiskers chart, Figure 32 shows the distribution of the ratio of BE peak load and 

the net-load in the peak hours. This figure shows the values for 2025, 2030, and 2035. Unlike the 

BTM PV, BESS, and EE comparisons shown previously, the GNA does not consider increased loads 

due to BE. Nevertheless, the contribution of BE to peak load over time is clearly demonstrated as 

the percentages increase over time. However, the impact of other electrification can also be seen 

in this figure as the percentage of BE contribution declines noticeably for the other four scenarios. 
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 See Appendix 8 for adoption evaluation parameters. 

81

 Commercial end users of natural gas that are targets for electrification include restaurants that are 

generally hard to reach for EE but have additional barriers to electrification. Similarly, for larger buildings, 

transitioning gas heating systems to electricity is an emerging technology. 
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Figure 32: Distribution of BE capacity contribution to peak load (Source: Kevala) 
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Key takeaways from the BE analysis include: 

 

● Modeling BE adoption is highly dependent on the EE algorithms as a proxy because BE 

adoption has been limited to date. 

● Peak load depends on the electrified building load profile, which is typically different than 

the summer peak. 

● Adoption is primarily in residential areas. Commercial adoption varies in magnitude year of 

year primarily due to impacts achieved in large buildings which meet calibration targets. 

● Adoption follows EE feeder distribution but at a lower level of penetration. Feeders that are 

impacted indicate more adoption in geographically (same feeder level) constrained areas. 

● Calibration is at the sector level for 2021 IEPR energy consumption, with minimal-to-no 

adoption in industrial and agricultural sectors. 

2.3.4. EVs and EVSE 

Kevala coordinated with the CPUC to identify three CARB and CEC light-duty vehicle (LDV), 

medium-duty vehicle (MDV), and heavy-duty vehicle (HDV) ZEV adoption forecasts to serve as 

input targets for the base case and four alternate Part 1 Study scenarios. Table 1 (presented in 

Section 1.2.3) summarizes the CEC and CARB ZEV adoption forecasts and the associated vehicle 

counts that were used in the study. Kevala selected the three CARB and CEC ZEV adoption 

forecasts for this Part 1 Study because they represent a meaningful range of ZEV adoption levels 

that align with California policy goals and market forecasts. 

Across the LDV, MDV, and HDV duties, these ZEV adoption targets contained 27 duty, powertrain, 

and vehicle type combinations, each of which had differing energy usage characteristics and 

demands. Kevala used an array of premise, demographic, energy, and vehicle registration data to 

allocate the adoptions down to individual, EV-eligible premises using the adoption methodologies 

described in Section 3.4.6 and detailed in Appendix 9. 

As the ZEV adoption forecast data in Table 1, the total number of 2035 LDVs adopted in the Base 

Case are roughly one-third the level of the vehicle adoption counts in the High Transportation 

Electrification and Accelerated High Transportation Electrification scenarios. However, the 2035 

MDV and HDV ZEV adoption levels do not follow the same pattern of adoption across the 

scenarios as the LDV adoption. For MDV and HDV ZEV adoptions, the High Transportation 

Electrification scenario contains the lowest level of 2035 adoptions, with the level of adoptions 
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between the Base Case and the Accelerated High Transportation Electrification cases being within 

roughly 1% of each other.
82

 

Figure 33, Figure 34, and Figure 35 contain the 2025, 2030, and 2035 adoption counts for LDV and 

MDV and HDV ZEVs for all three IOUs for the Base Case, High Transportation Electrification, and 

Accelerated High Transportation Electrification scenarios, respectively. 

In the Base Case scenario, the LDV ZEV adoption rate occurs at roughly the same level of 

acceleration across the forecast horizon, while the LDV adoption rate in the High Transportation 

Electrification scenario has the steepest rate of increase from 2025-2030 and again from 2030- 

2035. The High Transportation Electrification scenario also reaches the highest level of total LDV 

ZEV adoption by 2035. The LDV adoption path of the Accelerated High Transportation 

Electrification scenario is distinguished from the other two scenarios in that it has the greatest 

number of adoptions in 2025 and 2030, and then the adoption rate slows slightly compared to the 

High Transportation Electrification scenario. 

The 2035 MDV and HDV ZEV adoptions reach their highest level in the Accelerated High 

Transportation Electrification scenario and are lowest in the Base Case scenario. Overall, the MDV 

and HDV ZEV adoption range is between roughly 231,000 and 219,000, or within roughly 6%. The 

most important differences between the three scenarios’ MDV and HDV adoptions are related to 

the rate of adoption and the composition (i.e., vehicle class breakdowns) across the forecasts. The 

Base Case and the Accelerated High Transportation Electrification scenarios follow a relatively 

similar slope of adoption across the forecast horizon, whereas the High Transportation 

Electrification scenario has a steeper rate of adoption between 2030 and 2035—although this 

scenario still has the lowest level of overall MDV and HDV ZEV adoption. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

82 
The differences in LDV, MDV, and HDV adoption levels between the Part 1 scenarios reflect the different 

inputs and modeling assumptions used by CARB and the CEC to generate their adoption scenarios and 

forecasts. 
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Figure 33: Base Case scenario LDV and MDV/HDV ZEV adoption counts for all IOUs, 2025, 2030, and 2035 

(Sources: CEC, Kevala) 
 

 
Figure 34: High Transportation Electrification scenario LDV and MDV/HDV ZEV adoption counts for all IOUs, 

2025, 2030, and 2035 (Sources: CARB, Kevala) 

 
Figure 35: Accelerated High Transportation Electrification scenario LDV and MDV/HDV ZEV adoption counts 

for all IOUs, 2025, 2030, and 2035 (Sources: CEC, Kevala) 
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Figure 36, Figure 37, and Figure 38 contain heat maps of geospatial LDV and MDV and HDV ZEV 

adoptions for PG&E, SCE, and SDG&E. The heat maps represent adoption levels for the 

Accelerated High Transportation Electrification scenario for 2025, 2030, and 2035, separated by 

LDV and MDV and HDV ZEV adoptions. The overall trend for adoption is higher uptake in the 

coastal regions of the three IOUs plus the population and transit-dense inner regions of the state, 

particularly in the northern Central Valley, plus Fresno, Kern, San Bernardino, and Riverside 

counties. 
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Figure 36: PG&E Accelerated High Transportation Electrification scenario ZEV adoption counts, by year and ZEV duty (Sources: CEC, Kevala) 
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Figure 37: SCE Accelerated High Transportation Electrification scenario ZEV adoption counts by year and ZEV duty (Sources: CEC, Kevala) 
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Figure 38: SDG&E Accelerated High Transportation Electrification scenario ZEV adoption counts by year and ZEV duty (Source: CEC, Kevala) 
 



Part 1: Bottom-Up Load Forecasting and System-Level Electrification Impacts Cost Estimates, Kevala, Inc. 65 

R.21-06-017 ALJ/ML2/KHY/fzs 
 

 

Figure 39, Figure 40, and Figure 41 contain the 2025, 2030, and 2035 EVSE port counts across all 

charger use cases and demand levels for all three IOUs for the Base Case, High Transportation 

Electrification, and Accelerated High Transportation Electrification scenarios, respectively. 

EVSE ports are separated into three main categories: 

 

● Primary or secondary charging use cases: 

○ Primary charging use cases are where ZEVs receive the majority of their energy. 

These include charging at single-unit dwellings (SUDs) and multi-unit dwellings 

(MUDs) for personal EVs and fleet for fleet EVs. SUD is further classified by TOU and 

non-TOU, which refers to whether or not the SUD is enrolled on a TOU rate. 

○ Secondary charging use cases provide supplemental charging to meet a ZEV’s 

remaining energy needs. These uses cases include public, workplace, and corridor 

charging, where public and corridor have both LDV and MDV/HDV variations 

● Use case types: There are six major use cases (SUD, MUD, fleet, public, workplace, and 

corridor), with several sub-variations based on duty. Use cases are sited based on ZEV 

adoption levels and premise type. 

● Capacity level: Each use case has a specified peak demand capacity level (kW) associated 

with it. For some use cases, this level increases across the forecast horizon. Kevala followed 

the assumption made in the CEC’s AB 2127 Electric Vehicle Charging Infrastructure 

Assessment – Analyzing Charging Needs to Support Zero-Emission Vehicles in 2030 

(Commission Report)” (AB 2127 Report),
83

 where L2 capacity remains constant at 6.6 kW, 

but other use case capacity levels, such as LDV DC fast charging (DCFC) corridor charging, 

reach 450 kW in 2035. 

Kevala calculates the EVSE port counts using the targeted number of ZEV adoptions for each 

scenario across each year and use case-specific EV-to-EVSE charger ratio contained in the CEC AB 

2127 Report’s analysis. This approach is described in Section 3.4.6 and detailed in Appendix 9. 

As Figure 39, Figure 40, and Figure 41 indicate, the total number of EVSE ports in the three 

scenarios matches relatively closely to the level of ZEV adoptions across their respective scenarios. 

Certain factors beyond just the raw number of LDV, MDV, and HDV ZEV counts, such as the 

powertrain and vehicle class breakdowns, influence the number of ports in each scenario. For 

instance, although the High Transportation Electrification scenario contains roughly 500,000 more 

LDV ZEVs in 2035 compared to the Accelerated High Transportation Electrification scenario, the 

 

 

83

 California Energy Commission, Assembly Bill 2127 Electric Vehicle Charging Infrastructure Assessment: 

Analyzing Charging Needs to Support Zero-Emission Vehicles in 2030, July 14, 2021, 

https://efiling.energy.ca.gov/getdocument.aspx?tn=238853. 

https://efiling.energy.ca.gov/getdocument.aspx?tn=238853
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share of plug-in hybrid electric vehicles (PHEVs) is much greater in the former compared to the 

latter. Because PHEVs have lower charging needs, and thus require fewer chargers, the overall 

port count in the Accelerated High Transportation Electrification scenario is slightly lower than one 

might have expected without an understanding of these underlying dynamics. It is also 

noteworthy that fleet chargers are the second most numerous charger use case after SUD-TOU. 

This is due to the relatively large number of fleet LDV ZEVs that are contained in the CARB and CEC 

forecasts. 

Figure 39: Base Case scenario total EVSE port counts for all IOUs, 2025, 2030, and 2035, with data listed for 

2035 values (Source: Kevala) 
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Figure 40: High Transportation Electrification scenario total EVSE port counts for all IOUs, 2025, 2030, and 

2035, with data listed for 2035 values (Source: Kevala) 
 

 
Figure 41: Accelerated High Transportation Electrification scenario total EVSE port counts for all IOUs, 2025, 

2030, and 2035, with data listed for 2035 values (Source: Kevala) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 42, Figure 43, and Figure 44 contain the 2035 EVSE peak day loads across all three IOUs for 

the Base Case, High Transportation Electrification and Accelerated High Transportation 

Electrification scenarios, respectively. 

Overall, each scenario’s all IOU 2035 peak day EVSE loads align with the magnitude of the ZEV 

adoption forecasts and the accompanying EVSE forecasts that support their respective scenarios’ 
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energy requirements. As such, the total EVSE peak load for the Base Case scenario of roughly 

10,500,000 kW (10.5 GW) is roughly a third of the peak for the High Transportation Electrification 

and Accelerated High Transportation Electrification scenarios’ peaks, which are 23,800,000 kW 

(23.8 GW) and 22,800,000 (22.8 GW), respectively. 

Across all three scenarios, the timing of the peak hour is the same: 9 p.m. This is the hour when 

the Part 1 Study assumes the IOUs’ TOU rates’ off-peak period begins, thus marking the time when 

the majority of personal and fleet EVs are assumed to begin the bulk of their charging for the next 

day. The Part 1 Study follows the TOU participation rates assumed in Appendix B of the CEC’s AB 

2127 Report. The assumption that ZEVs would begin their evening charging at the start of the 9 

p.m. off-peak period is a simplifying one that Kevala proposes addressing in the Part 2 analysis to 

consider more sophisticated ZEV charging management strategies. 

Figure 42: Base Case scenario all EVSE loads for all IOUs for 2035 peak day (Source: Kevala) 
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Figure 43: High Transportation Electrification scenario all EVSE loads for all IOUs for 2035 peak day (Source: 

Kevala) 
 

 
 

Figure 44: Accelerated High Transportation Electrification scenario all EVSE loads for all IOUs for 2035 peak 

day (Source: Kevala) 
 



Part 1: Bottom-Up Load Forecasting and System-Level Electrification Impacts Cost Estimates, Kevala, Inc. 70 

R.21-06-017 ALJ/ML2/KHY/fzs 
 

 

The overall composition of the EVSE loads for High Transportation Electrification and Accelerated 

High Transportation Electrification scenarios’ peaks are roughly similar; however, as illustrated in 

Figure 45, which contains a breakdown of the top three EVSE loads at the peak hour for the 2035 

all IOU peak day, fleet EVSE loads for the High Transportation Electrification scenario are roughly 

1,100,000 kW (1.1 GW) greater than the fleet EVSE loads for the Accelerated High Transportation 

Electrification scenario. This is because, despite the High Transportation Electrification scenario 

having slightly fewer MDV and HDV ZEVs compared to the Accelerated High Transportation 

Electrification scenario, the vehicle class break of the High Transportation Electrification scenario 

contains a significantly greater share of HDVs, including urban buses and class 7 and class 8 

vehicles, which have greater charging requirements than MDVs. In addition to the proportionally 

greater charging demands of its class 7 and class 7 HDV ZEVs, the High Transportation 

Electrification scenario has roughly three times as many LDV PHEV fleet EVs compared to the 

Accelerated High Transportation Electrification scenario. 

Figure 45: All scenarios, three IOU peak day, 2035, peak hour, top 3 EVSE use cases (Source: Kevala) 
 

 
Kevala also examined the percent contribution of EVs to the net-load of the feeder. A box and 

whiskers chart, Figure 46 shows the distribution of the ratio of EV peak load and the net-load in 

the peak hours. This figure shows the values for 2025, 2030, and 2035. The values for 2025 show 

the GNA distribution of EV peak contribution is lower, with a tight center distribution and long 

tails. The long tails are also evident in the Part 1 Study distributions but vary from scenario to 

scenario. 
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The figure also shows the contribution of peak load by EVs is significantly growing over time with 

an impact of around 5% in 2025 and increases to 30%-50% by 2035. Note that the contribution of 

PV in 2025 was also about 5%, potentially offsetting the impact from EVs. This is an important 

finding as the implications of EVs after 2025 are significant, and this figure demonstrates the need 

to look beyond five years to capture the implications of high electrification in later years. 
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Figure 46: Distribution of EV capacity contribution to peak load (Source: Kevala) 
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Key takeaways from the EV and EVSE analysis include: 

 

● While overall ZEV adoption forecast counts are the primary driver of forecasted EVSE 

counts and projected charging loads, the underlying vehicle class breakdowns of ZEV 

adoption have important impacts on the number and type of chargers required in the 

future, and the load impacts and profiles of those chargers. 

● The projected 2035 all IOU peak hour for EVSE loads is at 9 p.m., which is an assumption- 

driven outcome based on the assumed start of the IOUs’ TOU rates’ off-peak period. This is 

an important assumption that impacts EVSE-driven capacity needs, and therefore upgrade 

costs, and it is an assumption that will be revisited and adjusted in future analyses. 

● While personal EV home charging is an important part of the peak usage, personal EV 

public charging and fleet charging play a more substantial role in driving the peak hour in 

2035. This outcome has important implications for potential mitigations to model in future 

analysis. 

2.4. Equity and Electricity Burden Results 

Kevala computed the average electricity burden for residential premises at the Census block level 

for each of the DER scenarios considered in this study. Electricity burden is defined here as the 

percent share of electricity bill costs with respect to household income. Figure 47 shows the 

distribution of the percent electricity burden at the Census block level for the Base Case 2021 IEPR 

scenario in 2035 (left) versus the High Transportation Electrification + Existing BTM Tariffs scenario 

in 2035 (right); the figure illustrates how the curve is skewed toward the right for the High 

Transportation Electrification scenario, which means there are higher electricity burden values, 

resulting in a higher median value of 3.5% for the High Transportation Electrification scenarios 

(versus 2.8% for the Base Case 2021 IEPR scenario). 

Figure 47: Electricity burden distribution density plot for the Base Case 2021 IEPR and High Transportation 

Electrification + Existing BTM Tariffs in 2035 (Source: Kevala) 
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The percentage of Census blocks in the high (greater than 5% energy burden), medium (between 

3% and 5% energy burden), and low (less than 3%) categories by scenario and IOU are included in 

Table 8. For all three IOUs, electrification of transportation could result in higher electricity burden 

under the current study assumptions.
84

 As an example, the percent of Census blocks in 2035 with 

an electricity burden greater than 5% in the Base Case 2021 IEPR scenario is 19.4%, 9.7%, and 2.9% 

for PG&E, SCE, and SDG&E, respectively. In 2035, in the High Transportation Electrification + 

Existing BTM Tariffs scenario, the percentage of Census blocks in the high electricity burden 

category rises to 29.3%, 16.0%, and 5.0% for PG&E, SCE and SDG&E, respectively. Kevala proposes 

using this information to further inform future High DER Proceeding activities such as staff 

proposals on how electricity burden can be included in the DPP and DIDF process, as suggested its 

Distribution Investment Deferral Framework: Evaluation and Recommendations report,
85

 as well as in 

the Part 2 analysis to understand how upgrade costs and different mitigation strategies would 

affect electricity burden for different electrification scenarios. 

Table 8: Percentage of Census blocks by electricity burden category low (<3%), medium (between 3% and 

5%), and high (>5%) by IOU for all scenarios and years (Source: Kevala) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

84

 2021 Census block household income and rates are kept constant in the Part 1 Study, and potential 

savings from fossil fuel use are not considered. 

85

 Kevala’s 2022 Distribution Investment Deferral Framework: Evaluation and Recommendations report includes 

a recommendation (B.7) that proposes to report whether feeders or banks are in a disadvantaged 

community and report on the percentage of customers with an energy burden greater than 5%; if utilities 

do not have such data, Kevala recommends identifying feeders/banks serving a significant number of 

customers on a California Alternate Rates for Energy (CARE) rate. 

Scenario Year Electricity Burden Category PG&E SCE SDG&E 

 

 

 

 

 

 

 

(1) Base Case 

2021 IEPR 

 

2025 

Low 48.9% 52.3% 78.5% 

Medium 28.9% 35.4% 17.6% 

High 22.2% 9.3% 3.9% 

 

2030 

Low 51.2% 56.0% 81.1% 

Medium 28.7% 32.2% 15.7% 

High 20.1% 8.7% 3.2% 

 

2035 

Low 52.2% 51.6% 84.9% 

Medium 28.4% 35.6% 12.3% 

High 19.4% 9.7% 2.9% 

 

https://uploads-ssl.webflow.com/62a236e9692c48e1d16898b3/63729a90e35f9cb53c617a14_DIDF%20Evaluation%20and%20Recommendations_Kevala_11.14.22.pdf
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Scenario Year Electricity Burden Category PG&E SCE SDG&E 

 

 

 

 

 

(2) High 

Transportation 

Electrification + 

Existing BTM 

Tariffs 

 

2025 

Low 49.8% 53.0% 78.8% 

Medium 28.1% 34.8% 17.3% 

High 22.1% 9.2% 3.9% 

 

2030 

Low 45.6% 51.8% 79.3% 

Medium 32.3% 35.9% 17.3% 

High 22.2% 9.3% 3.4% 

 

2035 

Low 35.7% 35.2% 63.0% 

Medium 32.0% 45.8% 32.0% 

High 29.3% 16.0% 5.0% 

 

 

 

 

 

(3) High 

Transportation 

Electrification + 

Modified BTM 

Tariffs 

 

2025 

Low 46.1% 47.8% 72.9% 

Medium 29.7% 37.8% 22.5% 

High 21.1% 11.3% 2.9% 

2030 Low 40.7% 43.9% 70.3% 

Medium 34.8% 41.6% 25.2% 

High 21.4% 11.4% 2.8% 

 

2035 

Low 31.6% 28.4% 51.0% 

Medium 33.0% 48.7% 42.0% 

High 32.3% 19.9% 5.4% 

 

 

 

 

 

(4) Accelerated 

High 

Transportation 

Electrification + 

Existing BTM 

Tariffs 

 

2025 

Low 45.3% 49.9% 77.0% 

Medium 31.5% 37.5% 19.1% 

High 23.2% 9.6% 4.0% 

 

2030 

Low 40.0% 47.4% 73.4% 

Medium 33.6% 39.4% 22.8% 

High 26.4% 10.1% 3.7% 

 

2035 

Low 36.6% 37.4% 64.3% 

Medium 32.0% 44.7% 30.7% 

High 28.4% 14.9% 5.0% 
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Scenario Year Electricity Burden Category PG&E SCE SDG&E 

 

 

 

 

 

(5) Accelerated 

High 

Transportation 

Electrification + 

Modified BTM 

Tariffs 

 

2025 

Low 41.6% 44.0% 69.6% 

Medium 32.9% 41.3% 25.7% 

High 22.4% 11.7% 3.1% 

 

2030 

Low 35.9% 40.3% 63.6% 

Medium 35.1% 43.9% 31.3% 

High 25.8% 12.7% 3.5% 

 

2035 

Low 32.6% 30.1% 52.3% 

Medium 33.0% 48.0% 40.8% 

High 31.3% 18.8% 5.2% 
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3. Approach 

3.1. Overview 

Kevala developed a premise-level (bottom-up) modeling approach to generate hourly (8760) load 

profiles for 2025, 2030, and 2035 for each customer of three California IOUs. This section 

describes the approach, including the benefits and limitations, of the steps required to generate 

the forecast and conduct a cost impact analysis and equity assessment. Figure 48 illustrates this 

stepwise process. 

Figure 48: Premise-specific net-load forecasting, Part 1 Study (Source: Kevala) 

 

Step 1: Data Ingestion required collecting and mapping time series data, customer and grid 

infrastructure, PV and BESS interconnection data, and other metadata into a data schema that 

allowed for easy access to the collective premise-level dataset. These high-resolution datasets 

included AMI and SCADA data. Section 3.2 describes this step; Appendix 2 and Appendix 3 provide 

further detail. 

 

Step 2: Net-Load Baseline Simulation involved determining hourly forecasts of net-load by 

premise. In this step, Kevala used AMI data from each premise to develop a forecast of hourly 

energy consumed or delivered by the customer to the IOU and included existing BTM technologies 

at each premise. This step also included adjusting the net-load to estimate the customer’s energy 

consumption without PV. In this case, Kevala created an hourly PV generation profile for each 

premise and subtracted from the net-load to create a baseline estimate of the energy use at the 

premise. Kevala calibrated the net-load baseline forecast to meet the different top-down targets 
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for the scenarios included in this study. Section 3.3 provides the methodology applied in this step 

and summarizes the results; Appendix 4 provides further detail. 

Step 3: Hourly Demand-Side Modifiers forecasted the expected future adoption and related 

behaviors of DERs. The DERs considered included the following: 

 

● BTM PV systems 

● BTM BESS 

● BE 

● EE 

● EVs and EVSE 

 

This Part 1 Study did not include a forecast of future demand response programs because 

demand response programs are designed to address system peak issues when supply is limited; 

thus, premise-specific demand response loads cannot be predicted without expected system peak 

conditions driving the decision to execute the demand response for a specific day. Kevala can 

revisit demand response in the Part 2 case studies as a mitigation to alleviate distribution system 

constraints. 

Kevala then calibrated the DER adoption and behavior models to meet the different top-down 

targets for the scenarios included in this study and obtained the final net-load. Kevala then used 

the final net-load results to calculate the impacts to the grid infrastructure at different aggregation 

and to calculate other impacts such as energy burden on customers. Section 3.4 describes 

methodologies for estimating each hourly demand-side modifier, the calibration approach, and 

the net-load by feeder results. 

Step 4: Net-Load Impact Analysis involved aggregating the net-load and demand-side modifier 

forecasts to feeders to understand the change in loads and peak demand by grid asset over the 

time horizon. Kevala then used these forecasts to identify grid infrastructure needs to meet these 

changing load profiles and quantify the costs of these investments. 

3.2. Data Ingestion 

Central to this study was the collection, ingestion, mapping, and analysis of many data sources. 

Kevala used a mix of its public records including but not limited to county records or parcel 

definition and ownership, weather data, and Census data as well as confidential datasets from 

three California IOUs. This data collection and integration effort was a first for the California IOUs, 

and perhaps nationwide. While the California IOUs have been leveraging their AMI data for nearly 

a decade for forecasting and planning, the Part 1 Study was designed to investigate ways of using 

this hyper-granular data to provide needed and valuable insights to improve distribution planning. 
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This analysis used several datasets: 

 

● IOU data 

o Meter-specific AMI (2018-2021) 

o Grid SCADA measurements 

o Monthly billing information 

o Past DER adoption (type, location, and size) for PV and battery only 

o Customers identified with an EV or EVSE, not including type or size (incomplete 

dataset) 

o Geospatial information for meters, DERs, and grid infrastructure 

o Electrical infrastructure asset characteristics 

o Rate schedule code by meter ID 

o EE program tracking with meter ID 

 

● Regulatory data 

o CEC load and DER forecasts (2021 IEPR) by scenario, forecast zone, and planning 

area 

o Agency forecasts of EV infrastructure and LDV, MDV, and HDV adoption 

o Historical to 2021 PV interconnections 

o DDOR and GNA studies 

 

● Publicly available data captured by Kevala 

o Census 

o Traffic 

o Weather 

o Existing public EVSE infrastructure 

 

● Purchased data 

o Experian Vehicles In Operation (VIO) 

o Regrid (parcel data) 

 

To gather much of this data, Kevala submitted several extensive data requests to the IOUs and 

pursued collecting data from the CPUC and CEC. Through these efforts, Kevala received sufficient 

data to complete the study. Appendix 2 provides a complete list of all data received, ingested, and 

processed for the Part 1 Study. Because Kevala needed to finalize all datasets to be used for Part 1 

by July 2022, some of the requested data was available but not received in time to process for this 

publishing. Additionally, some data has not yet been received. Kevala will continue to work with 

stakeholders to gather additional data for Part 2 and will use data received but not yet applied in 

that effort as well. Some of this data may include: 
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● Gas billing and consumption data 

● Additional AMI data for before and after the Part 1 Study period 

● Additional SCADA data to include system data that enables better matching of AMI and 

network elements 

● Customer program data to include incentives for BE 

● Incremental PV and BESS interconnection data for installations after the Part 1 Study 

period 

● Distributed generation and other historical DER program performance data 

● IOU location-specific cost data 

● Vehicle registrations and driving patterns 

● More granular customer billing data (e.g., designation of whether a customer is on an all- 

electric rate) 

Additional data may be required for Part 2; the above list is not meant to be exhaustive of all data 

needs for that study. 

Kevala ingested, mapped, and analyzed the data received and designed and implemented an 

overall data structure that allows for premise-level analytics that can be aggregated to feeders, 

substations, and the IOU service territory. Table 9 provides a snapshot of the number of key 

collection points of distribution AMI data by IOU, which totaled more than 60 terabytes (TB).
86

 

Table 9: Data volume statistics (Source: Kevala analysis of ingested IOU data) 

 
IOU 

 
AMI Data (TB) 

 
No. of AMI Meters* 

(Millions) 

 
No. of AMI Data 

Records (Millions) 

No. of Distribution 

Assets** 

(Thousands) 

PG&E 31 6.1 318,347 916 

SCE 25 5.3 251,145 753 

SDG&E 7 1.5 75,949 171 

Total 62 12.9 645,441 1,840 

*Combination of 15-minute and hourly meters 

**Feeders, (service and bank) transformers, and substations 

 

The data collected had to be mapped together to enable proper aggregation of premise-specific 

data to grid infrastructure and linking known DERs to the grid. The geographic information system 

 

 

86

 To minimize carbon emissions due to storing and processing large amounts of data, Kevala made an 

effort to optimize cloud computing at low-to-no carbon intensity servers. 
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(GIS) geospatial and connectivity information was critical to providing the association between the 

consumption of a meter to the electrical infrastructure via a one-to-one match to a service point 

that is connected to a service transformer, then a feeder, and ultimately to a substation 

transformer bank and a substation. 

Other critical datasets for load and DER adoption included the association of a meter to a rate 

structure and to a parcel and its features such as sector type. Figure 49 outlines the aggregation 

hierarchy of the different physical layers of the grid considered in the bottom-up analysis. 

Figure 49: Grid aggregation hierarchy of the physical layers (Source: Kevala) 

 
As Figure 49 indicates, all the grid layers are connected by mapping data among the layers. The 

premise is associated with an account ID, rate schedule, and service point with GIS mapping to a 

parcel. The parcel is connected to a service transformer that is connected to a feeder. The feeder 

connects to a substation bank located in a substation. The individual premise load rolled up to 

each distribution grid component provides the information needed to assess load and DER growth 

impacts on different parts of the distribution grid. 

To ensure proper data quality, Kevala followed the following process: 

 

● Submitted formal regulatory data requests to the IOUs for specific data, with 

corresponding receipt of data following regulatory filing discovery processes. 

● Inventoried data received with corresponding data dictionary. 

● Uploaded data from sources, including: 

o Files attached to emails 

o Data transferred via FTP from the CPUC or each IOU 
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o Hard discs received from IOUs (primarily for large datasets such as AMI and SCADA 

data) 

● Framed data to allow for analysis and use by Kevala’s proprietary models 

● Captured intermediate study results, identified data issues, and tested end-to-end 

processing. 

● Cleaned the data to eliminate outliers and forced parcel mapping. 

 

Kevala’s analysis pipeline carried the premise-level analysis up through the distribution grid from 

service transformer to feeder to substation bank transformer. If there were any broken links in 

the connection, then the full AMI load did not contribute to quantifying feeder or bank 

overloading.
87

 Table 10 summarizes the findings by IOU as there were a few feeder instances 

where the premise-to-feeder linkages were not identified in the utility-provided data. 

Table 10: Total AMI load compared to load linked with feeders (in AMI net GWh), 2020 (Source: Kevala 

analysis) 

Row Category PG&E SCE SDG&E 

1 Total Load Received 72,079 67,123 16,153 

2 Load Analyzed* 72,079 60,848 15,073 

3 Percentage of Total Load 100% 91% 93% 

*Load analyzed is the total load joined from the meter or service point to the linked feeder. 

 

Linking parcels to service transformers to feeders and then to substation transformer banks is 

critical to the analysis of distribution grid costs due to the adoption of DERs over time. 

Understanding the grid asset’s capacity rating is also necessary and allows for calculating new or 

upgraded grid needs. Table 11 summarizes the data from the number of feeders where data was 

received and the number of feeders that could be mapped to a service point and substation bank. 

Kevala received critical connectivity data such as feeder linkage to transformer banks very late in 

the study for SCE and SDG&E;
88

 this data has remaining data gaps for PG&E, SDG&E, and SCE. 

Specifically, from the data provided for the Part 1 Study: 

● PG&E is missing connectivity to transformer banks for 13% of the feeders provided in GIS. 

 

 

87

 The scale of the data and the number of data sources created numerous challenges, especially in 

matching data across datasets. Appendix 3 lists specific examples of challenges addressed to align datasets 

and confirm complete datasets. 

88

 Feeder connectivity to transformer bank information along with transformer bank sizes were received on 

September 26, 2022 for SCE and SDG&E. 
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● SDG&E is missing connectivity to transformer banks for 17% of the feeders provided in GIS. 

● SCE is missing connectivity to transformer banks for 14% of the feeders provided in GIS 

and missing the asset rating for 25% of transformer banks. 

Understanding the assigned rating of a feeder is also critical to analyzing distribution grid costs. 

GNA tables were used to determine the feeder ratings. Because many feeders were not included 

in the GNA tables, Kevala used default values for ratings when the actual ratings were not 

available. Utility data completeness and quality issues are described in Appendix 3. 

Table 11: Summary of number of substations, transformers, feeders, and related data, missing data 

highlighted orange (Source: Kevala) 

 PG&E SCE SDG&E 

Unique Service 

Transformers 
838,170 562,534 159,686 

Service Transformers 

Missing a Rating 
38,506 168 1,594 

Service Transformers 

Missing a Parent Feeder 

0 0 0 

Service Transformers 

Missing a Parent Substation 
0 3,274 0 

Unique Feeders 3,131 4,140 995 

Feeders Missing a Rating 460 104 216 

Feeders Missing a Parent 

Substation Transformer 
402 580 169 

Feeders Missing a Parent 

Substation 
0 72 0 

Unique Substation 

Transformers 
1,035 843 176 

Substation Transformers 

Missing a Rating 

6 208 0 

Substation Transformers 

Missing a Parent Substation 
0 15 0 

Unique Substations 747 714 282 

Note: notable data issues related to grid connectivity and ratings are denoted with bold text. 

 

3.3. Baseline Net-Load Methodology 

The second step of the process involved developing a forecast of premise-level hourly net-loads 

before introducing further demand-side modifiers. It is important to distinguish between the net- 

load baseline forecast and the forecasts of net-load that include the various scenarios of demand- 
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side modifiers summarized later in this report. For clarity, in this report, the forecast of premise- 

level loads prior to demand-side modifiers are referred to as baseline net-load while the 

forecasts of net-load with demand-side modifiers are referred to as net-load forecasts. 

Figure 50 outlines the three states of the baseline net-load methodology. 

 

Figure 50: Baseline net-load methodology (Source: Kevala) 

 
3.3.1. Baseline Net-Load Forecast 

The baseline net-load represents the expected address-level energy use served by the IOU. 

Historical AMI data provided by the IOUs was considered net-load and included customer-adopted 

technologies in place during the historical period. For each premise, Kevala used AMI and weather 

data to train a forecast model for each address. Kevala then used these models to forecast load at 

the same address over the study period and incorporated any weather changes over that same 

period. The aggregation of these address forecasts provided the base of the load forecasts for the 

IOU’s service territory. 

 

Grounding forward-looking savings on historical data limits the “what-if” in calculating potential. 

Forecasting is the inherently uncertain process of estimating outcomes by modeling historical and 

current observations. The historical data provides data points to calibrate modeling efforts and an 

alignment point to provide some level of confidence to the simulated results. The inherent 

shortcomings of modeling based on historical observation include the lack of insight into changing 

market dynamics, which can vary from shifting sentiments to adoption and changes in technology. 

Changing market behavior, such as corporate sustainability goals, includes shifts in attitudes 

regarding climate change. 

To develop the baseline net-load estimates, Kevala used AMI data from each premise for 2018- 

2021. The following are the key assumptions associated with baseline net-load modeling: 

● Baseline net-load for each premise represents load as measured at the meter and does not 

include any T&D losses or attributions of unaccounted load. 
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● Baseline net-load aggregated to the feeder level incorporates estimates of T&D losses 

based on historical seasonal deviations between SCADA and AMI on that same circuit. 

Kevala assumes those losses are constant over the forecast horizon. 

● Any changes in baseline net-load for an existing premise for which there is AMI data to 

generate a future net-load estimate will be due to influences from predicted future 

weather patterns, assuming the Representative Concentration Pathway 8.5 (RCP 8.5) 

climate change scenario.
89 

Figure 51: Baseline net-load and baseline load estimation process (Source: Kevala) 

 
Kevala tested various modeling approaches and algorithms to identify the method that optimized 

evaluation criteria at the feeder level. The final methodology applied a combination of two 

machine learning algorithms: decision tree and extremely randomized forest. 

● The decision tree approach predicts the dependent variable by learning rules that split the 

training data into successively smaller and more homogenous groups. The decision tree 

 

 

 

89

 Hausfather, Zeke, “Explainer: The high-emissions ‘RCP8.5’ global warming scenario,” Carbon Brief, August 

21, 2019, https://www.carbonbrief.org/explainer-the-high-emissions-rcp8-5-global-warming-scenario/. 

https://www.carbonbrief.org/explainer-the-high-emissions-rcp8-5-global-warming-scenario/
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approach tends to overfit
90

 and performs best in predicting the peak but underperforms 

on estimating energy levels (e.g., area under the load duration curve). 

● The extremely randomized forest technique is an extension of the random forest 

algorithm, which basically generates many decision trees based on different inputs and 

starting points for the trees. Extremely randomized forest simply applies the same 

methodology, but cut points or split points (the points at which the decision tree branch 

splits to other options) are chosen randomly rather than through optimization in a 

conventional random tree technique. As with the random forest technique, the average 

outcome of the many trees is used as an estimate. Though the extremely random forest 

approach generalizes well for out-of-sample forecasts of total energy, it tends to underfit
91

 

the idiosyncratic observations in the training data and thus is a poor predictor of peaks. 

Kevala combined these two techniques to develop two estimates that are averaged to develop 

one estimate. That is, the strengths of one method offset the weaknesses of the other to provide a 

reasonable estimate of both peak and total energy. The tree and forest ensemble method stood 

out above competing approaches on the four evaluation metrics (discussed in Appendix 4), and 

additional model development efforts focused on optimizing this approach for the net-load 

prediction task. Specifically, this combined approach proved the most useful for predicting the 

peak, total energy, and shape of energy consumption across the year (load duration curve) for 

premises and the aggregated loads at the feeder level. 

The benefits of this approach include the following: 

 

● All AMI data for each premise for all three IOUs was used in this analysis to generate 

premise-specific estimates of baseline net-load profiles. This differs from the traditional 

approach of generating typical load profiles that are then applied based on generic 

characteristics. That is, the traditional approach assumes that similar customers have 

 

90

 Model overfit implies the model is highly tailored to the input data and does a good job predicting the 

training data but is less reliable for unseen instances. Overfitting is usually caused by a sample that is too 

small or does not contain enough data samples that represent the population of outcomes. Overfitting is a 

problem if the model is designed to predict a wide range of outcomes that are not represented in the 

sample. For purposes of this study, the overfitting is acceptable, and even desirable, for forecasting peaks 

but is recognized as underforming for forecasting all hourly loads and thus energy. 

91

 Underfitting occurs when a predictive model is unable to fully capture the relationship between the input 

and output variables, which results in a higher error rate. There are many causes of underfitting, but for 

purposes of this study, the bias introduced by the extreme random forest functions as a form of 

regularization. That is, it limits the influence of individual input features, and the corresponding random 

noise associated with measurement and human behavior, on predictions of energy use, resulting in more 

accurate generalization for unseen data such as future time points. 
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identical load profiles. While this approach has proven suitable in the past as generic 

shapes could be derived from load research exercises that use samples of customers to 

generate these load forecasts, the use of all AMI data for the three IOUs marks a turning 

point in the capabilities of load forecasting and demonstrates the value of collecting, 

processing, and storing hourly data for all customers. Additionally, this approach goes a 

step further than some advanced data science techniques that train models on a sample of 

customers. This technique applies the trained model to premise-level inputs to generate 

premise-level estimates. While these traditional approaches can provide useful 

information, they fall short of really leveraging all AMI data and developing standalone 

premise forecasts based on premise models trained with data for that premise. 

● The approach offers premise-level counterfactuals92 and hypotheticals. For example, 

one challenge in DER forecasting is estimating what the customer’s load would have been 

had the DER not been installed, often referred to as counterfactual. This is a common 

analytical question to evaluate the impact of DERs, particularly the cost-effectiveness of EE 

and BE programs, the cost and load implication of PV and BESS, and the performance of 

demand response programs. Offering a premise-level counterfactual based on the 

customer’s actual historical behaviors allows for scenario comparison and an 

understanding of the implications of DER policy on customer behavior, both before and 

after DER adoption. This approach also eliminates the need to find a sample of non- 

participating customers that are representative of the premise’s customer to estimate the 

implications of what the customer would have done had they not adopted a DER. This 

approach has significant implications for improving the evaluation and measurement of 

DER and other customer programs and can improve confidence in determining the impacts 

from these programs. 

● The approach is transparent and easy to verify. Because Kevala used the premise data 

to estimate future net-load, a simple visual comparison of the trend of a premise can be 

analyzed and verified as reasonable for that customer. As part of Kevala’s review, the load 

duration curves of a premise using actual and predicted hourly net-load estimates can 

show how well the model is estimating the customer’s load. 

● The approach allows for estimating the peak load duration curve and total energy 

consumption without compromising one forecast point over the other. Most data science 

techniques focus on getting a current value (e.g., the peak). Being able to forecast a peak 

accurately, which is technically an outlier or tail event in a customer’s energy use 

distribution, and estimate the area under the distribution curve is a challenging 

 

92

 A counterfactual is an estimate of what would have happened if an action or event had not occurred. In 

the energy industry it is typically referred to as what the customer’s energy use would have been if an action 

or event had not occurred, such as adoption of an EE technology. 
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mathematical problem. The ensemble method Kevala developed has overcome this 

challenge as the results in Appendix 4 demonstrate. 

3.3.2. Baseline Load Forecast 

The baseline load forecast represents the hypothetical demand after removing load impacts due 

to DERs. To go from baseline net-load estimates to baseline load estimates, the load profile of any 

adopted DER(s) at a premise needs to be estimated and removed. With the exceptions of PV and 

BESS interconnection data, there is a lack of information available to identify the actual installation 

of any BTM DER. As a result, Kevala removed only estimated PV generation (from the System 

Advisor Model’s PVWatts simulator) from hourly net-load forecasts to create baseline load 

forecasts. Kevala’s approach to measuring EE involved training an adoption model based on house 

characteristics, which included energy consumption at the premise. This approach demonstrated 

that EE adoption is highly influenced by the level of energy use at the premise. Premises that have 

implemented EE would have lower premise-level energy use. The EE adoption methodology 

generally takes into account BTM EE in place, and no further adjustments are planned for EE. The 

current GNA approach does not allocate BE to the feeder level, and the level of BE has been 

historically low relative to other DERs; thus, the Part 1 Study indicates no further adjustments are 

required for BE. Kevala intends to update (i.e., retrain) the baseline models with additional AMI 

data as part of the Part 2 Study. 

To estimate the load impacts due to PV, Kevala used the System Advisor Model’s PVWatts 

simulator
93

 and Actual Meteorological Year weather by zip code from 2018 to 2020 to generate an 

hourly historical PV load profile for premises with known PV systems (see Section 3.4.2). Kevala 

then estimated baseline load by subtracting the forecasted PV load profile for a premise from the 

premise-modeled load. Baseline load estimates for each premise represent load as measured at 

the meter and do not include any T&D losses or attributions of unaccounted load. 

The following time series feature inputs were required by the net-load forecast model: 

 

● Hourly net-load (kWh) 

● Historical actual hourly air temperature (Celsius) for training models 

● Forecasted hourly air temperature (Celsius) for prediction 

● Date-time features that can be derived from the timestamp (e.g., hour number, whether 

the date is an observed U.S. holiday) 

The following are the key assumptions associated with baseline load forecast modeling: 

 

 

 

93

 NREL, “PySAM,” Version 5, https://sam.nrel.gov/software-development-kit-sdk/pysam.html. 

https://sam.nrel.gov/software-development-kit-sdk/pysam.html
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● Baseline load used simulated historical load curves for DER behavior to net out generation 

attributable to solar panels (PV). The current version does not attempt to disaggregate load 

due to ZEVs, public EVSE, BESS, EE, BE, or demand response programs. 

● Baseline load growth is accounted for using known load growth projections from the 

utilities and new demand from predicted additions to the stock of residential premises. 

Table 12 shows the number of premises by IOU that Kevala needed to adjust due to PV 

installations. 

Table 12: Premises Kevala adjusted due to PV installation by IOU (Source: Kevala) 

IOU Number of Premises with PV Interconnection Records 

PG&E 522,091 

SCE 377,066 

SDG&E 190,941 

 
Kevala’s final step involved calibrating the baseline load forecast to the 2021 IEPR mid-mid case for 

system-level loads by planning area. Specifically, the calibration target was the coincident peak 

forecast for 2022 for each of the three IOUs based on the 2021 IEPR mid-mid case transmission 

access charge (TAC) area.
94

 Kevala calculated this target by subtracting system peak loads of 

neighboring LSEs included in the TAC area for each IOU. The premise-level hourly baseline load 

estimates for 2022 were summed up for each IOU to generate an hourly system-level forecast for 

each IOU. Kevala then identified the peak load for 2022 from this hourly profile for each IOU and 

compared the result to the 2021 IERP coincident peak calibration target. Kevala then computed 

the ratio of 2021 peak to the baseline load peak and applied it to every hour of load for each 

premise to generate a calibrated hourly baseline load. 

Known and unknown load growth
95

 was then added to this calibrated forecast to generate the 

baseline load forecast for the study period by premise. While Kevala did not calibrate the 

unknown load growth (IOUs provided known load growth, so it was already calibrated) in the Part 

1 analysis, this growth in load was minimal relative to anticipated load changes from a high DER 

future and thus unlikely to drive the results of the Part 1 Study. Kevala proposes revisiting the 

 

94

 The TAC level corresponds to the California Independent System Operator (CAISO) transmission 

aggregate load node; for PG&E and SCE, it also contains load from other municipal and power non-IOUs. 

95

 Known load growth refers to load growth that utility planners are aware of from interconnection requests 

and other coordination with generally large commercial and industrial customers. Unknown load growth 

cannot be attributed to specific current customers. 
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overall calibration method by calibrating to the total of baseline load plus load growth in the Part 2 

Study. 

3.3.3. Load Growth Forecast 

This Part 1 Study required the computation of a net-load forecast, which incorporates the 

baseline net-load forecast and a separate process that estimates the expected growth driven by 

increased loads at existing addresses; these increased loads are driven by economic cycles and 

new load at new addresses as the number of customers grows, particularly residential customers. 

This load growth can be categorized as either known load growth or unknown load growth. 

For the core problem of forecasting hourly net-load, Kevala designed a modeling approach that 

could: 

● Forecast even with sparse inputs (e.g., missing values for hourly net-load). 

● Address complex seasonality, including hourly, weekly, and yearly effects. 

● Incorporate extra regressors such as outdoor air temperature. 

 

Though not part of the core forecasting model, Kevala leveraged additional data sources to 

produce the final results for each IOU: 

● For future known load growth: GNA provided by each IOU. 

● To estimate unknown load growth: County-level socioeconomic forecasts produced by 

Caltrans
96 

The following are the key assumptions associated with load growth forecast modeling: 

 

● Caltrans forecast of customer growth provides a reasonable estimate of regional (county- 

specific) housing starts and other growth metrics to be used to forecast regional unknown 

load growth estimates. 

● Load patterns by current customers are representative of the load profiles for known and 

unknown load growth. 

3.4. Hourly Demand-Side Modifiers 

Kevala identified premises where economic and demographic characteristics correlated with DER 

adoption and then the likelihood of adoption based on other factors (e.g., rent versus own, multi- 

unit dwelling versus single occupant) as well as technology cost curves, program and incentive 
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 Caltrans, “Long-Term Socio-Economic Forecasts by County, 2020 Data” 

https://dot.ca.gov/programs/transportation-planning/division-of-transportation-planning/data-analytics- 

services/transportation-economics/long-term-socio-economic-forecasts-by-county. 

https://dot.ca.gov/programs/transportation-planning/division-of-transportation-planning/data-analytics-services/transportation-economics/long-term-socio-economic-forecasts-by-county
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features, etc.; Kevala then applied a probability distribution for each technology type’s adoption. 

Kevala also simulated the behavior of the demand-side modifiers, resulting in a forecasted net- 

load that reflects the behavior of EE programs and DERs. 

Kevala used a standardized approach to the non-transportation DER adoption and behavior 

estimation for the following DERs: 

● BTM PV 

● BTM BESS 

● EE 

● BE 

 

3.4.1. Overall Approach to Demand-Side Modifier Estimation 

Kevala’s approach for estimating each of the five modifiers targeted for this study (BTM PV, BESS, 

BE, EE, and EVs and EVSE) ultimately required estimating the load size (e.g., peak demand), 

behavior of the modifier (e.g., energy use), and adoption of the modifier (did a premise experience 

the demand modifier size and behavior implications?). The approach for each demand modifier 

was slightly modified depending on the calibration target. Specifically: 

● The calibration targets for PV, EE, BE, and BESS were a capacity target (MW). 

● The calibration target for EVs and EVSE was the number of units (i.e., ZEV counts). 

 

The calibration target drove the methodology, with PV, BESS, EE, and BE starting with sizing, then 

estimating behavior, and then developing adoption propensity. This approach is discussed in 

more detail as follows. 

 

Sizing 

The DER sizing method outputs the appropriate capacity or nameplate rating of the DER for a 

given premise were it to adopt that DER. A size is typically calculated to equal a certain target, 

defined from some characteristic of the premise’s baseline load. For example, residential PV is 

sized to achieve annual net-zero energy, while BE is sized based on an estimation of the address’s 

load that can be transitioned to electricity (e.g., gas heating to electric heat). 

Behavior 

The DER’s behavior method uses that size or rating to output the hourly resolution (8760 profile) 

behavior of the DER over the course of a year. Unlike the adoption method described below, 

which shares a common framework among the DERs, the behavior methods are unique to each 

DER. For some DERs, including PV and BE, Kevala leveraged existing industry-standard behavior 
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models (ResStock,
97

 ComStock,
98

 National Solar Radiation Database (NSRDB),
99

 PVWatts
100

) as 

much as possible. In comparison, BESS uses control algorithms to emulate peak shaving, while EE 

calculates a percent reduction in the baseline load. 

Adoption 

The adoption method determines the likelihood that a premise will adopt that DER and outputs an 

adoption propensity score between 0 (definite non-adoption) and 1 (definite adoption). Kevala 

used a custom machine learning approach to develop its DER adoption propensity models. With 

this approach, a statistical model uses certain attributes about a premise, called features, to 

predict a decision about whether or not to adopt a given DER. Kevala built and validated this 

model using historical adoption data to classify whether or not a premise is likely to adopt a DER, 

making it a supervised binary classification method. Based on whether the desired features are all 

numerical or a mix of numerical and categorical (i.e., Yes/No) features, either a Bayesian logistic 

regression or Bayesian multilevel logistic regression (MLR) model was selected to model the 

relationships between the features and the likelihood of adoption. 

Developing the adoption model for each DER type typically involved the following five stages: 

 

1. Preliminary data analysis: Select the most predictive features to include as inputs and to 

define the final structure of the machine learning model around those features. For each 

DER, these input features are selected through correlation analysis, reference to existing 

research,
101,102

 and tailored data science methods. 

2. Model training: Develop model parameters using a portion of the randomly selected 

premises from the historical dataset. 

3. Model validation: Run the unused data from the historical dataset through the trained 

model and then compare it to the actual historical data to validate the model quality. This 

validation verifies that the model is accurately predicting for the range of actual outcomes 

(i.e., was not overfit or too tightly tailored to the in-sample data). 

 

 

 

 

97

 NREL, “ResStock,” https://resstock.nrel.gov/. 
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 NREL, “ComStock,” https://comstock.nrel.gov/. 

99

 NREL, “NSRDB: National Solar Radiation Database,” https://nsrdb.nrel.gov/. 

100

 NREL, “PySAM,” Version 5, https://sam.nrel.gov/software-development-kit-sdk/pysam.html. 

101

 Jiafan Yu et al., “DeepSolar: A Machine Learning Framework to Efficiently Construct a Solar Deployment 

Database in the United States,” Joule 2, no. 12 (December 19, 2018): 2605-2617, 

https://doi.org/10.1016/j.joule.2018.11.021. 

102

 Icaro Silvestre Freitas Gomes et al., “Coupling small batteries and PV generation: A review,” Renewable 

and Sustainable Energy Reviews 126 (July 2020), https://doi.org/10.1016/j.rser.2020.109835. 
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4. Model predictions: Apply the trained model to future input estimates to provide a forecast 

of the DER adoption propensity. 

5. Calibration: Rank each premise in order of their adoption propensity scores; based on that 

ranking, select the premises to adopt up until the top-down calibration target for that DER 

is met. 

As noted previously, the transportation demand-side modifiers (EV and EVSE) were calibrated 

against a number of units (i.e., ZEV counts) within a forecast rather than an energy value. Because 

the transportation demand-side modifiers were calibrated to the number of ZEVs contained in the 

Part 1 Study’s selected adoption forecasts, they required a slightly different approach to the sizing, 

behavior, and adoption stages. 

The EV pipeline was executed first, and the outputs from the EV steps then served as inputs to the 

EVSE pipeline. The EV and EVSE pipeline executed specific calculations for personal (i.e., privately 

owned) and fleet (i.e., owned by a fleet operator) vehicles and for these vehicles’ associated EVSE. 

The EV and EVSE modeling pipelines began by identifying the calibration target as the number of 

total assets (i.e., vehicle counts or charging port counts) to be allocated or sited for a given year. 

Following this step, the EV and EVSE models conducted the sizing step, which determined the type 

of vehicles or charging ports available (i.e., personal, light duty (LD), battery electric vehicle (BEV), 

small car, or fleet, depot, DCFC 50 kW) and the total potential count of vehicles or charging ports 

for a given premise. Importantly, the sizing step only determined what type of asset and how 

many of those assets could be adopted in the event that premise was selected in the adoption 

step (actual adoption occurs in the adoption step). 

Next, the models ran an adoption propensity analysis that calculated the actual type and count of 

the vehicle(s) or charging port(s) adopted at a given premise for a given year (i.e., one personal, 

LD, BEV, small car at a residential premise or 10 fleet, depot, DCFC 50 kW at a commercial 

premise). The adoption step was the last step for the EV model. 

For the EVSE pipeline, the behavior step was the final step. It involved determining the annual 

hourly charging profile for a given parcel for a given year based on the energy requirements of the 

vehicle(s) projected to charge at the given parcel. 

Appendix 9 describes additional details regarding the EV and EVSE modeling methodologies. 

 

3.4.2. BTM PV 

As a relatively mature and well-studied DER, modeling BTM PV can utilize well-established datasets 

and tools available from the U.S. Department of Energy’s (DOE’s) national laboratories to conduct 

detailed, site-specific modeling of BTM PV systems. Kevala built its modeling pipeline (see Figure 
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52) using information about historical BTM PV installations from the IOUs’ interconnection data 

and Lawrence Berkeley National Laboratory’s Tracking the Sun dataset,
103

 hourly resolution 

weather data from the NSRDB,
104

 and the System Advisor Model’s PVWatts
105

 simulator. Appendix 

5 provides full details of this process. 

Figure 52: Flow diagram of BTM PV adoption propensity, sizing, and behavior modeling (Source: Kevala) 

 
The modeling process began by sizing a premise’s theoretical BTM PV system to offset some 

portion of its annual gross load. For each Census tract, Kevala calculated the annual energy 

production of a 1 kW DC, south-facing BTM system by simulating Typical Meteorological Year 

weather data from the NSRDB through PVWatts. For each premise in that Census tract, Kevala 

calculated the desired PV system size by linearly scaling the 1 kW DC standard system to meet a 

defined percentage of the premise’s gross annual energy demand. Kevala sized residential 

 

103

 Lawrence Berkeley National Laboratory, Tracking the Sun, 2021 edition, https://emp.lbl.gov/tracking-the- 

sun. 

104

 NREL, “NSRDB: National Solar Radiation Database,” 2018-2020 Actual Meteorological Year data, accessed 

July 2022, https://nsrdb.nrel.gov/. 

105

 NREL, “PySAM,” Version 5, https://sam.nrel.gov/software-development-kit-sdk/pysam.html. 

https://emp.lbl.gov/tracking-the-sun
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systems to achieve 100% net-zero energy and non-residential systems based on an empirical 

evaluation of the ratio of installed PV-to-annual energy usage while also considering rooftop area 

limits. 

To model the hourly behavior of BTM PV, Kevala used residential and non-residential
106

 

representative profiles for the PV systems in each Census tract. 

● First, Kevala derived typical specifications of PV systems historically installed in California 

from the Tracking the Sun dataset, including average tilt, average inverter loading ratio (or 

direct current-to-alternating current (DC-to-AC) ratio), and the frequency of the two most 

common azimuths (south-facing and west-facing) by customer class. 

● Next, Kevala used PVWatts to model the hourly resolution behavior of a 1 kW DC system 

using each Census tract’s Actual Meteorological Year weather data from 2020
107

 and these 

typical specifications by customer class. Both south-facing and west-facing systems were 

modeled, and the final representative curve was a weighted blend of both profiles. 

● Finally, Kevala scaled the appropriate representative curve by a given system’s installed DC 

rating to provide its hourly power output. 

 

Kevala developed an adoption model for each of the three IOUs using customer class, peak load, 

six demographic features, and the estimated payback period on the PV system as predictors. 

Kevala trained the model against historical PV interconnection records, which is assumed to be 

the best representation of what PV adoption choices have been for customers in the past. Kevala 

calculated payback period, which is the estimated period of time it takes for a customer’s 

cumulative savings to equal their upfront costs of adopting PV, from the premise’s monthly bills 

using the baseline load forecast, the PV behavior profile, and NEM rates. As with other DERs, 

Kevala ranked these adoption propensity scores and compared them to the 2021 IEPR mid-mid 

case calibration target to select premises to adopt. See Section 3.4.7 for more details on the 

development of these calibration targets. 

The following are the key assumptions associated with PV adoption and behavior modeling: 

 

● Kevala used common industry default specifications, except where noted. These 

default specifications included PVWatts’ default assumptions about soiling, shading, and 

wiring losses (applied equally at every hour in the year), inverter efficiency, and module 

type (standard crystalline silicon). Additionally, Kevala assumed all rooftops to be south- 

and west-facing at a given tilt by customer class, because these two orientations are the 

 

 

106

 Kevala used the Commercial class in the Tracking the Sun dataset for all non-residential systems. 

107

 Kevala used 2020 Actual Meteorological Year data to model all years in the 2022-2035 modeling horizon. 
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most common in the Tracking the Sun dataset. 

● Installed PV DC capacity is constrained by the parcel footprint, so parcel footprint was 

assumed to be a reasonable estimate of the available space for PV system 

installations. 

● Historical PV adoptions as represented by PV interconnections are a reasonably 

accurate representation of historical adoption characteristics. 

● Kevala determined PV sizes based on the 2022 baseline load forecast. A single premise 

does not typically have significant year-over-year gross load increases, so these changes 

should be negligible. This approach does not include the impact of the adoption of other 

demand-side modifiers. 

● Bills and PV system costs used to calculate payback period reflect 2022 values. 

● PV degradation effects and end-of-life system removal/replacement were ignored. 

Kevala ignored year-over-year decreases in PV efficiency due to aging, which resulted in an 

overestimation of production from older systems as the forecast horizon increases. 

Similarly, the model did not consider removal or replacement of aging PV systems because 

the vast majority of systems will still be within their operational lifespan at the end of the 

forecast horizon. 

● Increases in the annual temperature profile due to climate change were ignored. 

While Kevala included climate change-induced temperature increases in the baseline load 

forecast module, the 2020 air temperature profile was used unchanged as an input to the 

PV behavior module. 

● The relationship between customer bills and solar costs remained constant. While 

Kevala expected rates to increase at the IEPR mid-level escalation rate, the payback period 

estimates remained constant over time. This is because the estimated cost of PV systems is 

difficult to predict due to many offsetting factors such as supply chain constraints, 

government subsidy continuations, and the implications of inflation on PV systems that has 

not been seen historically. 

Kevala believes the results of the BTM PV analytics completed for this Part 1 Study provide 

accurate and sufficient estimates of the impacts of BTM PV adoption on distribution planning. 

3.4.3. BTM BESS 

BTM BESS are a rapidly growing DER, though still in the early stages of market adoption. 

Commonly installed in tandem with a BTM PV system, a BESS is extremely flexible and can be 

operated to achieve a variety of goals: 

● Provide energy backup during emergency conditions 

● Reduce peak demand charges for non-residential customers 
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● Improve utilization of the premise’s PV generation to reduce its electricity bills or carbon 

footprint 

 

While the market penetration of BESS is still very low and the control strategies that will prove to 

be the most popular and prevalent are still unclear, Kevala has taken the approach of modeling 

two financially motivated control strategies based on customer class: Kevala’s models assume 

residential customers will try to optimize PV self-consumption while minimizing TOU charges, 

while non-residential customers will try to use BESS for peak shaving to reduce their demand 

charges. Figure 53 summarizes the complete BESS modeling process. 

Figure 53: Flow diagram of BTM BESS adoption propensity, sizing, and behavior modeling (Source: Kevala) 

 
Kevala based its BESS sizing model on the continued adoption of the lithium-ion BESS options 

commercially available today. For residential premises, Kevala modeled the new BESS as one or 

more Tesla Powerwalls, where the number of Powerwalls is chosen to provide backup for at least 

8% of the premise’s gross energy demand on its highest usage day throughout the year. This 

equates to approximately two hours of backup energy at the BESS peak power output. For 
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commercial premises, Kevala selected one of a range of commercially available BESS options to 

offer approximately three hours of self-sufficiency per day, up to the ratings offered by the largest 

BESS available, the Tesla Powerpack. Kevala determined the thresholds for selecting these 

configurations by analyzing the premises in the historical BESS interconnection data. 

The BESS behavior and adoption models depend on the outputs of the PV module based on the 

understanding that most future BESS will be adopted and operated in conjunction with BTM PV 

(see Section 3.4.2). Once a BESS model was sized for a premise, Kevala modeled its behavior 

based on the premise’s customer class. Kevala assumed residential premises would charge when 

PV exceeds gross demand and discharge when gross demand exceeds PV, constrained by its 

state-of-charge limits. A residential BESS generally charges during the day and discharges in the 

early evening, which also approximates the desired behavior to minimize TOU charges, which are 

highest in late afternoon and early evening. In contrast, non-residential customers charge during 

the lowest net-load hours and discharge during the highest net-load hours in each 24-hour period 

to emulate demand charge reduction. 

Kevala assigned each premise an adoption propensity score using an IOU-specific machine 

learning adoption model trained on the historical interconnection data. The most important 

predictor was whether or not the premise had PV. Non-residential premises with PV adopted BESS 

at much higher rates than non-residential premises without PV, while the adoption model simply 

did not allow residential premises without PV to adopt BESS due to the assumptions of the 

behavior algorithm. In addition to PV, the other predictors in the adoption model were customer 

class, peak load, and three demographic features. Kevala ranked and compared the adoption 

propensity scores to the 2021 IEPR mid-mid case calibration target to select premises that 

ultimately adopt BESS. Appendix 6 provides full details of the BESS sizing, behavior, and adoption 

model development and validation. See Section 3.4.7 for more details on the development of 

these calibration targets. 

The following are the key assumptions associated with Kevala’s BESS adoption and behavior 

modeling: 

 

● Residential customers must adopt PV in the same year or earlier. The BESS behavior 

model for residential customers assumed they are maximizing PV self-consumption; 

therefore, only residential customers with PV were allowed to adopt BESS. A small number 

of residential premises in the historical interconnection data had BESS but not PV, but 

these were ignored. 

● BESS payback period was not used as a predictor in the adoption model because 

current payback periods are very long and may not be indicative of the future prices of 

BESS as the BTM BESS market matures. 
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● BESS configurations were based on currently commercially available lithium-ion 

battery packs and did not account for projected changes in storage technology or 

common commercial options. 

● The residential BESS behavior model assumed TOU peak periods would continue to 

be in the late afternoon and early evening over the modeling horizon. 

● The non-residential BESS behavior model assumed a perfect forecast of each 24-hour 

period to identify the lowest load periods for charging and the highest load periods for 

discharging. 

● BESS degradation and end-of-life removal/replacement were ignored. This did result in 

an overestimation of performance over time. The financial impacts of BESS replacement on 

a given homeowner were not considered given that the initial payback period was also not 

included in the adoption model. 

 

Kevala believes the results of the BESS analytics completed for this Part 1 Study provide sufficient 

and reasonable estimates of the impacts of BESS adoption on distribution planning given the 

nascent nature of the technology in California. 

3.4.4. EE 

Kevala’s method for modeling EE savings profiles required developing an analytical-based 

approach for defining the energy savings and adoption probability at the premise level. Typically, 

EE modeling uses the population level from sampled survey data and the Bass diffusion
108

 curve 

for modeling technology adoption. Using this method, the pattern of savings can be predicted 

using engineering modeling to estimate the level of savings from a measure and then applying 

adoption levels that apply to a geographic area, such as service territory or even census tract or 

zip code.
109

 

While estimating energy savings from EE at the premise level could follow the same engineering 

approach described previously, that would be complicated by the lack of information regarding 

the premise-specific inventory of electricity and gas end uses behind-the-meter, the overall 

 

108

 The Bass diffusion curve is usually based on a simple differential equation that describes the process of 

how new products get adopted in a population and provides a perspective on how current adopters and 

potential adopters of a new product interact. Key inputs are typically related to proximity of potential to 

current adopters and advertising that promotes awareness of the new product. 

109

 Once measures are installed, the savings are verified by quantifying a counterfactual, which basically 

requires estimating what customers would have consumed had they not implemented the EE measures and 

comparing that estimate to their actual use. One shortcoming of this approach is that it is difficult to 

determine the level of savings from individual measures if more than one measure is installed at the same 

time or the level of savings from the measure is not systematically greater than the random variation in the 

customer’s load. 
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condition of the facilities or buildings on the premise, and the level of EE technologies already 

installed at the premise. Ideally this information would be available for not only a sample of 

customers used to train premise-level models, but also for all premises in the IOUs’ service 

territories. For the Part 1 Study, this level of data was unavailable. 

Kevala’s approach seeks to estimate the percent of energy savings potential per premise and the 

propensity for adopting measures to achieve this level of savings without predicting which and if a 

particular EE measure is installed at a premise. The underlying assumption for this approach is 

that the impact of EE adoption is driven less by a specific technology because the level of savings 

depends highly on diverse premise characteristics and a methodology focused on the level of 

savings relative to load would be the best predictor of the impact of EE on the grid. 

Figure 54 shows the process flow of the EE evaluation method to develop the premise-level EE 

forecasts. This method is based on an analysis of the California Energy Data and Reporting System 

(CEDARS),
110

 which is a dataset collected by the CPUC of every record of EE program participation 

from the IOUs. CEDARS tracks the individual premises participating in EE, as well as a measure of 

cost, incentive, and the total first year energy savings in kilowatt-hours (kWh). A detailed 

explanation of Kevala’s approach and results are shown in Appendix 7. 

Figure 54: Flow diagram of EE adoption propensity and demand-side modifier modeling (Source: Kevala) 

 
 

 

110

 CPUC, “CEDARS: California Energy Data and Reporting System,” https://cedars.sound-data.com/. Kevala 

received 2018-2020 program participation data. 

https://cedars.sound-data.com/
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Starting by combining the CEDARS premise participation data with premises’ historical hourly load, 

Kevala identified the potential level of savings by premise.
111

 Kevala then ran multiple 

experiments to identify characteristics that correlate well with the adoption of EE measures based 

on CEDARS participants to generate adoption propensity scoring for the population. 

As a result of the analysis to find commonality of historical participation, the adopted premises 

leverage three main traits (Appendix 7 provides a more detailed description): 

● Average daily delivered energy magnitude 

● Ratio of max to mean daily delivered energy, relative to the size of the premise 

● Residential versus non-residential 

 

The EE-participating premises were matched directly to the hourly baseline load estimate by 

customer meter to calculate a percentage of energy savings from EE adoption. That is, these 

savings calculations were based on the baseline load at the premise, not the baseline net-load 

estimate, because all premise loads, even those that are offset by PV and storage, may be 

affected.
112

 The algorithm assigned potential energy savings percentages in grouped premises 

based on the energy savings percent distribution for the EE-participating premises. In simulation, 

Kevala combined the adoption propensity scores and potential energy savings percentage to 

select premises that adopt EE until the 2021 IEPR mid-mid case calibration target was reached. See 

Section 3.4.7 for more details on the development of these calibration targets. 

The following are the key assumptions associated with EE adoption and behavior modeling: 

 

● Premise-level savings percentage was based on EE portfolio program participation. 

There are other sources of EE savings such as codes and standards, behavior change from 

programs and other interventions, energy savings assistance (low-income program 

participants), and market-driven impacts whose records were not available at the premise 

level. Leveraging other EE savings tracking efforts (such as the CEC SB 350 analysis or 

disaggregating group-level data to premise)
113

 may lead to more accurate EE savings 

accruals; however, these were not quantified on a premise-level basis (but were deemed 

values). For the Kevala model, using the EE program participant-level data was sufficient 

because Kevala was not forecasting future EE adoption and instead was calculating to the 

2021 IEPR mid scenario target for AAEE. 

 

 

 

111 
Kevala can examine further leveraging the CEDARS database for EE estimations in Part 2. 

112

 Kevala assumed EE and BE to be embedded in the baseline load estimate. 

113

 This group-level data includes energy savings assistance programs (low income), home energy reports, 

upstream or midstream programs, and codes and standards. 
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● Savings were assumed to be applied equally on a percentage basis to every hour. 

Defining the end-use scale and shape change must be known to a granular level to truly 

indicate hourly load impacts with EE. The granularity defines the end use and technology 

type (efficiency, operation, or controls). Each of these dependencies will impact the hourly 

load. 

● Savings were adopted once in the forecast period, whereas EE adoption is a continuum 

and is not a one-and-done activity. Ideally, savings can be accrued in more than one 

adoption year. There will be cases where the implemented savings percentage value is too 

high or artificially holding back some premises’ potential. 

Kevala believes the results of the EE analytics completed for this Part 1 Study provide accurate and 

sufficient estimates of the impacts of EE adoption on distribution planning. 

3.4.5. BE 

BE (or fuel substitution) is a relatively new category of DER analysis for the utility industry and is 

becoming increasingly important in the study of the magnitude and location of future grid needs. 

This is particularly true in California as policymakers look to reduce carbon by encouraging the 

replacement of carbon-emitting end uses (such as gas heating) with electric end uses. This 

increase in BE (as well as transportation electrification, which is discussed later in this report) may 

result in higher electricity use during peak hours, creating significant strain on the existing 

distribution infrastructure. However, it also provides opportunities for demand response to offset 

that increased load during critical peak periods or use of load management to encourage peak 

shifting to less capacity constrained periods. 

Kevala recognizes that the ideal approach to modeling BE is to define the existing loads that may 

be electrified and the timing of that transition. Unfortunately, Kevala did not have a full set of gas 

consumption data as of Q1 2022. Therefore, the BE analysis was limited to available data on 

electricity at the premise level. Figure 55 shows the key steps for the BE analysis, assuming gas 

loads are unknown. A detailed explanation of Kevala’s approach and results are shown in 

Appendix 8. 
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Figure 55: Flow diagram of BE adoption propensity and demand-side modifier modeling (Source: Kevala) 

 
Kevala’s approach leveraged secondary research, publicly available data, and engineering analysis 

to estimate BE size and behavior. BE size was driven by the customer class (residential versus 

commercial) and climate zone. Behavior was based on load profiles from established NREL 

databases. Because appropriate datasets were not yet available to model BE adoption propensity, 

Kevala used EE adoption propensity values as a proxy. Kevala then ranked the adoption 

propensity scores from highest to lowest and selected the premises in rank order until the BE 

calibration target was met. 

This analysis defined the available electrification (increase in load) potential on a premise basis. 

Kevala did review potential adoption analytic sources such as California’s 2021 energy efficiency 

potential study
114

 and deemed the method not applicable. See Section 3.4.7 for more details on 

the development of the calibration targets. 

The following are the key assumptions associated with BE adoption and behavior modeling: 
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 Guidehouse, 2021 Energy Efficiency Potential and Goals Study, prepared for California Public Utilities 

Commission, August 20, 2021. 

https://pda.energydataweb.com/api/view/2531/2021%20PG%20Study%20DRAFT%20Report%202021_Final.p 

df 

https://pda.energydataweb.com/api/view/2531/2021%20PG%20Study%20DRAFT%20Report%202021_Final.pdf
https://pda.energydataweb.com/api/view/2531/2021%20PG%20Study%20DRAFT%20Report%202021_Final.pdf
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● Level of BE adoption was set based on customer class, and existing premise-level gas 

consumption was unknown. The approach described here assumed an unknown level of 

gas consumption or even the existence of gas loads. Kevala did not conduct hourly 

analytics to identify via electric loads if gas loads existed for certain end uses. 

● The existing state of specific end-use electrified load was unknown. Not knowing if the 

new consumption was for space heating, water heating, clothes drying, or other, the 

approach was to apply the new electricity load to a whole building load profile derived from 

known all-electric building data or models for residential and commercial sectors. Kevala 

used the NREL ResStock
115

 and ComStock
116

 libraries for the all-electric default load shapes 

to apply to the newly electrified loads. 

● There was limited electrification opportunity for certain non-residential premises. 

Especially for industrial facilities, there are multiple uses for natural gas. They include high 

temperature process heating, feedstock input, and all other uses. The first two are 

considered not feasible for electrification. As a result, a percentage of industrial natural gas 

will not be electrified. 

● Future, not yet drafted, codes and standards were not included in the baseline load 

forecast. The baseline forecast did include application of adopted and pending codes and 

standards. However, Kevala did not include the application of future codes and standards 

for existing or new construction in the baseline forecast. Any future BE due to codes and 

standards was part of the forecast analysis. 

Kevala proposes the following for the Part 2 Study: 

 

● Kevala has received and processed the natural gas data from PG&E, SDG&E, and Southern 

California Gas. The first planned modification is to include gas use or other related metrics 

in testing a new BE adoption model. 

● Kevala plans to request additional data from the IOUs regarding granting incentives to their 

customers for adopting BE technologies, such as electric water heaters and electric heat 

pumps. 

● Kevala will research other jurisdictions to see if there are any studies that may provide 

useful in further refining the adoption model and results. 

 

 

 

 

 

115

 ResStock is an NREL load profile library using a combination of building models and metered data. 

Kevala filtered the data to California with the space and water heating fuel set to electricity only. 

116

 ComStock is an NREL load profile library. Kevala filtered the data to California with the space and water 

heating fuel set to electricity only. 
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3.4.6. EVs and EVSE 

EVs, and the EVSE required to charge them, are a rapidly growing and evolving set of DERs. As the 

number of ZEVs in California increases from roughly 1.3 million EVs as of October 2022 toward 

statewide ZEV adoption 2035 levels of roughly 13 million LD EVs and 290,000 MD and HD EVs, this 

new load will be significant.
117

 While California has already achieved a meaningful level of ZEV 

adoption, the underlying consumer behavior and relevant grid constraints are not yet well- 

understood given today’s level of penetration, particularly for MDVs and HDVs. 

Kevala’s approach for modeling the energy impact associated with varying levels of ZEV adoption 

involves seven stages. The first three stages, known as the EV pipeline, involve determining 

premise-level ZEV adoption by ownership type, duty, powertrain, and vehicle class. The next four 

stages, known as the EVSE pipeline, calculate premise-level EVSE adoption and hourly energy 

usage behavior by EVSE type and capacity level. Figure 56 summarizes the complete EV and EVSE 

modeling process. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

117

 California Energy Commission, “New ZEV Sales in California,” https://www.energy.ca.gov/data- 

reports/energy-almanac/zero-emission-vehicle-and-infrastructure-statistics/new-zev-sales. 

https://www.energy.ca.gov/data-reports/energy-almanac/zero-emission-vehicle-and-infrastructure-statistics/new-zev-sales
https://www.energy.ca.gov/data-reports/energy-almanac/zero-emission-vehicle-and-infrastructure-statistics/new-zev-sales
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Figure 56: Flow diagram of EV and EVSE calibration target, propensity, sizing, and behavior modeling (Source: 

Kevala) 

 
 
 

Kevala’s allocation of forecasted vehicle adoption and charging equipment establishes their 

existing penetration and location. Allocating new adoptions from one of the three CARB or CEC 
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ZEV adoption forecasts serve as inputs to the Part 1 Study scenarios. Table 13 summarizes the 

CARB and CEC LDV, MDV, and HDV ZEV adoption forecasts and the associated vehicle counts that 

Kevala used in the Part 1 Study. 

Table 13: Summary of CEC and CARB LDV, MDV, and HDV ZEV adoption forecasts used for Part 1 Study 

scenarios (Sources: CARB, CEC, Kevala) 

 
 
 
 
 
 
 
 
 
 
 

 
*The values in this table represent the forecasted ZEV adoption counts from 2022 to 2035 that the model 

allocated based on the CARB and CEC ZEV adoption forecasts. These values exclude all ZEV counts prior to 

2022, thus they do not represent the total cumulative ZEV counts for all three IOUs. 

**The two High Transportation Electrification scenarios incorporate transportation electrification 

assumptions similar to those applied to the 2022 IEPR demand forecast mid-mid case (i.e., the 2022 IEPR 

Planning Forecast). At the time the Part 1 Study was developed, the 2022 IEPR had not yet been adopted, so 

the 2021 IEPR mid-mid case was used for the Part 1 Base Case. 

Kevala selected the three CARB and CEC ZEV adoption forecasts for the Part 1 Study because they 

represent a meaningful range of ZEV adoption levels that align with California policy goals and 

market forecasts. Kevala identified and selected the Base Case and Accelerated High 

Transportation Electrification scenarios’ ZEV adoption forecasts prior to the High Transportation 

Electrification scenario’s ZEV adoption forecast.
118

 At the time Kevala selected these inputs, it was 

not known that the High Transportation Electrification scenario’s LDV ZEV adoption forecast would 

 

 

 

 

118

 The LDV, MDV, and HDV ZEV adoption forecasts were determined by the JASC High Electrification 

Interagency Working Group and selected in March 2022, after the ZEV adoption forecasts for the Base Case 

and Accelerated High Transportation Electrification scenarios had been selected. For more information 

about the Interagency Working Group’s high electrification scenario, refer to the May 24, 2022, CEC 

Resolution (No. 22-0524-5) that adopted it for use in transmission planning and as part of the 2021 IEPR 

“single forecast set,” at https://www.energy.ca.gov/filebrowser/download/4171. 

   

 

(1) Base Case 

2021 IEPR 

 

(2) High 

Transportation 

Electrification 

+ Existing 

BTM Tariffs** 

 

(3) High 

Transportation 

Electrification 

+ Modified 

BTM Tariffs** 

(4) Accelerated 

High 

Transportation 

Electrification 

+ Existing BTM 

Tariffs 

(5) Accelerated 

High 

Transportation 

Electrification 

+ Modified 

BTM Tariffs 

 

ZEV Adoption 

Forecast 

Source 

LDV  

CEC 2021 IEPR 

mid scenario 

CARB 2021 ACC II CEC 2021 IEPR bookend scenario 

MDV / 

HDV 
CARB 2020 SSS CEC 2021 IEPR high scenario 

ZEV Adoption 

Total Vehicle 

Count 

(2022-2035, 

Three IOUs)* 

LDV 3,172,598 10,013,953 9,530,034 

MDV / 

HDV 

 

227,140 

 

218,710 

 

230,876 

 

https://www.energy.ca.gov/filebrowser/download/4171
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have a greater number of 2035 adoption compared to the Accelerated High Transportation 

Electrification scenario. 

Forecasting the new load associated with these vehicles and chargers is a complex task, given that 

vehicle charge profiles depend on many variables such as miles traveled, vehicle type (which 

include 24 duty, powertrain, and vehicle class combinations), charger type (which include 10 use 

case and capacity combinations), and other variables. As a result, a multifaceted analysis that 

synthesized multiple datasets was required. The key data sources for the ZEV modeling 

framework included: 

● Forecasted vehicle and charger attributes such as range and battery capacity from the 

CEC’s AB 2127 Report
119

 

● Vehicle miles traveled (VMT) by county and vehicle type from the Local Area Transportation 

Characteristics for Households Data (LATCH) survey
120

 and derived from the U.S. Bureau of 

Transportation Statistics’ Vehicles in Use Survey (VIUS), as summarized by M.J. Bradley & 

Associates
121 

● Vehicle operating schedules from the NREL Fleet DNA dataset
122 

● Existing internal combustion engine (ICE) and ZEVs by census block group from Experian’s 

VIO data
123

 

 

Appendix 9 contains additional details about the modeling steps and datasets used for the EV and 

EVSE. 

Kevala’s first step was to harmonize the 2022-2035 ZEV adoption forecasts received from CARB 

and the CEC. Because the forecasts use different vehicle classification systems and were provided 

at varying levels of geography, Kevala converted all LDV, MDV, and HDV classes to a standard set 

 

 

 

 

119

 California Energy Commission, Assembly Bill 2127 Electric Vehicle Charging Infrastructure Assessment: 

Analyzing Charging Needs to Support Zero-Emission Vehicles in 2030, July 14, 2021, 

https://efiling.energy.ca.gov/getdocument.aspx?tn=238853. 
120

 Bureau of Transportation Statistics, “Local Area Transportation Characteristics for Households (LATCH 

Survey), February 2021, https://www.bts.gov/latch. 

121

 M.J. Bradley & Associates, Medium- & Heavy-Duty Vehicles: Market structure, Environmental Impact, and EV 

Readiness, July 2021, 

https://www.edf.org/sites/default/files/documents/EDFMHDVEVFeasibilityReport22jul21.pdf. 

122

 National Renewable Energy Laboratory, “Fleet DNA: Commercial Fleet Vehicle Operating Data,” 

https://www.nrel.gov/transportation/fleettest-fleet-dna.html. 

123

 Experian, “Vehicles in Operation (VIO),” https://www.experian.com/automotive/vehicles-in-operation-vio- 

data. 

https://efiling.energy.ca.gov/getdocument.aspx?tn=238853
https://www.bts.gov/latch
https://www.edf.org/sites/default/files/documents/EDFMHDVEVFeasibilityReport22jul21.pdf
https://www.nrel.gov/transportation/fleettest-fleet-dna.html
https://www.experian.com/automotive/vehicles-in-operation-vio-data
https://www.experian.com/automotive/vehicles-in-operation-vio-data
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of vehicle classes and disaggregated statewide forecasts into county and IOU-level targets areas to 

enable comparison. 

Kevala also separated the CARB and CEC ZEV adoptions by their ownership type, which are 

categorizations that are contained in the agencies’ forecasts. Kevala refers to ZEVs that are 

personally owned by an individual and used for personal, non-businesses purposes as personal 

EVs. For the purposes of the Part 1 Study, personal EVs are exclusively LDVs. Personal EVs can be 

either BEVs or PHEVs and can be one of seven vehicle classes. The second category of vehicle 

ownership type is fleet EVs. Fleet EVs are vehicles owned by or registered to an entity (not an 

individual) and are used for business-related purposes. Fleet EVs can be LDVs, MDVs, or HDVs. 

Fleet EVs only have BEV powertrains and can be one of 10 vehicle classes. 

 

The next step was to set the potential number of vehicles and type of vehicle at each premise 

eligible for vehicle adoption. Kevala modeled residential premises to be sized with one or two 

personal LD BEVs or PHEVs, with the probability of adopting two vehicles increasing with time. 

Kevala assigned the vehicle class of these vehicles using probabilities derived from projected 

vehicle class market share from the AB 2127 Report, which references CARB’s 2020 Mobile Source 

Strategy (MSS) LDV ZEV adoption forecast.
124

 Non-residential premises were sized with up to 180 

LD, MD, or HD fleet BEVs or PHEVs of a specific vehicle class based on the following: 

● The existing number of ICE vehicles of the relevant vehicle class in the premise’s Census 

tract. 

● The annual electrification rate of existing ICE vehicles derived from the EV adoption targets 

for each vehicle class. 

● The estimated area of the premise, with larger premises receiving more vehicles. 

 

Kevala developed separate models for personal and fleet EV adoption. The personal EV adoption 

model used the density of existing EVs in the Census block, the urban/suburban/rural 

classification of the premise’s Census tract, whether the premise was a likely MUD, peak load, and 

eight additional demographic features. Kevala trained a Bayesian MLR model against historical EV 

adopters identified by PG&E in its territory. Because there was not sufficient data within SCE and 

SDG&E’s service areas to conduct the training analysis, Kevala also used the model trained using 

PG&E data to predict EV adoptions in SCE and SDG&E. 

The fleet EV adoption model used customer class, estimated premise area, and estimated premise 

building footprint to produce an adoption score for eligible premises. Address-level historical fleet 

 

 

124

 CARB, 2020 Mobile Source Strategy, September 2021, https://ww2.arb.ca.gov/sites/default/files/2021- 

09/Proposed_2020_Mobile_Source_Strategy.pdf 

https://ww2.arb.ca.gov/sites/default/files/2021-09/Proposed_2020_Mobile_Source_Strategy.pdf
https://ww2.arb.ca.gov/sites/default/files/2021-09/Proposed_2020_Mobile_Source_Strategy.pdf
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EV adopters were not available, so Kevala selected model features and weighted them for 

importance based on available data and subject matter expertise. For personal and fleet EV 

adoption models, Kevala ranked the resulting adoption propensity scores by either vehicle class or 

powertrain (BEV or PHEV) and selected the highest-scoring premises to adopt until meeting the 

vehicle count targets of the different EV scenarios. 

After predicting EV adoptions, Kevala estimated EVSE adoption. EVSE port count targets for each 

charger use case (e.g., workplace, public, corridor) were first developed for each county in the IOU 

service territories.
125

 Kevala set these targets using EVSE ports-to-EV count ratios derived from the 

CARB 2020 MSS forecast values contained in the AB 2127 Report from 2022 to 2035. Kevala 

applied these ratios to the annual, county-level EV adoption results in the Part 1 Study scenarios to 

set county-level EVSE port count targets. 

After setting EVSE port count targets, Kevala sized premises eligible to adopt EVSE with a 

theoretical charger use case, level—L1, L2, or DCFC—and port count. Kevala sized EVSE at 

premises as follows: 

● Premises that were flagged as likely SUDs received one L1 or L2 charger per vehicle. Kevala 

assigned SUDs TOU or non-TOU rates to influence EV charging schedules based on 

projected annual shares of customers on TOU rates by IOU from the AB 2127 Report.
126 

● Premises flagged as likely MUDs received zero or one L1 or L2 charger per vehicle. 

● Premises adopting fleets were assigned approximately one L2 or DCFC charger for every 

two vehicles based on EVSE-to-EV ratios derived from the AB 2127 HEVI-LOAD model 

results. 

● Premises flagged as non-residential and where no EVs were adopted were eligible for 

public, workplace, and corridor chargers.
127

 Where theoretical EVSE was assigned, Kevala 

based charging use cases and charger levels on probabilities derived from forecasted 

market shares of charging technology from the AB 2127 Report. 

● Premises located in travel corridors were eligible for DCFC corridor chargers serving either 

LDVs or MDVs and HDVs, and premises located outside travel corridors were eligible for 

workplace L2 chargers, public L2 chargers serving LDVs, public DCFC chargers serving LDVs, 

and public DCFC chargers serving MDVs and HDVs. Kevala assigned the EVSE port count at 

each premise based on probabilities derived from historical port counts per charging 

station and projected trends in increased port density at charging stations. 

 

 

 

125

 Port counts refer to the unit of charging infrastructure that is able to charge one ZEV at one time. 

126

 See Appendix B, Table B-9 in the AB 2127 Report for TOU participation rates by utility territory. 

127

 A corridor charger is a charger located in major travel corridors, primarily serving long distance travel. 
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Kevala developed an EVSE adoption model for public, workplace, and corridor chargers that uses 

customer class, Caltrans traffic and truck volumes, estimated premise area, and the percentage of 

commercial premises in a premise’s Census tract as its core features. Due to the nascent state of 

public and shared private EVSE networks and incomplete data on existing EVSE in IOU territories, 

Kevala chose not to train a model based on historical data and instead developed a set of features 

and corresponding weights in the adoption algorithm based on projected future trends and 

subject matter expertise. Kevala then ranked the resulting adoption propensity scores and, 

starting with the highest-scoring premises, selected to adopt until the EVSE port count target for 

each scenario, use case, and level was met. In the final stage, Kevala produced hourly EVSE 

charging demand curves for every premise adopting EVSE. The EVSE behavior model simulated 

the charging patterns of a typical set of vehicles using the charger(s) at the premise over the 

course of a year as follows: 

● For public, workplace, and corridor chargers, this typical set of vehicles was derived from 

the annual market share and count of EVs in the county the vehicle is based. 

● For home and fleet chargers, the EVs adopted at the premise made up the vehicles using 

the charger(s). 

● Beyond information about the charger(s) and vehicle stock, the model used operational 

inputs such as the VMT required to be met for each vehicle by the chargers, hourly and 

weekly vehicle operating schedules, and the battery state-of-charge threshold at which to 

seek charge. 

The following are the key assumptions associated with EV and EVSE adoption and behavior 

modeling: 

● Kevala based future vehicle and EVSE attributes on AB 2127 modeling assumptions. 

Due to the inherent uncertainties in future vehicle, battery, and charger technology trends, 

Kevala chose to use the AB 2127 Report modeling assumptions for these technologies 

wherever possible. 

● EVs and EVSE were adopted once over the forecast period. Personal and fleet EVs are 

often adopted over time as conventional vehicles come to the end of their useful life and 

are replaced with EVs. This may understate the fleet size and future fleet depot load at 

individual premises. In Part 2, Kevala can revisit the ability of a premise to add additional 

vehicles in later years of the forecast period. 

● There were no limitations on density of public, workplace, and corridor EVSE in an 

area. While Kevala calibrated its models to forecast geographically dispersed public, 

workplace, and corridor chargers, premises with similar characteristics and in the same 

area may adopt chargers, potentially overstating the EVSE demand in specific areas from 
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these charger types. Future models could consider existing EVSE density when placing 

chargers. 

● Temperature impacts on charging curves were ignored. High and low temperatures can 

have meaningful impacts on charging demand, driven primarily by impacts on cooling and 

heating loads in the vehicle cabin. Thus, charging loads are likely to be different in summer 

and winter months in certain geographies of the state. 

3.4.7. Calibration to Top-Down Forecasts 

As defined in the Research Plan and discussed in each of the preceding sections, Kevala calibrated 

its Base Case to the 2021 IEPR. The CEC scenarios and files used to calibrate the different 

scenarios are listed here: 

● CEC hourly demand forecast files: 

○ CED 2021 Hourly Forecast – PGE – Mid Baseline – AAEE Scenario 3 – AAFS Scenario 3 

(PG&E mid case) 

○ CED 2021 Hourly Forecast – SDGE – Mid Baseline – AAEE Scenario 3 – AAFS Scenario 

3 (SDG&E mid case) 

○ CED 2021 Hourly Forecast – SCE – Mid Baseline – AAEE Scenario 3 – AAFS Scenario 3 

(SCE mid case) 

○ CED 2021 Load Modifiers – 02.22.2022 (Load modifiers mid case) 

● CEC load-serving entity (LSE) and balancing authority (BA) file: 

○ CED 2021 Managed Forecast LSE and BA Tables- Mid Demand- AAEE Scenario 3 – 

AAFS Scenario 3 (LSE mid case) 

As noted in Section 3.3.2, Kevala calibrated the baseline load forecast for 2022 with no DERs to the 

“Unadjusted Consumption” or native load peak provided in the CEC 2021 IEPR mid-mid case at the 

TAC (or aggregate transmission load node) level by IOU. For SCE and PG&E, the resulting 

maximum baseline load was adjusted by the IOU service territory to TAC-level peak load ratio 

derived from the CEC 2021 IEPR LSE and BA files.
128

 SDG&E was the sole LSE in its TAC area, so no 

such adjustments were necessary. 

For the demand-side modifiers, Kevala used the maximum combined power output of the DER 

non-coincident with respect to the TAC-level peak load (i.e., the maximum coincident output of 

each of the DERs forecasted), provided in the 2021 IEPR mid scenario hourly DER forecast at the 

TAC level. As with the native load, Kevala adjusted this value with the same ratio of the IOU service 

territory to TAC-level peak load ratio derived from the 2021 IEPR LSE and BA files as a good proxy 

 

128

 Form 1.5c “1-in-5 Net Electricity Peak Demand by Agency and Balancing Authority (MW),” using the LSE 

mid-case. 

https://www.energy.ca.gov/data-reports/reports/integrated-energy-policy-report/2021-integrated-energy-policy-report/2021-1
https://www.energy.ca.gov/data-reports/reports/integrated-energy-policy-report/2021-integrated-energy-policy-report/2021-1
https://www.energy.ca.gov/data-reports/reports/integrated-energy-policy-report/2021-integrated-energy-policy-report/2021-1
https://www.energy.ca.gov/data-reports/reports/integrated-energy-policy-report/2021-integrated-energy-policy-report/2021-1
https://www.energy.ca.gov/data-reports/reports/integrated-energy-policy-report/2021-integrated-energy-policy-report/2021-1
https://www.energy.ca.gov/data-reports/reports/integrated-energy-policy-report/2021-integrated-energy-policy-report/2021-1
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of service territory to TAC ratio for DERs’ maximum output. Kevala adjusted the combined output 

for PV and BESS with the combined DER output to maximum installed capacity ratios derived from 

Kevala’s behavior modeling result curves. 

Lastly, Kevala used the adoption counts for LDVs and MDVs/HDVs from the 2021 IEPR mid 

scenario provided by the CEC as targets of the adoption stage for EVs. Each of these base case 

assumptions is listed in Table 14, Table 15, and Table 16. 

Table 14: Base Case 2022 baseline load calibration targets by IOU (Source: CEC) 

Forecast PG&E (MW) SCE (MW) SDG&E (MW) 

Baseline load 20,410 22,146 4,749 

 
Table 15: Base Case 2021 IEPR forecasted EV targets for 2025, 2030, and 2035 (Source: CEC) 

 
Duty 

 
Powertrain 

PG&E 

(Thousands of Vehicles) 

SCE 

(Thousands of Vehicles) 

SDG&E 

(Thousands of Vehicles) 

2025 2030 2035 2025 2030 2035 2025 2030 2035 

LDVs BEV 613 1,050 1,562 408 693 1,021 128 217 319 

PHEV 252 365 452 258 367 450 59 88 104 

MDVs 

and 

HDVs 

 
BEV129 

 
11 

 
54 

 
109 

 
11 

 
47 

 
94 

 
2 

 
8 

 
16 

 
Table 16: Base Case 2021 IEPR EE, BE, PV, BESS calibration combined DER output targets for 2025, 2030, and 

2035 (Sources: Kevala, CEC) 

IOU PG&E (MW) SCE (MW) SDG&E (MW) 

Year 2025 2030 2035 2025 2030 2035 2025 2030 2035 

EE - 426 -889 -1309 -465 -999 -1477 -103 -210 -307 

BE 222 522 855 154 346 562 22 46 73 

PV -7,094 -9,653 -12,090 -4,023 -5,488 -7,197 -1,908 -2,525 -3,139 

 
 
 

129

 IEPR mid targets for MDVs/HDVs were provided as combined counts of total BEVs and PHEVs. Given the 

uncertainty in the share of BEVs and PHEVs, Kevala modeled all MDVs/HDVs as BEVs. 



Part 1: Bottom-Up Load Forecasting and System-Level Electrification Impacts Cost Estimates, Kevala, Inc. 114 

R.21-06-017 ALJ/ML2/KHY/fzs 
 

 

 

IOU PG&E (MW) SCE (MW) SDG&E (MW) 

Year 2025 2030 2035 2025 2030 2035 2025 2030 2035 

Residential 

Storage 

 

121 

 

274 

 

436 

 

45 

 

105 

 

175 

 

39 

 

81 

 

121 

Non- 

Residential 

Storage 

 

45 

 

97 

 

144 

 

36 

 

76 

 

112 

 

11 

 

23 

 

34 

 

 

3.5. Estimation of Electrification Grid Upgrade Costs 

The approach to streamlining the capacity-driven upgrade requirements can be summarized in 

three steps: 

1. Determining the peak load at different key infrastructure points of the grid to estimate if 

there is an overload. 

2. Determining new infrastructure assets required to mitigate the overload. 

3. Using the unit cost for installed new assets provided by the IOUs to determine the costs. 

 

Creating premise-level hourly disaggregated net-load profiles enables Kevala to calculate the 

coincident peak load at different aggregation levels. For this study, Kevala calculated the distinct 

coincident peak load for all service transformers, feeders, and substation transformer banks to 

determine long-term thermal capacity upgrades for the different scenarios and time horizons. A 

simplified grid diagram depicting the grid infrastructure assets and their connectivity is provided 

in Figure 57. From left to right, a transmission line feeds a distribution substation that typically has 

anywhere between two and four transformer banks; each transformer bank serves a number of 

feeders to distribute power to the neighborhoods. The feeders serve thousands of customers via 

primary lines or line segments that distribute the power to service transformers on poles or 

underground pad-mounted transformers. Service transformers step down the voltage for a few 

customers (up to a dozen) to the customer utilization voltage, and the power is finally delivered to 

the customer meter via secondary service lines. 
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Figure 57: Grid infrastructure connectivity diagram of substations, transformer banks, feeders, and service 

transformers that distribute electric power to customers via the distribution grid (Source: Kevala) 

 

 
*The scope of the Part 1 Study does not include the transmission (and/or sub-transmission) system feeding 

the distribution substation or the primary line segments from the feeder head to the service transformers. 

 

For a better sense of the number of assets at which Kevala performed a capacity grid needs 

assessment, Figure 58 shows the number of service transformers to substations that Kevala 

analyzed. The unit cost of replacing each of the different assets increases from the bottom of the 

pyramid to the top—e.g., a new substation has higher unit costs (multiple tens of millions of 

dollars), and a new service transformer has lower unit-cost (multiple tens of thousands of dollars). 

The detailed unit-cost assumptions by assets type are presented in the Section 3.5.1. 

Figure 58: Number of substations, transformer banks, feeders, and service transformers analyzed by Kevala 

in the Part 1 Study for the three IOUs (Source: Kevala) 
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Kevala calculated the upgrade costs based on the unit costs of grid assets and distribution design 

principles provided by the each of the IOUs, including: 

● Typical number of feeders by substation transformer bank size 

● Typical number of transformer banks in a substation 

● Overloading criteria for service transformer, feeder, and substation transformer bank 

The detailed design assumptions are included in Appendix 10, Appendix 11, and Appendix 12. 

3.5.1. Distribution Grid Asset Unit Costs 

Table 17 summarizes the unit costs (including overhead and installation costs) provided by the 

IOUs. New substation costs used in this study and provided by the IOUs do not include 

transmission line extensions or distribution feeder lines outside the substation. 

The differences in the substation unit costs between the IOUs are summarized as follows: 

 

● PG&E substation unit costs are based on Table 17-27 of the 2023 General Rate Case and 

include land, regulatory, material, and construction costs for assets within the substation 

fence. 

● SDG&E substation unit costs are based on the installation of four 69/12 kV transformers 

(each rated at 28 MVA) and four quarter section switchgear; they do not include cost 

estimates for other requirements and factors such as land acquisition, site development, 

environmental permits, transmission and distribution infrastructure, control shelter, 

protection equipment, and relays. 

● SCE substation unit costs are based on the average cost of five historical substation 

projects and include distribution substation installed equipment costs and land. 

Regarding transformer bank unit costs, the IOUs provided installed transformer costs. PG&E uses 

45 MVA for new installs while SCE and SDG&E typically use the 28 MVA size. Feeder costs for PG&E 

and SDG&E include the costs of a 2-mile primary run. PG&E included the fixed feeder breaker 

costs of $1.4 million and the primary conductor cost for which Kevala used the average of 

overhead and underground runs, resulting in $470/foot. SDG&E included the per distance cost of 

primary trench and conduit and primary cable adding up to $601/foot. SCE provided a typical cost 

for primary feeder by voltage class, and Kevala used the average cost, resulting in $5,473,094 per 

feeder, and it includes all equipment and labor to construct the entire circuit, including the 

primary distribution line. 



Part 1: Bottom-Up Load Forecasting and System-Level Electrification Impacts Cost Estimates, Kevala, Inc. 117 

R.21-06-017 ALJ/ML2/KHY/fzs 
 

 

Table 17: New substation, transformer bank, and feeder unit costs (Source: Kevala) 

IOU Substation Transformer Bank Feeder 

PG&E $27,000,000 $11,800,000 (45 MVA) $6,363,200 

SCE $39,663,589 $2,019,011 (28 MVA) $5,473,094 

SDG&E $20,912,000 $4,685,000 (28 MVA) $6,689,760 

 
Table 18 includes the service transformer costs by type and size, including equipment 

(transformer and secondary cable) and installation costs for PG&E, SCE and SDG&E respectively. 

Table 18: New service transformer and secondary cable equipment and labor costs by IOU (Source: Kevala) 

Service Transformer 

Size (KVA) 

 

PG&E 

 

SCE 

 

SDG&E 

<150 $22,000 $19,000 (Residential) $22,000 

150 $39,000 Not standard size $59,700 

300 $47,000 $39,140 (C&I) $61,600 

500 Not standard size $50,470 (C&I) $67,500 

750 $58,000 $58,710 (C&I) $74,000 

1,000 $72,000 $74,160 (C&I) $126,100 

1,500 $98,000 $101,970 (C&I) $133,400 

2,500 Not standard size $193,640 (C&I) $152,100 
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3.5.2. Approach to Grid Upgrade Requirements 

Figure 59 outlines the grid upgrade costs method. 

 

Figure 59: Thermal capacity upgrade cost calculation method at different grid asset levels (Source: Kevala) 

 
The approach is summarized in the following steps: 

 

● Step 1: Kevala calculated the coincident peak at the 2,054 transformer banks for the three 

IOUs. Kevala assumed that load can be transferred between transformer banks at the 

substation level. As such, the overload was calculated at the substation level by adding 

ratings of the transformer banks to determine an overload. The sum of the peak load at 

the transformer banks within a substation was compared to the sum of the transformer 

bank ratings to determine the overload. If an overload was determined based on the 

overloading criteria at the transformer bank level provided by the IOUs and the substation 

has space based on the typical number of transformer banks in a substation, then one or 

more transformer banks were added and the corresponding costs calculated. However, if 

there was no more space at the substation to accommodate the required number of new 

transformer bank(s) to solve the overload, then a new substation was added and upgrade 

costs calculated. 

● Step 2: Kevala calculated the coincident peak at each of the 8,256 feeders and compared it 

to the feeder rating to determine the overload. If an overload occurred based on the 

overlaying criteria provided by the IOUs for feeders, and there were one or more spare 

breakers on the transformer bank based on the typical number of feeders by transformer 

bank size, then one or more feeders to mitigate the overload were built and the 

corresponding costs calculated. However, if there was no more space on the transformer 

bank to add the number of feeders required to mitigate the overload, then, if there was a 

new transformer bank or substation that was built in the previous Step 1, then one or more 

feeders to mitigate the overload were built and the corresponding costs calculated. If there 
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was no more space on the transformer bank and no new transformer banks or substations 

were built in Step 1, then a new transformer bank or substation upgrade was triggered. 

● Step 3: Kevala calculated the coincident peak at each of the 1,560,390 service transformers 

for the three IOUs and compared the result to the service transformer rating to determine 

the overload. For customers connected to service transformers with a rated capacity less 

than or equal to 100 KVA, based on the magnitude of the overload, Kevala added the 

required number of 50 KVA service transformers and calculated the corresponding costs to 

solve the overload. For C&I customers connected to service transformers with rated 

capacity greater or equal to 150 KVA, a new next size-up service transformer that would 

mitigate the overload was chosen from the service transformer size tables provided by the 

IOUs. 

Kevala did not include other grid deficiency needs such as thermal line section, voltage, and 

resilience in the Part 1 Study, but they may be revisited as appropriate in the case studies in Part 

2. 
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4. Recommendations for Improvements on DPP and 

Part 2 Planning 
This Part 1 Study demonstrates that it is possible to connect premise-specific characteristics to 

develop long-term location-based scenarios. Scenario planning that reflects localized and 

dynamic conditions and behaviors is a critical risk identification and mitigation method for 

distribution planners and policymakers. Distribution planners, for example, need additional 

tools to anticipate diversified and location-specific grid requirements; policymakers need 

additional tools to develop and evaluate the cost-effectiveness and metrics of utility investments, 

customer programs, and rate designs going forward. In short, missing the where and when of 

necessary grid investments risks making stranded investments or missing opportunities to 

electrify altogether. Because the grid is changing at the premise level, utility and policy decisions 

should be informed by a premise-level understanding of where and when electricity grid 

enhancements will be needed to meet California’s ambitious energy policy goals. 

 

This section outlines recommendations for improvements to the DPPs. This section also 

summarizes Kevala’s approach for evolving the premise-based analysis begun in this Part 1 Study 

into the Part 2 Study. Kevala’s proposed Part 2 approach is designed to support the Phase 2, Track 

1 questions identified in the High DER Rulemaking Scoping Memo by building on the data 

collected and analyzed to date in Part 1. 

4.1. Recommendations for DPP Improvements 

The results of this Part 1 Study suggest that understanding where and when electricity grid 

enhancements are needed will require changes on multiple distribution planning fronts. Based on 

these results, Kevala recommends these specific changes relating to the utilities’ distribution 

planning approaches, infrastructure included in the distribution planning processes, and data 

used in utility distribution planning. 

First, using the approach detailed in Section 3 of this of this Part 1 Study report, Kevala has 

demonstrated that it is possible to disaggregate load and DER growth and predict distribution 

impacts at a premise-level: 

● Over a 15-year time horizon, which is a longer forecast time horizon (to 2035) than is 

currently performed for regulatory filings. 

● Incorporating multiple scenarios for each of the three IOU service territories in less than 

one year (the timeframe to conduct the study). 

● Identifying significant potential capacity costs previously not identified in current utility 

distribution planning filings. 
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Recommendation 1: PG&E, SCE, and SDG&E should increase the planning horizon for 

their distribution planning filings. The expected adoption rate of technologies at the grid 

edge (i.e., at the premise level) in the long term to meet federal and state decarbonization and 

electrification policies may require the distribution planning horizon to be increased to align 

with the CEC’s IEPR planning horizon (15 years)
131

 and the California Independent System 

Operator’s (CAISO’s) transmission planning horizons (10 years for annual planning and 20 

years for transmission outlook). Increasing the planning horizon for distribution planning 

filings should help to prepare more efficiently for a distribution grid that can maximize the 

cost-effectiveness of incorporating DERs and load management technologies to increase 

system capacity and reliability. 

These results suggest there is a disconnect between the current distribution and DER planning 

processes that are near-term focused and locational grid requirements that are likely to 

materialize under different DER adoption scenarios over the longer term. These processes result 

in minimal-to-no deferral opportunities being implemented.
130

 Further, these results suggest that 

studying how DER and other load management techniques can avoid or mitigate the significant 

capital costs identified in this study will be a critical component of achieving California’s 

electrification goals. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

130

 See Kevala’s Distribution Investment Deferral Framework: Evaluation and Recommendations report: 

https://uploads- 

ssl.webflow.com/62a236e9692c48e1d16898b3/63729a90e35f9cb53c617a14_DIDF%20Evaluation%20and%2   

0Recommendations_Kevala_11.14.22.pdf. 

131 
As stated in the 2021 IEPR at p. 2, “For the 2021 forecast, these energy demand forecasts are extended 

out beyond 10 years to 2035 to provide planners with a longer forecasting horizon and support planning for 

transportation electrification goals.” The 2021 and 2022 IEPRs went beyond 10 years to 2035 (15 years), and 

the 2021 IEPR also included long-term energy demand scenarios to 2050 (30 years) because of increasing 

policy and planning focus on climate change. See also Public Utilities Code Section 454.57(e)(1), which as of 

2022, requires “at least 15 years” to ensure adequate lead time for permitting and construction of approved 

transmission facilities. 

https://uploads-ssl.webflow.com/62a236e9692c48e1d16898b3/63729a90e35f9cb53c617a14_DIDF%20Evaluation%20and%20Recommendations_Kevala_11.14.22.pdf
https://uploads-ssl.webflow.com/62a236e9692c48e1d16898b3/63729a90e35f9cb53c617a14_DIDF%20Evaluation%20and%20Recommendations_Kevala_11.14.22.pdf
https://uploads-ssl.webflow.com/62a236e9692c48e1d16898b3/63729a90e35f9cb53c617a14_DIDF%20Evaluation%20and%20Recommendations_Kevala_11.14.22.pdf
https://leginfo.legislature.ca.gov/faces/codes_displaySection.xhtml?lawCode=PUC&sectionNum=454.57
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Recommendation 3: PG&E, SCE, and SDG&E should provide an estimate of secondary 

distribution infrastructure grid needs to support future state electrification goals in the 

GNA/DDOR filings, so that secondary infrastructure can be accounted for and proactively 

planned in a high DER future. 

 

 

 

This Part 1 Study, by leveraging AMI consumption data and performing a premise-level modeling 

of load and DER potential futures, was able to estimate grid upgrades for the scenarios considered 

at the service transformer level, across the PG&E, SCE, and SDG&E territories. Kevala recommends 

the distribution planning process should consider secondary distribution infrastructure grid 

needs,
132

 as described in Recommendation 3, so that such grid upgrades do not become a 

bottleneck for electrification and are proactively planned for in a cost-effective way. 

 

 

 

The scope of this Part 1 Study, in terms of understanding the impact on the unmitigated load and 

DER growth in the scenario considered, stopped at the distribution substation level. However, it is 

becoming increasingly important to also understand the impacts on the sub-transmission and 

transmission infrastructure. There is currently a lack of understanding on the coordination of 

identified grid constraints and mitigation strategies that may affect all levels of the grid (i.e., 

transmission, sub-transmission, and distribution). Kevala has already provided specific 

recommendations in the evaluation of the IOUs’ 2022 GNAs and DDORs
133

 related to coordination 

 

 

132 
The secondary grid is the part of the electric distribution system between the primary feeder and the 

customer. The secondary distribution system includes distribution service transformers and secondary main 

and service conductors to the customer meter. The primary distribution grid is the feeder lines between the 

substation and the distribution service transformer. 

133

 See Recommendation 1 on p. 54 in Kevala’s Distribution Investment Deferral Framework: Evaluation and 

Recommendations report, provided to the R.21-06-017 service list on November 14, 2022. The link can be 

Recommendation 2: PG&E, SCE, and SDG&E should incorporate additional policy-based 

demand scenarios into their DPPs and annual GNA/DDOR filings. For example, scenarios 

can consider managed charging assumptions or different rates of EV and BE adoption to better 

understand the impact of higher or lower electrification loads on planned investments for grid 

infrastructure. As this Part 1 Study shows, an uncertain load and DER future requires scenario 

planning that would result in multiple load and DER scenarios being disaggregated in the DPP 

to better inform the overbuilding and underbuilding risks involved in planning for grid 

infrastructure needs. 
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Recommendation 4: PG&E, SCE, and SDG&E should provide information in the GNA 

regarding distribution planning areas located in transmission- and sub-transmission- 

constrained nodes,134

 and DDOR planned investment cost estimates should consider 

associated higher voltage upgrade costs that may be triggered by the distribution investment. 

Recommendation 5: PG&E, SCE and SDG&E should update the mapping of the 

connectivity of their respective distribution grid assets and ratings in the 2023 GNA 

report. Further, the IOUs should update any changes in network connectivity data in 

subsequent annual filings. As demonstrated in this Part 1 Study, mapping between feeders 

and transformer banks is critical information that enables identification of opportunities to 

transfer load as well as points of potential distribution grid overload. In the datasets received 

for this study, feeder-to-bank connectivity was incomplete for PG&E, SDG&E, and SCE, and the 

transformer bank ratings were incomplete for SCE (see Section 3.2). This improved and 

ongoing network data hygiene is critical to accurate and dynamic scenario planning. 

on capacity planning activities between the DIDF and CAISO’s transmission planning process. In 

addition to these recommendations to the DIDF, Kevala recommends that the distribution 

planning process should be able to map the transmission and distribution nodes that are at risk of 

large capacity grid infrastructure needs, as identified in this Part 1 Study, to enable a coordinated 

and integrated planning of grid infrastructure and mitigation strategies between the distribution 

and transmission planning processes (see Recommendation 4). 

 

 

Finally, electric distribution grid requirements and their associated costs increase significantly 

beyond the traditional distribution grid planning cycle and risk being missed if key datasets 

continue to be applied in data silos (i.e., if datasets are not connected and analyzed holistically). A 

holistic view of the entire interconnected state electrical grid is needed to ensure sufficient system 

planning. Existing data is extensive and shows significant potential when linked to better capture 

local adoption and include equity considerations. Continued data consolidation and review can 

enable identification of primary and secondary grid requirements and provide transparency and 

enumerable opportunities for scenario analyses. 

 

 

 

found here: https://uploads- 

ssl.webflow.com/62a236e9692c48e1d16898b3/63729a90e35f9cb53c617a14_DIDF%20Evaluation%20and%2   

0Recommendations_Kevala_11.14.22.pdf 

134 
A transmission node refers to the interface between the distribution and the transmission electric power 

systems. At transmission nodes, the distribution system is typically represented as an aggregate lumped 

load in transmission models. 

https://uploads-ssl.webflow.com/62a236e9692c48e1d16898b3/63729a90e35f9cb53c617a14_DIDF%20Evaluation%20and%20Recommendations_Kevala_11.14.22.pdf
https://uploads-ssl.webflow.com/62a236e9692c48e1d16898b3/63729a90e35f9cb53c617a14_DIDF%20Evaluation%20and%20Recommendations_Kevala_11.14.22.pdf
https://uploads-ssl.webflow.com/62a236e9692c48e1d16898b3/63729a90e35f9cb53c617a14_DIDF%20Evaluation%20and%20Recommendations_Kevala_11.14.22.pdf
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Recommendation 6: Develop a standard for each IOU to provide a consistent customer 

sector designation, which is a key driver to determining accurate locational load and DER 

forecasts, in particular expected growth from transportation electrification. 

 

An important input to performing granular load and DER disaggregation is the customer sector 

designation. In this Part 1 Study, the customer sector was defined first by rate class, then by North 

American Industry Classification System (NAICS) code (from rates data), and finally by parcel 

customer class from publicly available census data. Kevala found misaligned NAICS codes, 

particularly when the rate code was not provided. For example, some premises classified as 

residential were confirmed by Kevala to be large non-residential. The customer sector designation 

is a critical consideration in distribution planning. Kevala proposes further investigating the extent 

of the misclassification errors to inform the IOUs to use for their load and DER disaggregation 

methods in the DIDF process and to refine the input data for Part 2. 

 

 

Kevala offers these recommendations for CPUC and stakeholder consideration in the High DER 

Proceeding. The above recommendations are the most notable reflections on the Part 1 Study 

process and are not an exhaustive list of potential distribution planning process changes for the 

CPUC to consider. Additional observations and perspectives will likely be offered in the course of 

the proceeding and be considered as part of staff proposals anticipated in Tracks 1 and 2 of the 

proceeding. 

4.2. Long-Term  Implications 

This section offers a longer-term view of the implications of the Part 1 Study to achieve California’s 

electrification goals. The premise-based scenario planning approach applied in Part 1 indicates 

that traditional distribution planning tools and assumptions and program assumptions may need 

to be reconsidered. Distribution grid planning that incorporates DERs throughout the 

process instead of at the end may help to identify and mitigate planning risks. Essentially, 

incorporating distributed resources in the distribution planning process may enable California to 

capture the uncertainty of both supply and demand in order to plan the grid infrastructure and 

DERs to meet distribution capacity expansion, reliability, and equity needs. Specifically: 

● Probabilistic-based methods and metrics similar to those used in CAISO’s transmission 

planning (loss of load probability, loss of load expectation, effective load carrying 
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capability,
135

 etc.) can be developed for distribution planning in an iterative process to 

better inform the uncertainty and risks of different planning scenarios. 
136

 

○ Transmission planning and resource adequacy processes already take into account 

uncertainties like unexpected generator outages, variable load and generation, and 

changes in the weather, which are becoming increasingly important. Evaluating 

these uncertainties statistically, bulk system grid planners project resource needs to 

reach an acceptably low level of risk of capacity shortages. 

○ The underlying concept is to use randomness
137

 to solve problems that might be 

deterministic in principle, such as determining capacity requirements to improve 

decision-making and risk management. 

○ EV forecasting methods should evolve to include long-term LDV, MDV, and 

HDV and proactively determine future capacity expansion grid needs and deferral 

opportunities. 

● There is a lack of understanding of how mitigation strategies can be stacked to solve 

capacity expansion constraints. Kevala recommends that mitigation strategies such as 

utility customer programs, rates, and third party-provided solutions along with 

utility-owned solutions all be considered in the distribution infrastructure planning 

process to meet long-term grid and equity needs. For example, based on the scope of 

this Part 1 Study: 

○ Rates alone are no longer the silver bullet for where and when generation capacity 

needs diverge from the where and when of distribution capacity needs. 

○ The DIDF planning process does not take into account customer programs and rates 

and considers short-term deferral values only. 

○ Electricity burden should be incorporated as an input to the DIDF. 
 

 

 

 

 

135 
Loss of load probability is the probability that load will exceed generation in a given hour. 

Loss of load expectation is total number of hours wherein load exceeds generation. This is calculated as the 

sum of all hourly loss of load probability values during a given time period (e.g., a calendar year). 

Effective load carrying capability is the additional load met by an incremental generator while maintaining 

the same level of system reliability. 

These metrics are defined in “Stochastic Modeling Status Report California ISO Workshop,” 

https://www.caiso.com/Documents/Presentation_E3_LOLP_Model_Feb10_2012.pdf. 

136

 Jeremy Keen, Julieta Giraldez, et al., Distribution Capacity Expansion Planning: Current Practice, 

Opportunities, and Decision Support, November 2022, https://www.nrel.gov/docs/fy23osti/83892.pdf. 

137

 Random variables such as load and DER adoption location and sizes, converge to the deterministic 

distribution of the random states so that the statistical interaction between the variables vanishes. 

https://www.caiso.com/Documents/Presentation_E3_LOLP_Model_Feb10_2012.pdf
https://www.nrel.gov/docs/fy23osti/83892.pdf
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● Planning processes should better reflect the local technology adoption roadmaps and 

trends to proactively plan supply and infrastructure needs and avoid the grid becoming 

a barrier to electrification and DER adoption plans. 

○ Siloed planning processes risk missing the convergence of generation, transmission, 

and distribution capacity needs. 

○ Actual premise-level behaviors cannot be represented with generic load shapes that 

can miss the local impacts of load and DER growth, in particular of EVSE 

infrastructure. 

 

Data collection and integration across California LSEs beyond the three IOUs studied in this 

Electrification Impacts Study could enable much more complete forecasting for DER technologies 

like EVs that transcend traditional utility boundaries. Specific technology, program, and regulatory 

process changes that could enable enhanced scenario planning may be effective tools to increase 

transparency and help manage grid integration. 

● Limited historical data for newer DER technologies requires continued augmentation. 

● Utility service territory boundaries do not reflect socioeconomic, carbon emissions, or 

technological boundaries, and some additional datasets that will be necessary or beneficial 

to the Part 2 analysis may not originate from PG&E, SCE, or SDG&E. Vehicle registrations 

and driving pattern-related data, sub-transmission data for PG&E and SDG&E, or publicly 

owned utility data for areas adjacent to the IOUs in this study, for example, may be sourced 

through collaboration with other state agencies and publicly owned utilities. Kevala 

recommends coordination across those public organizations to the extent possible to 

enable as robust a Part 2 analysis as possible. 

○ Kevala suggests the CPUC continue to pursue data sharing agreements with the 

CEC, CARB, and DMV and leverage existing data sharing agreements across IOUs 

and CCAs. 

○ Kevala suggests the CPUC and CEC pursue data sharing agreements with municipal 

utilities to ensure complete datasets across the entire geographic forecast area of 

California. 

4.3. Part 2 Study Options and Considerations for Methods, Scenarios, 

Case Studies, and Updated Data 

The Part 1 Study focused on illustrating how it is possible to better prepare for a future with high 

electrification by disaggregating multiple long-term policy-driven scenarios to the premise level to 

identify where and when grid infrastructure bottlenecks will occur. The proposed approach for 

the Part 2 Study focuses on running additional statewide electrification scenarios with 
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baseline load and transportation electrification methodologies and scenarios that will be 

updated with additional data. Kevala also proposes adding BE scenarios aligned to state 

policy targets. These proposed scenarios are designed to identify the range of electrification 

impacts on the distribution grid and to identify potential mitigation measures such as DERs, 

innovative rate structures, and load management techniques that could help manage those 

impacts. 

Some of the key questions proposed to be explored in Part 2 are: 

 

● How can a long-term view of 15 or 20 years, in alignment with CEC and transmission 

planning horizons, into where and when grid infrastructure bottlenecks or underutilized 

assets might occur be used to inform the distribution planning process and prioritize and 

plan for longer-lead grid investments and mitigation strategies? 

● What are the elements of the DPP that need to change to better capture additional value 

from DERs to mitigate the risk of grid constraints due to a high electrification future? 

● Can defining and quantifying granular community- and customer-level equity metrics 

be incorporated in the decision-making of optimal solutions to prepare and mitigate the 

risks of grid constraints due to a high electrification future? 

● How can the distribution planning process incorporate scenario planning and sensitivity 

analysis around TOU rate structures, carbon impact, and affordability as well as future 

utility advanced management and control capabilities of DERs? 

Throughout this Part 1 report, Kevala identified considerations for additional analytics and 

applications of this Part 1 Study for the Part 2 Study. There are innumerable combinations of 

methodological refinements, calibration and mitigation scenarios, and additional data to collect 

and analyze that could be considered in Part 2. Kevala’s proposed scope for the Part 2 Study that 

is likely to provide the most significant insights and address the scoping questions raised in the 

High DER Proceeding is summarized in the following sections. 

4.3.1. Distribution Planning Process and Mitigation Strategies 

In the Part 2 Study, Kevala proposes exploring elements of an improved DPP that integrates DERs 

based on a weighted decision-making approach that can quantify risks and evaluate traditional 

wired and non-wires solutions to enable policy-driven future scenarios. The framework is based 

on: 

 

● Longer-term planning horizon(s) 

● Multiple scenario planning for load and DER growth and mitigation strategies 

● Premise-level analysis of DER adoption, behavior, and sizing 

● Additional planning objectives definitions and quantifications 
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● Increased access to data 

● Specific stakeholder engagement and feedback received to date in the proceeding 

 

The process will explore defining and quantifying new planning objectives for multi-objective 

distribution planning. The current GNA evaluation framework looks at capacity, reliability, voltage, 

and resiliency grid needs. In Part 2, Kevala proposes updating the definitions and quantifications 

of these four grid limitations and exploring additional objectives that can be quantified and 

prioritized for multi-objective distribution planning, such as: 

● Local carbon emissions 

● Energy burden 

● DER hosting capacity 

● Sub-transmission and transmission congestion relief 

 

In Part 2, Kevala proposes to explore incorporating these additional metrics into a weighted 

decision analysis process to evaluate the potential fan of grid investments and mitigation 

strategies that can be implemented at the community level and better inform decision-making 

when planning grid investments. 

4.3.2. Methodological Refinements 

With additional and updated data (see Section 4.3.5), Kevala anticipates updating key elements of 

the underlying net-load methodologies. There are likely myriad improvement opportunities to be 

made in Part 2. Kevala has identified several possible methodological refinements below, focusing 

on the ability to improve understanding and visualization of electrification impacts on 

disadvantaged communities and refinements to the baseline load forecast methodology, BE 

methodologies, and EV methodologies. 

● Incorporate disadvantaged community grid impact visualization capabilities into Part 2 

results, consistent with CalEnviroScreen definitions. 

● Update, or retrain, the baseline models with additional and improved AMI data and revisit 

the overall calibration method for load by calibrating to the total of the baseline load plus 

load growth in the Part 2 Study in order to continue to distinguish between baseline load 

profile versus electrification profile for appropriate DER behaviors. 

● Refine the BE sizing, behavior, and adoption methodologies to explore different sizing 

models for residential versus non-residential premises, reflect specific technologies, and 

update for relevant metrics. 

● Refine various aspects of the personal EV and fleet EV adoption methodologies using 

additional data sources to support more granular adoption choices and EV sizing and 
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vehicle type assumptions; revisit the EV adoption and TOU rate enrollment and behavior 

assumptions. 

● Incorporate the load shapes and TOU differentials implicit in rate design alternatives as 

directed by the CPUC to update or test DER adoption scenarios. 

Kevala believes these DER methodological refinements are most likely to have a disproportionate 

electrification impact on the distribution grid and are most likely to benefit from enhanced or 

updated datasets. Additional methodological refinements may be required for Part 2; the above 

list is not meant to be exhaustive. Kevala welcomes stakeholder input into specific additional 

methodological refinements that may be required to support Part 2 analysis. 

4.3.3. Calibration Scenarios 

As described in Section 1, Kevala focused its calibration scenarios on a base case scenario 

consistent with the 2021 IEPR and four alternate scenarios comprising alternate policy-based 

assumptions for Transportation Electrification and PV adoption resulting from BTM tariffs. This 

approach was designed in the Research Plan for this Electrification Impacts Study to isolate the 

impact of initial key factors likely to impact the distribution grid and to maintain consistency with 

the 2021 IEPR base case to the greatest extent possible. 

 

These alternate scenarios have highlighted the benefits of testing the impact of different policy 

outcomes on the distribution grid. Kevala suggests identifying additional planning scenarios that 

could be studied in Part 2. Numerous scenarios may be possible and should be narrowed to focus 

on scenarios that are most likely to inform recommendations for the High DER Proceeding. As 

such, Kevala proposes developing scenarios in Part 2 that are: 

● Likely to reflect the range of potential impacts on the distribution grid. 

● Reflect DER programs or technologies that are more nascent or have relatively less 

available actual program data. 

Potential scenarios to be included in Part 2 include the following: 

 

● Scenario(s) that incorporate IEPR 2022 planning scenario design and possibly IEPR 2023 

(depending on availability of IEPR 2023 scenario timing with the High DER Proceeding 

needs). 

● Additional appropriate DER policy-based scenarios as developed and requested by 

California energy planning and regulatory agencies, with a focus on transportation 

electrification forecasts. 
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● BTM tariffs that reflect the Net Billing Tariff adopted by D.22-12-056 in December 2022 and 

the potential restructuring of rates in the Demand Flexibility R.22-07-005 (i.e., fixed 

charges).
138 

● Scenario(s) for accelerated BE adoption that are consistent with SB 1477 and AB 3232. 

● As appropriate, Kevala also recommends extending the planning horizon up to 2050 as 

appropriate for each scenario, consistent with select other studies and Kevala’s own 

recommendations to lengthen the distribution grid planning horizon (see below). 

While the number of scenarios should be limited for Part 2, each scenario can include probabilistic 

simulations to accommodate for random variables in load and DER allocation results and provide 

metrics around uncertainty to inform deterministic outcomes to plan the distribution grid. 

4.3.4. Mitigations through Case Studies on a Specific Region’s Assets 

To further provide value to the High DER Proceeding using a premise-level distribution planning 

model, the Part 2 Study proposes illustrating the DPP provided in Section 4.3.1 via case studies 

that will focus on a specific region’s assets in the PG&E, SCE, and SDG&E service territories. These 

case studies will focus the analytical aperture on a specific region’s assets (e.g., substation(s), 

feeder banks, feeder segments, and service transformers) and investigate the short-, medium-, 

and long-term capacity requirements that the region may face under varying levels of load and 

DER growth. 

One of the primary goals of these case studies is to better understand the uncertainty inherent in 

distribution planning and proactively mitigate impacts and implement risk management strategies 

that maximize the value of DERs and load and DER management strategies in distribution 

planning. 

Kevala has identified the following list of potential screening criteria and scenario variables that it 

could use to generate a robust range of insights from these case studies: 

● Geographic screening 

○ Urban, suburban, rural 

○ Coastal, inland 

● Climate/weather 

○ Typical meteorological weather year 

○ Severe weather years (i.e., 1-10, 1-100, 1-500 weather years) 

● Demographic screening 

○ Various income deciles/quartiles 

 

138

 Decision 22-12-056, Decision Revising Net Energy Metering Tariff and Subtariffs, issued on December 19, 

2022, https://docs.cpuc.ca.gov/PublishedDocs/Published/G000/M500/K043/500043682.PDF. 

https://docs.cpuc.ca.gov/PublishedDocs/Published/G000/M500/K043/500043682.PDF
https://docs.cpuc.ca.gov/PublishedDocs/Published/G000/M500/K043/500043682.PDF
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○ Electricity burden deciles/quartiles 

○ Various disadvantaged community statuses 

○ Electricity burden deciles/quartiles 

● DER adoption scenarios 

○ Low, medium, high BE adoption 

○ Low, medium, high LDV ZEV adoption 

○ Low, medium, high MDV/HDV ZEV adoption 

○ Low, medium, high PV + BESS adoption 

● Rate and technology scenarios 

○ Green TOU rates (focused on shifting usage toward the middle of the day when 

solar generation is highest) 

○ Real-time hourly rates 

○ Advanced, high-penetration demand response (>75% penetration of air conditioning 

load control, heat pumps, heat pump water heaters) 

○ Vehicle-to-grid adoption for MDV/HDV ZEVs 

● Distribution asset composition 

○ Number of substations 

○ Miles of feeder lines 

○ Number of service transformers 

 

Over the course of the Part 2 Study, Kevala will narrow down the number of screening criteria and 

scenario variables it proposes executing to identify the specific geographic regions to investigate 

and publish. Kevala invites stakeholder comments and recommendations for specific geographic 

or network areas to be included in the Part 2 case studies. 

As part of the mitigation strategies and risk management approach, Kevala proposes focusing on 

the following aspects in the case studies: 

● Exploring and testing NWAs, TOU and dynamic rates assumptions, demand response, and 

advanced DER management and control techniques as a mitigation to alleviate distribution 

system constraints. 

● Identifying disadvantaged community areas with the most urgent need of load mitigations 

and proposing potential least-cost, best-fit solutions to understand how upgrade costs and 

different mitigation strategies would affect electricity burden and other energy justice 

metrics for different electrification scenarios. 

● Understanding the interplay between personal EV home charging contribution to peak load 

and personal EV public charging and fleet charging that could play a more substantial role 

in driving the peak hour in 2035 and beyond. 
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● Identifying other grid needs as applicable to the case study area such as voltage and 

resiliency. 

● Exploring statistical variation and probabilistic simulation to better inform uncertainty via: 

○ Single scenario, random draw scenario modeling 

○ Monte Carlo-based probabilistic scenario modeling 

 

Energy Division is currently exploring options to enable Part 2 to report case study results through 

non-confidential visualizations that depict specific geographic areas. 

4.3.5. Data 

As noted in Section 3.2, Kevala did not receive all datasets in time to be used in the Part 1 analysis 

or the datasets were incomplete. Similar to the Part 1 approach, Kevala proposes developing a 

comprehensive data request to support the Part 2 analytic scope. That data request will be 

informed by stakeholder comments and reactions to this Part 1 analysis and by input on other 

outstanding data needs. Kevala’s initial recommendations for additional or more complete 

datasets required for Part 2 include the following: 

● Latest adopted IEPR demand forecast and scenarios (i.e., 2022 IEPR) 

● Gas billing and consumption data to match AMI data time periods received 

● Additional AMI data for before and after the Part 1 Study period (e.g., complete 2022 

dataset); post-2022 AMI data is not anticipated to be necessary for Part 2 but would add 

accuracy to the results if it can be collected in time for study inclusion)
139 

● Additional SCADA data to include system data that enables better matching of AMI and 

network elements, including additional data after the Part 1 Study period 

● Updated distribution power flow models 

● More complete grid infrastructure mapping data
140 

● Customer program data to include incentives for BE 

● Incremental PV and BESS interconnection data for installations after the Part 1 Study 

period 

● Distributed generation and other historical DER program performance data 

● IOU location-specific cost data 

● Additional data sources to support EV sizing and vehicle type assumptions 

● Vehicle registration data from the California Department of Motor Vehicles 
 

139

 For Part 1, PG&E AMI data covered the period 2018 Q1 to 2021 Q3; SCE 2018 Q1 to 2021 Q1; and SDG&E 

2018 Q1 to 2021 Q1. For Part 2, the deficiencies in historical PG&E and SDG&E AMI data need to be 

remedied to meet the Energy Division data request requirements in Data Request 4.0 issued on August 30, 

2022; additional years of AMI data will be requested by Energy Division. 

140

 For Part 2, PG&E, SCE, and SDG&E feeder to transformer bank mapping data as required by Energy 

Division Data Request 1.0 issued on December 3, 2021. 
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● More granular customer billing data (e.g., designation of whether a customer is on an all- 

electric rate) 

 

Additional data may be required for Part 2; the above list is not meant to be exhaustive of all data 

needs for that study, and it may not be possible to gather all of the data listed in the timeframe 

required for the High DER Proceeding. Kevala welcomes stakeholder input into specific additional 

datasets that may be required to support Part 2 analysis. 

Finally, Kevala recommends that a more regular data sharing process be established for certain 

datasets only (e.g., AMI data, SCADA data, customer interconnection data). Because Part 1’s goal 

was to provide a high-level cost estimate of the infrastructure requirements for different 

electrification scenarios, the scale of the data gaps experienced in Part 1 did not significantly affect 

the results. As the CPUC plans for the Part 2 analysis, however, data gaps must be identified and 

resolved on a much more timely basis. Establishing a regular cadence for receiving updated data 

(for example, quarterly) will enable faster turnaround times for identifying data gaps, more 

updated scenario analysis that reflects most recent grid behaviors, and an exploration of location- 

specific mitigation measures to distribution capacity planning constraints. 
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Appendix 1. Literature Review on Load and DER Forecasting 
Table A1-1: Summary of literature review (Source: Kevala analysis) 

 

 
Study Name, Authors, 

Organization, Year 

Released 

 
 
 

Scope of Study 

Geographic 

Coverage 

and 

Number of 

Customers 

(if 

provided) 

 
 

Time 
Coverage 

 
 
 

Electrification Scenarios 

 
 

Relevant Outcomes for 
Electrification Impacts Study 

 

Results on Increase in Peak 

Load (kW) or Energy Demand 

(kWh) and Cost Impacts (if 

available) 

Can Distribution Grid 

Infrastructure Accommodate 

Residential Electrification and 

Electric Vehicle Adoption in 

Northern California? 

 
Elmallah, Brockway, Callaway 

Energy Institute at Haas 

2022 

Focuses on the PG&E service 

area in Northern California, 

which serves 4.8 million 

electricity customers and is 

subject to aggressive targets 

for both EV adoption and 

electrification of residential 

space and water heating. 

Creates spatio-temporally 

detailed electricity demand 

forecasts and compares that 

demand to distribution 

infrastructure limits across a 

range of technology adoption 

scenarios. 

PG&E service 

area in 

Northern CA 

5.7 million 

customers 

2020-2050 Consistent with California’s EV targets, the 

scenarios assume that PG&E territory reaches 3.1 

million EVs by 2030 and 12.5 million by 2050. 

 
The following scenarios are studied for 2030, 

2040, and 2050 with upgrade needs and costs 

being assessed for substations and circuits 

separately: 

 

Vehicle Electrification 

Standard: 67% of plug-in EVs have home 

charging 

More commercial: 50% of vehicles have access 

to overnight charging, more commercial daytime 

charging 

More residential: 95% have access to overnight 

charging 

Demand Response: Smoothing residential 

nighttime charging from 10 pm to 5 am 

 

Residential Electrification 

Reference/”Business-as-usual”: +17.5% in # 

homes electrified b/w 2021-2050 

Medium: +33.2% 

High: +43.5% 

 

Combined Scenario 

Scenario A: Lower demand on residential circuits 

(medium RE scenario + more commercial EV) 

Scenario B: Higher demand on residential 

circuits (high RE scenario + more residential EV) 

Scenario C: Higher demand w/ demand response 

(high RE scenario + DR EV) 

Distribution: In PG&E, between 95 and 260 

feeder upgrades per year between now and 

2030, roughly 3x the pace of projects that 

PG&E has planned for through 2025. Upgrade 

requirements in PG&E territory will add up to 

approximately $1B between 2021 and 2030 

(closer to $5B by 2050). 

 
Existing excess capacity on commercial circuits 

means that commercial charging locations will 

not increase distribution costs. 

 
Electrification of residential space and water 

heating will lead to fewer impacts on 

distribution feeder capacity than EV charging, 

but that both transitions will require an 

acceleration of the current pace of upgrades. 

 
Timing and location have a strong influence on 

total capacity additions in important ways (ex. 

Scenarios that favor daytime EV charging have 

similar impacts to those with managed 

nighttime residential charging, but 

uncontrolled nighttime residential charging 

could have significantly larger impacts) 

 
Projects that these upgrades will add at least 

$1 billion and potentially over $10 billion to 

PG&E’s rate base. 

 
Assumes that the total charging demand in 

PG&E’s territory will be 39% of the statewide 

total. 

Combined Scenarios Loads & Costs 

Upgrade Needs: Substation + 

Circuits (GW) 

Total GW  

Scenario A 

2030 0.92 

2040 3.07 

2050 7.99 

Scenario B 

2030 1.4 

2040 4.77 

2050 3.18 

Scenario C 

2030 0.81 

2040 3.18 

2050 7.05 

Total Costs ($B) – Median Load 

Scenario A 

2030 $1.45 

2040 $3.45 

2050 $6.13 

Scenario B 

2030 $1.96 

2040 $4.29 

2050 $7.30 

Scenario C 

2030 $1.33 

2040 $7.06 

2050 $10.09 
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Study Name, Authors, 

Organization, Year 

Released 

 
 
 

Scope of Study 

Geographic 

Coverage 

and 

Number of 

Customers 
(if 

provided) 

 
 

Time 

Coverage 

 
 
 

Electrification Scenarios 

 
 

Relevant Outcomes for 

Electrification Impacts Study 

 
 

Results on Increase in Peak 

Load (kW) or Energy Demand 

(kWh) and Cost Impacts (if 
available) 

Electric Vehicle Charging 

Infrastructure Assessment 

Analyzing Charging Needs to 

Support 

Zero-Emission Vehicles in 2030 

 
 

CEC Staff 

CEC 

2021 

A California statewide 

assessment of the charging 

infrastructure needed to 

achieve the goal of 5 million 

ZEVs on the road by 2030 and 

reduce emissions of 

greenhouse gases to 40 

percent below 1990 levels by 

2030. Executive Order N-79-20 

directed the CEC to expand 

this assessment to support the 

levels of electric vehicle 

adoption required by 

Executive Order N-79-20 (8 

million ZEVs by 2030) 

California 2020-2030 Vehicle Electrification 

AB 2127: 5 million ZEVs by 2030 

Executive Order N-79-20: 8 million ZEVs by 2030 

Electric Vehicles: California will need more 

than 700,000 shared private and public 

chargers in 2030 to support 5 million ZEVs 

as called for in AB 2127 and nearly 1.2 million 

chargers to support 8 million ZEVs to 

achieve the goals of the Executive Order N- 

79-20. Counts for chargers at workplaces, 

public destinations, and multi-unit dwellings 

generally indicate the number of Level 2 

chargers needed. In some cases, Level 1 

chargers may be sufficient at select multi-unit 

dwellings. These values do not include 

chargers at single-family homes. 

CEC models project that electricity 

consumption in 2030 from light-duty 

vehicle charging will result in: 

- 5,500 megawatts (MW) around 

midnight 

- 4,600 MW around 10 a.m. on a 

typical weekday 

- +25% and +20% electricity demand 

at those times, respectively 

LA100: The Los Angeles 100% 

Renewable Energy Study 

 
NREL 

2021 

True bottoms-up study to 

determine the impact of 

powering Los Angeles with 

100% renewable power. NREL 

ran building simulations, 

customer adoption models, 

assessed the cost-benefits of 

different supply resources, 

and analyzed the potential for 

overload on the transmission 

and distribution network. 

City of Los 

Angeles 

1.4 million 

customers 

2020-2030 

2030-2045 

3 scenarios: 

Moderate: Moderate demand growth and 

improvements to energy efficiency. Least change 

beyond Business as Usual (BAU) case. 

High: Assumes 100% building electrification, 80% 

passenger PEV adoption by 2045, and 12% 

shiftable demand. 

Stress: Full electrification of the High scenario, 

but lower EE/DR rates. 

Transmission and distribution: 90% of 

customer-adopted renewables connected to 

the 4.8-kV distribution network; up to 1,000 

MW utility-scale solar and 700 MW battery 

storage connected to 34.5-kV transmission 

grid. 

Upgrades required on 90% of feeders/circuits 

to address overloads. 

Environmental justice: Customer rooftop solar 

in disadvantaged communities increases from 

35% of total in 2020 to 37-41% of total in 

2045. Study includes pathways to ESJ inclusion, 

e.g., targeted distribution upgrades to account 

for electricity use in low-income areas. 

Compound year-over-year demand 

growth: 

Moderate: 1.6% (38,900 GWh by 

2045) 

High: 2.2% (46,200 GWh by 2045) 

 
Peak demand: 

Moderate: 7810 MW (1% growth) 

High: 8660 MW (1.5% growth) 

Distribution Upgrade Costs: 

Assessment of Electrification 

Impacts on the Pepco DC 

System 

Brattle Group; Pepco 

2021 

Simulate load growth to meet 

DC’s climate goals through 

electrification and explore the 

role of load flexibility and 

energy efficiency to manage 

growth. 

Washington, 

D.C. 

2021-2050 Baseline forecast: Based on PJM’s projection for 

Pepco system 

Brattle high alternative baseline: 0.4% peak 

growth in summer and winter 

Load flexibility and energy efficiency: Reduce 

total 2050 peak demand by 14%, eliminating 

roughly 40% of the load growth that 

otherwise would occur between 2021 and 

2050 

Estimated average annual peak 

demand growth rate of 1.4% to 1.7% 

between 2021 and 2050. 

Electrification shifts D.C. from a 

summer-peaking system to a winter 

morning peak 
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Study Name, Authors, 

Organization, Year 

Released 

 
 
 

Scope of Study 

Geographic 

Coverage 

and 

Number of 

Customers 
(if 

provided) 

 
 

Time 

Coverage 

 
 
 

Electrification Scenarios 

 
 

Relevant Outcomes for 

Electrification Impacts Study 

 
 

Results on Increase in Peak 

Load (kW) or Energy Demand 

(kWh) and Cost Impacts (if 
available) 

Distribution grid impacts of 

electric vehicles: A California 

case study 

 
Jenn, Highleyman 

 
Institute of Transportation 

Studies, University of 

California Davis; Cadmus 

Group 

 
2021 

Employs real-world feeder 

circuit level data in California 

from PG&E to measure the 

capacity of local feeders. 

Models the adoption of electric 

vehicles down to the census 

block and take advantage of 

real-world vehicle charging 

data to simulate the future 

loading on circuits throughout 

Northern California. 

California 2020-2035 6 scenarios, each one with 75% BEVs and 25% 

PHEVs with 84% of BEVs and 58% of PHEVs being 

long-range, respectively: 

1M LD EVs 

2M LD EVs 

3M LD EVs 

4M LD EVs 

5M LD EVs 

6M LD EVs 

Electric Vehicles: Comparing the shape of the 

charging demand load to baseload electricity 

demand, the peaks are not coincident. 

However, peak baseload often occurs in the 

early evening which coincides with the time 

that charging load demand begins to increase 

for the day. 

 
Charging demand is lowest during the day, 

which is nearly the opposite profile of 

renewable solar generation, residential 

rooftop and local solar generation can have a 

mitigating effect on transformers and feeder 

lines if utilized correctly. This points to 

opportunities for managed charging, even with 

smart charging (as opposed to V2G), by load 

shifting many of the peak events can be 

reduced or eliminated—thus reducing the 

need for transformer and other distribution 

infrastructure upgrades. 

 

Distribution: In the 6 million vehicle scenario, 

there are a total of 443 feeders (~20% of all 

feeders) exceeding their capacity 

threshold, yet only 88 of these feeders will 

have upgrades that will allow them to 

feasibly operate in the long-term. 

 
If California were to meet its decarbonization 

goals by 2045, this would probably require 

upgrades across the entire distribution 

network. 

Reaching the 2030 goal of 5 million 

electric vehicles could add on the 

order of 20 TWh annual electricity 

demand, an increase of about 10% 

of total electricity load in California. 

NREL Electrification Futures 

Study 

 
NREL 

2018-2021 

Potential for electrification and 

impact to the demand side of 

all major sectors of U.S. energy 

system; intended to provide 

foundational data to assess 

isolated impacts of 

electrification – not intended 

to be predictive. “High” 

electrification scenario 

explores ‘what-if’ scenarios, 

including disruptive 

technologies. 

Across the 

United States 

2016-2050 3 scenarios: 

Reference: Baseline case, least electrification 

Medium: Widespread electrification among “low- 

hanging fruit” (EVs, heat pumps, some industrial) 

High: Transformational change with technology 

advancements and policy support 

Building electrification: Residential heat 

pumps are cost-competitive with gas furnaces 

in the 2030s and by 2050 in cold climates 

under Medium scenario. 

 

Electric vehicles: 84% EV stock penetration by 

2050 under High Electrification. LDV, HDV, and 

electric transit accounts for up to 76% of 

vehicle miles traveled in 2050. 

Total demand (national) increases by 

80 TWh/year on average in High 

Electrification scenario, and 1.5- 

1.8%/year depending on technology 

advancement scenario. 
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Study Name, Authors, 

Organization, Year 

Released 

 
 
 

Scope of Study 

Geographic 

Coverage 

and 

Number of 

Customers 
(if 

provided) 

 
 

Time 

Coverage 

 
 
 

Electrification Scenarios 

 
 

Relevant Outcomes for 

Electrification Impacts Study 

 
 

Results on Increase in Peak 

Load (kW) or Energy Demand 

(kWh) and Cost Impacts (if 
available) 

The Coming Electrification of 

the North American Economy 

 
Brattle Group; WIRES 

2019 

Provide insights into whether 

the electric grid will be able to 

support electrification needed 

for a low-carbon economy, 

and the extent of future 

necessary infrastructure 

development. 

Across the 

United States 

2020-2050 2 scenarios: 

Base Electrification Case: Potential for 

electrification based on current technology and 

policy drivers. 

High Electrification Case: Assumes 100% 

transportation, space and water heating 

electrification by 2050 to significantly reduce 

nationwide greenhouse gas emissions. 

Building electrification: Doubles to 10% in 

2030 and fully electrify in 2050 under High 

Electrification scenario. 

 

Electric vehicles: At least 8,100 DCFC stations 

needed in cities and towns to complement 

home and workplace charging. 3.4 DCFC plugs 

needed for every 1,000 battery electric 

vehicles (BEVs). 

By 2030, electrification could 

increase nationwide annual energy 

demand by 5% to 15% (200 to 600 

TWh) and by 25% to 85% (1,100 to 

3,700 TWh) by 2050 

DCFC complexes will likely comprise 

5-10 MW of peak demand. 

Net-Zero America: 

Potential Pathways, 

Infrastructure, and Impacts 

 
Princeton University; Evolved 

Energy Research 

 
2021 

Identify pathways to achieving 

net-zero carbon in the U.S. by 

2050. The study looks at 

supply side fuels such as oil, 

coal, nuclear, CO2 storage, 

solar, wind etc. and how their 

usage will vary across the 

different scenarios of 

electrification, renewable 

energy capacity etc. It factors 

in energy demand across all 

major sectors like buildings, 

industrial use, transportation 

etc. 

Across the 

United States; 

state-specific 

data available 

2020-2050 5 scenarios: 

E+: Aggressive Electrification 

E-: Less aggressive Electrification 

E- B+: Less aggressive Electrification; High 

biomass 

E+ RE-: Aggressive Electrification; Constrained 

Renewable 

E+ RE+: Aggressive Electrification; 100% 

renewable by 2050 

Decarbonization: Scenarios range from $4-6T 

to decarbonize in 2018 USD. 

 
Electric vehicles: In E+ scenario, light-duty 

vehicle stock grows from 2% (5.2M) in 2020 to 

17% by 2030 (49M) and 96% (328M) by 2050. 

 
Building electrification: Residential heat 

pumps grow from 10% of stock in 2020 to 

80% (119M). 

 
Transmission and distribution: E+RE+ scenario 

requires $25.8B in cumulative capital 

investments for electricity distribution in 

California by 2050. 

Total demand (national) increases by 

145% in E+ scenario, 300% in E+RE+ 

scenario. 

Revving Up the Grid for Electric 

Vehicles 

 
Boston Consulting Group 

2019 

Examine the EV-related 

generation, transmission, and 

distribution costs for a 

“representative” utility, based 

on assumptions about EV 

growth through 2030. 

Across the 

United States 

2019-2030 9 scenarios: 

Levels of EV adoption for light-duty fleet within 

utility territory: 10%, 15%, 20% 

Charging patterns: 

Optimized: 50% of charging occurs in off-peak 

hours 

Moderately optimized: 33% of charging off- 

peak; 33% in shoulder, mid-, or partial-peak; 33% 

during on-peak hours 

Non-optimized: 25% off-peak charging; 25% 

shoulder, mid-, or partial-peak charging; 25% 50% 

during on-peak hours 

Electric vehicles: 

For 1.1M EVs in service by 2030, $2.8 billion 

through 2030 in cumulative T&D investments 

are necessary, for an estimated grid capacity 

upgrade cost of $2,600 per EV. 

 
Temporally and locationally optimized 

charging would reduce T&D costs by 70% 

through 2030: $5,800 in the non-optimized 

charging scenario to $1,700 in the optimized 

scenario 

Average EV energy consumption of 

2,960 kWh per year from 2019 to 

2030 (for representative utility). 
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Appendix 2. Data Received, Ingested, and Processed 
The Part 1 analysis is based on numerous datasets; this includes data provided by California 

regulatory agencies and the investor-owned utilities (IOUs), as well as other significant datasets 

that are publicly or commercially available that were important in developing the baseline load 

forecasts and distributed energy resource (DER) load modifier forecasts. Kevala collected and 

ingested over 100 terabytes of data to complete the Part 1 analysis. The specific datasets 

leveraged by Kevala are identified in the following sections. 

A2.1. IOU Data 

● Meter-specific advanced metering infrastructure (AMI), 2018‒2020:141 Most of the data 

is in hourly increments. Some meters are in 15-minute data. A small handful of meters are 

in 5-minute increments. The data streams include meter ID, timestamp, kWh net, kWh 

delivered, and kWh returned. 

● Grid supervisory control and data acquisition (SCADA): Measurements at available 

locations of the electrical infrastructure. Hourly or sub-hourly instantaneous grid asset 

readings including: 

o Amps by phase 

o Power factor 

o MVA 

o MW 

o Volts 

● Past DER adoption (type, location and size) for PV and battery only. 

● Geospatial information for meters, DERs, and grid infrastructure: Coordinates and 

downstream/upstream relationships between grid assets. 

● Electrical infrastructure asset characteristics: Data includes ratings of grid assets such 

as voltage or capacity rating. 

● Rate schedule code by meter ID and monthly billing information: Monthly 

consumption, monthly bill, rate code, North American Industry Classification System 

(NAICS) or customer code, alternative provider, etc. 

A2.2. Regulatory Data 

● California Energy Commission (CEC) load and DER forecasts (Integrated Energy Policy 

Report (IEPR)) by scenario, forecast zone, and planning area 

● Agency forecasts of electric vehicle (EV) infrastructure and light-duty vehicle (LDV), medium- 

duty vehicle (MDV), and heavy-duty vehicle (HDV) adoption 

 

141

 Some utilities provided months into 2021. All IOUs provided data through March 2021. 
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● Historical to 2021 photovoltaic (PV) interconnections 

● Distribution Deferral Opportunities Report (DDOR) and Grid Needs Assessment (GNA) 

studies for grid asset ratings (when not provided in IOU datasets) 

● Energy efficiency (EE) program tracking with meter ID: CEDARS (EE 2018-2020) program 

data at a meter level, if applicable 

A2.3. Publicly Available Data 

● U.S. Census Bureau’s American Community Survey (ACS): 5-year 2016, 2017, 2018, 2019, 

and 2010-2019 Census block group geometries for demographic indicators and forecasts 

● Caltrans long-term socio-economic forecasts: Demographic forecasts by county 

● Transportation: 

o California road network and expected traffic type: 

▪ Traffic Volumes Annual Average Daily Traffic (AADT) (Caltrans GIS Data) 

▪ Truck Volumes AADT (Caltrans GIS Data) 

o Charging station locations: U.S. Department of Energy’s (DOE’s) Alternative Fuels 

Data Center: Alternative Fueling Station Locator 

o California LDV/MDV/HDV registration data: California Air Resources Board (CARB) 

EMFAC Fleet Database 

o Vehicle miles traveled (VMT), urban/rural/suburban label by Census tract: U.S. 

Department of Transportation, Bureau of Transportation Statistics, Local Area 

Transportation Characteristics for Households (LATCH) (see Data link) 

o California projections of zero-emission vehicle (ZEV) range and battery technology 

and EV service equipment (EVSE) power ratings: Assembly Bill (AB) 2127 Commission 

Report 

● Climate and weather data:
142

 

o Statistically down-scaled climate projections, RCP8.5 (Cal-Adapt) 

o National Renewable Energy Laboratory’s (NREL’s) National Solar Radiation Database 

(NSRDB) 

 

 

 

142

 Kevala sourced historical weather data for each Census tract from the NSRDB for 2018-2020. Data for 

calendar year 2021 was not published at the time this study was completed. Kevala sourced projections of 

future climate out until 2035 from the Cal-Adapt LOCA Downscaled CMIP5 climate model data, using the 

Representative Concentration Pathway 8.5 (RCP 8.5) emissions scenario from the HadGEM2-ES model. 

Kevala created a dataset that combines historical local weather patterns with the long-term projection of 

future climate by rescaling measurements of actual 2020 temperatures to the localized projections provided 

by the climate model. Specifically, Kevala rescaled each month of hourly temperature readings so the 

monthly minimum and maximum matched those provided by the statistically downscaled long-term climate 

model outputs. 

https://cedars.sound-data.com/
https://www.census.gov/programs-surveys/acs/data.html
https://www.census.gov/programs-surveys/acs/data.html
https://dot.ca.gov/programs/transportation-planning/division-of-transportation-planning/data-analytics-services/transportation-economics/long-term-socio-economic-forecasts-by-county
https://gisdata-caltrans.opendata.arcgis.com/datasets/d8833219913c44358f2a9a71bda57f76_0/about
https://gisdata-caltrans.opendata.arcgis.com/datasets/d8833219913c44358f2a9a71bda57f76_0/about
https://gisdata-caltrans.opendata.arcgis.com/datasets/c079bdd6a2c54aec84b6b2f7d6570f6d_0/about
https://afdc.energy.gov/stations/%23/find/nearest
https://afdc.energy.gov/stations/%23/find/nearest
https://arb.ca.gov/emfac/fleet-db/
https://arb.ca.gov/emfac/fleet-db/
https://www.bts.gov/latch
https://www.bts.gov/latch
https://efiling.energy.ca.gov/getdocument.aspx?tn=238851
https://efiling.energy.ca.gov/getdocument.aspx?tn=238851
https://cal-adapt.org/
https://nsrdb.nrel.gov/
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● NREL’s End-Use Load Profiles for the U.S. Building Stock: For defining default load profile 

for newly electrified loads in residential and commercial buildings 

● CEC’s Residential Appliance Saturation Study (RASS) survey statistics: Used the public 

version of the data from the report to analyze BE residential, either for known gas loads or 

unknown gas loads. 

● Lawrence Berkeley National Laboratory’s Tracking the Sun dataset: For determining typical 

technical specifications for behind-the-meter (BTM) PV in California. 

● Microsoft Building Footprints dataset: For creating DER model features per premise related 

to building footprints of associated parcels. 

A2.4. Purchased Data 

● Experian Vehicles in Operation (VIO) data: For Census block group-level internal 

combustion engine and ZEV registrations. 

● Regrid: For creating DER model features per premise related to parcel acreage and land 

use. 

https://www.nrel.gov/buildings/end-use-load-profiles.html
https://www.energy.ca.gov/publications/2021/2019-california-residential-appliance-saturation-study-rass
https://emp.lbl.gov/tracking-the-sun
https://www.microsoft.com/en-us/maps/building-footprints
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Appendix 3. Data Challenges and Solutions 
Kevala must ensure that the datasets are complete and good enough for analysis. Good enough 

may mean that data gaps exist, but there are assumptions and workarounds implemented that 

are sufficient for the study’s objectives. Table 10 and Table 11 highlight some of the gaps in 

analyzing the full investor-owned utility (IOU) load. 

A3.1. Mapping Geospatial Grid Infrastructure, AMI, and Rates 

Conducting a bottom-up analysis of distribution grid planning requires the ability to rollup load 

from each individual service point to the various interconnected grid components. Kevala 

aggregated each of the service points up to the service transformers, from the service 

transformers to the feeders, and from the feeders to the substation transformer bank at the 

substations. In Section 3.2, Kevala describes the hierarchical aspects of the distribution grid used 

in the analysis. 

There are many touchpoints where the connections can break down. Each IOU provided multiple 

datasets with varying degrees of detail. In all cases, Kevala needed a separate table, the ID 

relations table, to join meters to service points to premises and to service account IDs. This table 

includes relationship start and end dates. These dates indicate if the account is still active at a 

specific service point. The service account IDs connect to the rates. Multiple accounts can exist at a 

service point but not necessarily at overlapping times. The distinct time periods impact the rate 

code ID. Some challenges occurred in the joining (or linking) of distributed energy resource (DER) 

interconnection data, service points, premises, and meters; examples include: 

● Single meter identifier being mapped to multiple premises. Kevala found these meters 

by the relation start and end dates and by reusing meter and service point IDs. 

● Bad dates for meter IDs where the dates were flipped or mismatched dates to join 

meter IDs in the ID Relations table. Kevala dropped these meters from the analysis. 

● DER interconnection data cannot be matched to premises or mapped to multiple 

premises: In some instances, photovoltaic (PV) and battery energy storage system (BESS) 

interconnections could not be mapped to a premise based on the data received. These 

DERs were not included in the analysis. As part of Kevala’s efforts to update 

interconnection data in Part 2, Kevala proposes working with the IOUs to ensure all 

interconnected DERs can be included. 

Kevala needed the service points to connect them to the upstream distribution grid components. 

Some meters or service points did not have corresponding distribution (downstream feeders or 

substations) data. To remedy this, Kevala conducted geospatial matching of premises and feeders 
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to increase the percentage of premises joined (see Table 10). Furthermore, for the three IOUs, on 

average, 15% of feeders were missing a join to a substation bank (see Table 11). 

The end goal of the analysis was to check load growth and DER impacts on the different 

distribution grid components: the service transformer, feeder, and substation bank transformer. 

Kevala had to join the geographic information system (GIS) data to equipment rating data, which 

did not always exist in the GIS data, using the Grid Needs Assessment (GNA) feeder and bank 

listing to support dataset completion. If the GNA was not enough (did not include each 

distribution grid asset ratings), Kevala used default capacity rating values. 

Because the goal of the Part 1 Study was to provide a high-level cost-estimate of the infrastructure 

requirements for different electrification scenarios, the scale of the data gaps does not 

significantly affect the results. However, it will be important to remedy the data incompleteness 

issues described for the Part 2 Study in order to explore local mitigation measures to distribution 

capacity planning constraints. 

A3.2. Data Quality and Completeness 

A3.2.1. AMI Data 

Forecasting premise-specific load from advanced metering infrastructure (AMI) data opens up new 

possibilities for capacity analysis but also presents unique challenges. AMI data provides a 

detailed picture of energy demand over time for a location, but data collection procedures and the 

resulting data are not rigorously standardized. Various types of devices, collection parameters, 

and data cleaning procedures are employed within and across utilities, which adds to the variety 

of resulting data quality issues to be surmounted.
143

 

The first data quality hurdle is invalid meter readings, such as invalid timestamps or inaccurate 

metadata used to link identifiers. The resulting load observations from these issues cannot be 

associated with a place and time, so they cannot be used for analysis. 

After ingesting all valid AMI data, Kevala’s analysis of the aggregated data revealed two types of 

systematic data quality concerns: measurement anomalies and collection gaps. An example of a 

systematic measurement anomaly is the physically impossible level of load recorded across most 

meters in Pacific Gas and Electric’s (PG&E’s) data on April 7, 2018. Kevala observed a notable 

collection gap in March 2020 in the AMI data received from Southern California Edison (SCE), with 

 

 

143

 A general background on AMI data quality considerations can be found in Blakely, Logan, Matthew J. 

Reno, and Kavya Ashok. “AMI Data Quality and Collection Method Considerations for Improving the 

Accuracy of Distribution Models.” In 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC), 2045–52. 

https://doi.org/10.1109/PVSC40753.2019.8981211. 

https://doi.org/10.1109/PVSC40753.2019.8981211
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over 1 million meters missing observations in this timeframe. San Diego Gas & Electric’s (SDG&E’s) 

AMI data exhibited a similar gap in readings across most meters for late April 2020. 

 

Individual meters can also contain outliers and missing data that need to be addressed. Kevala 

attempted to identify and remove unrealistic outliers from individual load time series and imputed 

net-load for any missing timestamps based on hourly temperature and other measurements from 

the same meter. All load forecasts were evaluated against heuristics to detect any anomalous 

forecasted load values that would result from outliers in the input data. 

Additional sources of measurement error are embedded in the AMI data that cannot be readily 

detected or corrected, including biased or noisy measurements, time synchronization issues, and 

meters that may be completely missing from the data Kevala received. 

While AMI data quality issues and data gaps exist, they did not significantly impact results for the 

Part 1 Study because system-level energy and capacity annual values were validated with 

California Energy Commission (CEC)-reported consumption values. Kevala proposes incorporating 

data validation into the Part 2 Study to ensure any issues do not impact the quality of the Part 2 

results. 

A3.2.2. Rates and Billing Data 

Kevala ingested IOU and community choice aggregator (CCA) rates schedules. Rates applied to the 

Part 1 Study were those in effect as of April 2022, and do not reflect any rate changes adopted 

after that time. The data for rate schedules was limited and did not include the following: 

● The year a premise joined a CCA limited the ability to identify which power charge 

indifference adjustment (PCIA) rate should apply (PCIA rates are vintaged and vary 

according to the year joining a CCA) 

● Designation of residential baseline by climate zone 

● Designation of unique medical and all-electric baselines 

● Exempted rates with different time blocks (some customers are able to keep an expired 

rate after a tariffed rate has been retired) 

● Connected load versus peak load rates 

● For some IOUs, service level (e.g., primary versus secondary) 

 

Aside from these rate data gaps, an additional challenge was the inability to identify whether a 

customer moved from one rate schedule to another for the historical data sample studied (i.e., 

customers shifting from tiered rates to default time-of-use). 

Kevala used the customer sector designation for DER adoption model training. The designation 

was defined first by rate class, then by North American Industry Classification System (NAICS) code 
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(from rates data), and finally by parcel customer class. Kevala found misaligned NAICS codes, 

particularly when rate code was not provided. For example, some premises classified as 

residential were confirmed by Kevala to be large non-residential. The customer sector is a critical 

consideration in distribution planning. Kevala proposes further investigating the extent of the 

misclassification errors to inform the IOUs to use for their load and DER disaggregation methods 

in the Distribution Investment Deferral Framework (DIDF) process and to refine the input data for 

Part 2. 

A3.2.3. Interconnection Data 

Kevala ingested DER interconnection datasets from each of the IOUs to serve two modeling 

purposes: 

● Model the existing PV and BESS systems 

● Train the machine-learning DER adoption models to forecast future adoptions 

 

This data has a few known data quality issues that impact one or both of these uses. Kevala 

received the interconnection datasets as of April 2021 (data does not contain the DER adoptions 

from the remainder of 2021 and 2022). This impacts the modeling of existing systems but is not 

expected to significantly impact the adoption model training for future adoptions. This data issue 

can be resolved in Part 2 by requesting and receiving updated interconnection datasets from the 

IOUs. 

As noted in the Mapping Geospatial Grid Infrastructure, AMI, and Rates section, joining this 

interconnection data to the premise-level data also required additional data manipulations, 

including combining multiple DERs mapped to a single premise or excluding DERs that Kevala 

could not match. 

In particular, the interconnection data for BESS had significant data quality issues. Two rating 

requirements fully define a BESS: 

● Power rating (kW), which is the maximum output of the system. 

● Energy rating (kWh), which indicates how long the BESS can sustain its maximum output. 

 

In the interconnection dataset, about 80% of the records were missing the energy rating. 

Commercially available lithium-ion batteries can typically sustain their maximum output for 2-4 

hours, meaning their energy-to-power ratio is 2:1 to 4:1. Kevala resolved this issue by assuming a 

ratio of 2:1 for BESS in the interconnection data that does not have an energy rating. In Part 2, 

Kevala proposes requesting additional BESS interconnection data and anticipates this data quality 

issue will remain unresolved unless the IOUs have supplemental data to address the gaps. 
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Additionally, there was some clearly erroneous energy rating data, leading to unrealistically high 

energy ratings. For example, some installers appeared to use constant 4- or 5-digit codes in the 

energy rating column, implying MWh-scale batteries on residential premises. For Part 1, all non- 

zero BESS energy ratings from the interconnection data were retained if they could be matched to 

a premise. The unrealistically large energy ratings do not significantly impact the results for Part 1 

because all batteries were assumed to begin each year with 0 kWh of stored energy. Therefore, 

the available energy in these residential batteries would be dictated by the excess produced by 

the premises’ corresponding PV systems on any given day, which is expected to be much lower 

than these unrealistic capacities. 
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Appendix 4. Baseline Net-Load and Baseline Load 

Modeling Methodology 
As outlined in Section 3.3, baseline net-load represents the customer’s load at the meter, or what 

is actually delivered to or received from the customer. Baseline load represents the hypothetical 

demand of a customer after removing the load impacts of any adopted distributed energy 

resources (DERs) from net-load. The core components of the baseline load forecast are an initial 

hourly net-load forecast and estimates for hourly DER impacts for premises where a known DER 

installation exists. The baseline net-load estimate discussed in this appendix refers to the initial 

baseline net-load estimates used for predicting baseline load. 

A4.1. Model Requirements 

To ensure accuracy, robustness, and repeatability, the baseline net-load model had to meet the 

following task-specific requirements. 

● Inclusive. Use as much of the advanced metering infrastructure (AMI) data provided by the 

utilities as possible. 

● Flexible. Address potential sparsity in the net-load input data, as AMI data sources can 

contain missing values. 

● Holistic. Incorporate complex interactions between seasonal components that drive load 

demand, such as hourly, weekly, and yearly effects. 

● Transparent. The forecast model should not be a black box—model output should be 

interpretable with respect to its inputs. 

To meet these requirements, Kevala: 

 

● Avoided compressing the data into aggregates or buckets such as daily total load or 576 

load profiles before forecasting. 

● Incorporated algorithms to adjust for missing or anomalous data. 

● Included the influence of extra regressors such as outdoor air temperature. 

● Generated hourly forecasts that can be examined and scrutinized. 

 

A4.2. Input Data Preparation 

The metered load data Kevala received from the three IOUs was predominantly recorded at an 

hourly resolution, although some meters had 15-minute or 30-minute interval AMI reads. Though 

Kevala’s load forecasting approach can be applied to more granular data, sub-hourly 

measurements were summed to full hours for consistent processing across meters. Each AMI 

record contained a timestamp, meter identifier, and two fields measuring the net kilowatt-hours 
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returned (“kWhReturned”) and delivered (“kWhDelivered”) to the meter. Removing kWhReturned 

from kWhDelivered yielded a combined hourly metered net-load (“kWhNet”) that Kevala used as 

the target for prediction. 

The baseline net-load estimates aligned with DER adoption and behavior models in taking an 

individual customer address or premise as the unit of analysis. For each premise, Kevala summed 

net-load for all associated meters to create a historical dataset of premise-specific hourly net 

demand. For each resulting premise time-series, any missing timestamps or missing values for 

net-load were imputed with an ensemble similar to the final forecast models discussed below, 

using hourly historical temperature and any valid load measurements as inputs. Appendix 2 

identifies the historical and future hourly air temperature datasets that comprised the 

foundational load measurement assumptions; additional date-time features were appended to 

the input dataset including hour number, day of month, day of week, month number, and a flag 

representing whether the date was a holiday. 

A4.3. Accuracy Metrics and Success Criteria 

Predicting premise-level load has three complex and, from an analytical perspective, competing 

optimization objectives. Specifically, baseline net-load predictions must be accurate in terms of: 

1. Total annual load 

2. Load duration shape of the annual load (e.g., the shape of hourly loads ranked from 

highest to lowest) 

3. Peak load 

 

Because common machine learning loss functions assess performance, on average, across all 

samples and penalize big misses, predicting the timing and magnitude of peak load can be a 

particular challenge for models optimized for forecast error alone. To ensure its load forecasts 

were optimized for the three metrics, Kevala measured forecast accuracy using multiple metrics 

that are meaningful indicators of model performance relative to these optimization goals. 

Additionally, because the goal of forecasting premise-level load is to identify constraints in the 

larger distribution system, model performance could not be assessed solely at the level of 

individual premises. Bottom-up load forecasts must be accurate (in total and peak) when 

aggregated to the level of a distribution asset such as the service transformer or feeder. Kevala 

conducted model selection against aggregate metrics to ensure the forecasts were accurate for 

feeder-level aggregates and not merely for individual premises. This is an example of how the 

SCADA data for utility infrastructure loads were used in the analysis (i.e., as a check of the 

aggregated premise-level load totals). 
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During model selection, Kevala assessed competing models using the following aggregate metrics, 

which are ordered by their relative importance with (1) being the highest priority. Each metric 

yielded a distribution of errors, from which the median error was taken as the decision criterion. 

1. Median monthly feeder peak net-load absolute deviation: The absolute difference 

between peak of the baseline net-load estimate aggregated to the feeder level and feeder 

peak net-load, by month. Metric units are in kilowatts (kW). 

2. Median monthly feeder peak hour absolute deviation: The absolute difference (in 

number of hours) between the aggregated baseline net-load monthly feeder peak hour 

and the actual feeder net-load peak hour. Metric units are in hours. 

3. Median monthly feeder total energy absolute deviation: The difference between the 

aggregated feeder-level monthly baseline net-load estimate and the actual feeder-level 

total energy by month. Metric units are in kilowatt-hours (kWh). 

4. Median hourly absolute deviation by premise: The differences between premise hourly 

baseline net-load estimates and actual hourly net-load. Metric units are in kW. 

 

A4.4. Selection of the Ensemble Model 

Kevala conducted initial model selection using PG&E data spanning January 1, 2018 to September 

30, 2021. Once the best modeling approach was refined, Kevala generated forecasts and 

evaluated them for all three IOUs. PG&E data was used for model selection because Kevala was 

able to collect, ingest, and process this data relatively quickly given the timeliness and quality of 

the data provided. This allowed Kevala the necessary time to explore model structures and 

develop a robust experimentation process to ensure the appropriate selection of a model. 

A4.4.1. Experimental Setup 

The COVID-19 pandemic affected load demand in complex and far-reaching ways, as commuting, 

occupancy, and consumption patterns were disrupted and reorganized over time. To guard 

against net-load forecasts being biased by either this disruptive period or the relatively stable 

period before, Kevala assessed each model tested using a combination of a one-year backcast 

(March 1, 2019-February 29, 2020) and a one-year hold-out set spanning the last year of available 

AMI data (October 1, 2020-September 30, 2021). Kevala trained all models using the same date 

range for input data: January 1, 2018-September 30, 2020. Notably, during model selection none 

of the models were provided inputs from the one-year hold-out set, allowing for a fully out-of- 

sample forecast evaluation that most closely mirrored how forecasts are actually used. 

To test and optimize a variety of potential models effectively, Kevala used a stratified sample of 

5,000 premises per customer sector to train each competing model, resulting in a total training 

population of 47,158 premises. Prediction and evaluation used data for a sample of 52 feeders to 
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assess model performance on a subset of complete feeders, which resulted in a total test 

population of 98,777 premises. 

A4.4.2. Results 

Kevala tested a variety of relevant modeling approaches including, but not limited to, linear 

regression,
144

 auto-regressive models,
145

 and ensemble methods that use bagging
146

 or 

boosting.
147

 

The tree and forest ensemble method stood out above competing approaches on all four 

evaluation metrics, and additional model development efforts focused on optimizing this 

approach for the net-load prediction task. 

Table A4-1: Evaluation metrics for best net-load forecasting method (Source: Kevala) 

Evaluation Metric Method: Tree and Forest Ensemble 

1. Median monthly feeder peak load deviation, kW 456.17 

2. Median monthly feeder peak timing deviation, hours 1 

3. Median monthly feeder total energy deviation, MWh 200.22 

4. Median hourly premise error, kW 0.17 

 
The ensemble method is an equally weighted combination of a traditional decision tree and a set 

of extremely randomized trees. The decision tree component splits the input data at the points 

that minimize squared error, which can overfit the training data. The extremely randomized forest 

component splits the data at random points, which can result in underfit. By combining these two 

related methods, Kevala’s predictions overcame the limitations of each while training the complex 

nonlinear interactions between seasonality, temperature, and net-load. 

 

 

 

 

144

 Linear relationships among variables are used to formulate a predictive model. Key examples used in the 

utility industry are regression models that predict energy use based on a handful of prescribed exogenous 

variables such as temperature, size of premise or type of customer. 

145

 Autoregressive techniques involve a sequential regression of temporal data and other related inputs 

such as temperature variability to estimate a forward trend to predict future outcomes. 

146

 Bagging, or bootstrap aggregating, methods combine the predictions of many weak models, each trained 

on fixed-size samples of the training data (with replacement). 

147

 Boosting methods train basic models sequentially so that the prediction errors at each iteration are used 

to improve the predictions of the next round. 
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A4.5. Baseline Load 

For each premise with a known PV installation, Kevala removed estimated PV generation from 

hourly net-load forecasts to create baseline load forecasts, which represent total hourly demand 

at the premise. Kevala created estimates of hourly PV production using the same method 

described in Appendix 5. 
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Appendix 5. Behind-the-Meter PV Modeling 

Methodology 
This appendix contains detailed information about the behind-the-meter (BTM) photovoltaic (PV) 

sizing, behavior, and adoption algorithms, including evaluation results used to validate each 

model on historical data. Kevala believes the results of the BTM PV analytics completed for this 

Part 1 Study provide accurate and sufficient estimates of the impacts of BTM PV adoption on 

distribution planning. Figure 52 (see Section 3.4.2) shows Kevala’s modeling pipeline, which uses 

information about historical BTM PV installations from the investor-owned utilities’ (IOUs’) 

interconnection data and Lawrence Berkeley National Laboratory’s Tracking the Sun dataset, 

hourly resolution weather data from the National Solar Radiation Database (NSRDB), and the 

System Advisor Model’s PVWatts simulator. 

A5.1. BTM PV Sizing 

For each premise, Kevala sized a theoretical BTM PV system to offset some portion of the 

premise’s annual gross load. For each Census tract, Kevala calculated the annual energy 

production (𝐸𝑃𝑉 ) of a 1 kW direct current (DC), south-facing BTM system by simulating Typical 

Meteorological Year weather data from the National Renewable Energy Laboratory’s (NREL’s) 

NSRDB
148

 through PVWatts
149

 using the specifications listed in Table A5-1. Kevala calculated the tilt 

and DC-to-alternating current (AC) ratio values as the average values reported in Lawrence 

Berkeley National Laboratory’s 2021 Tracking the Sun dataset. 

Next, for each premise in that Census tract, Kevala linearly scaled the DC rating from 1 kW DC to 

the level required to meet a defined percentage of total annual premise load; this percentage is 

called the load offset ratio (LOR). Using this linear scaling resulted in a DC system size of 𝑃𝐷𝐶 : 

 

𝑃𝐷𝐶 
(𝑘𝑊 𝐷𝐶) = 1 𝑘𝑊 𝐷𝐶 

𝐸𝑃𝑉 (𝑘𝑊ℎ) 

 
× 𝐸𝑙𝑜𝑎𝑑 

 

(𝑘𝑊ℎ) × 𝐿𝑂𝑅 

 

Kevala assumed that residential PV systems are sized to achieve net-zero energy on an annual 

basis, corresponding to a LOR of 100%. For non-residential parcels, the LOR is 84% based on an 

internal evaluation of the commercial premises in 10 feeders in PG&E territory. 

The possible system size was further constrained by the building footprint of the premise’s parcel, 

where available.
150

 This constraint assumed 100 square feet of rooftop area are required to install 

 

148

 The key weather variables from the NSRDB are direct normal irradiance, diffuse horizontal irradiance, air 

temperature, and wind speed. 

149

 NREL, “PySAM,” Version 5, https://sam.nrel.gov/software-development-kit-sdk/pysam.html. 

150

 Microsoft Building Footprints, https://www.microsoft.com/en-us/maps/building-footprints. 

https://sam.nrel.gov/software-development-kit-sdk/pysam.html
https://www.microsoft.com/en-us/maps/building-footprints
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each 1 kW DC of PV capacity.
151

 Kevala derated the building footprint by a factor of 75% to account 

for unusable rooftop area (i.e., 25% of the area is unusable). 

Table A5-1: Specifications and assumptions for PV sizing method (Source: Kevala analysis of Tracking the Sun 

and historical advanced metering infrastructure (AMI) data) 

Customer Class Tilt DC-to-AC Ratio Load Offset Ratio 

Residential 19° 1.13 100% 

Non-Residential 12° 1.13 84% 

 
Kevala then evaluated this model by comparing actual versus estimated DC capacity for a subset 

of existing PV systems in each IOU, where actual installed capacity was obtained from the 

historical interconnection data. For this historical evaluation, a premise’s annual gross demand 

𝐸𝑙𝑜𝑎𝑑 was back-calculated from the premise’s 2018-2020 historical AMI (net-load) by adding a 

historical PV production estimate. Kevala estimated the historical PV production using the PV 

behavior method (described below) using the NSRDB’s Actual Meteorological Year weather data 

for 2018-2020 and the actual DC capacity from the interconnection data as inputs. This historical 

gross load estimate then provided the necessary input to the sizing algorithm. 

Kevala validated the model on a subset of premises from each IOU: 

 

● 3,358 premises in Pacific Gas and Electric (PG&E) (from a subset of 10 feeders) 

● 2,314 premises in Southern California Edison (SCE) (from a subset of 14 feeders) 

● 4,615 premises in San Diego Gas & Electric (SDG&E) (from a subset of 11 feeders) 

 

Only the premises on each feeder that installed a PV system as of the April 2021 interconnection 

dataset were included. Figure A5-1 shows the distributions of the actual versus estimated systems 

sizes, which are also summarized in Table A5-2. 

The estimated system sizes were strongly correlated with the system sizes from the 

interconnection records (with a Pearson correlation coefficient of 0.78 for PG&E) and followed a 

similar distribution as the interconnection records, although with a higher standard deviation. 

There is some bias toward overestimating the actual system size by an average of 0.5 kW DC-1 kW 

DC. 

 

 

151

 U.S. Department of Energy, SunShot Initiative, 2018, p. 2, http://bcapcodes.org/wp- 

content/uploads/2017/03/MODULE-3-Part-2-slides-37-60-Architectural-Integration-into-Building-Design-3- 

22-2018-w-notes.pdf. 

http://bcapcodes.org/wp-content/uploads/2017/03/MODULE-3-Part-2-slides-37-60-Architectural-Integration-into-Building-Design-3-22-2018-w-notes.pdf
http://bcapcodes.org/wp-content/uploads/2017/03/MODULE-3-Part-2-slides-37-60-Architectural-Integration-into-Building-Design-3-22-2018-w-notes.pdf
http://bcapcodes.org/wp-content/uploads/2017/03/MODULE-3-Part-2-slides-37-60-Architectural-Integration-into-Building-Design-3-22-2018-w-notes.pdf
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Figure A5-1: Histograms of estimated versus actual PV system size (kW DC) (Source: Kevala) 
 

 
Table A5-2: Descriptive statistics of the distributions of actual versus estimated PV system size (DC) by IOU 

(Source: Kevala) 

   
Mean (kW DC) 

 
Median (kW DC) 

Standard Deviation 

(kW DC) 

PG&E Actual 6.3 3.6 26.3 

Estimated 8.1 4.0 63.8 

SCE Actual 7.9 6.0 25.9 

Estimated 8.4 6.0 40.9 

SDG&E Actual 8.7 5.9 50.7 

Estimated 8.6 5.9 35.1 

 
Table A5-3 reports point-wise error metrics, including mean and median absolute error and 

absolute percentage error. The mean error metrics are higher than the median error metrics, 

indicating some outliers with very high error. Percentage errors are also higher for non-residential 

premises, but these constitute a very small fraction of the total number of premises with installed 

PV. 
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Table A5-3: Point-wise error metrics of actual versus estimated PV system size (DC) by IOU (Source: Kevala) 

  

Customer Class 

 

Count 

Mean 

Absolute 

Error 

 
Median 

Absolute Error 

Mean Absolute 

Percentage 

Error 

 
Median Absolute 

Percentage Error 

PG&E Residential 3,285 1.6 kW 1.0 kW 39% 27% 

Non-Residential 73 93.9 kW 15.9 kW 83% 34% 

SCE Residential 2,282 3.2 kW 2.3 kW 54% 39% 

Non-Residential 32 75.1 kW 8.6 kW 200% 60% 

SDG&E Residential 4,462 2.1 kW 1.2 kW 29.5% 20.3% 

Non-Residential 153 34.2 kW 4.8 kW 74.0% 32.9% 

 

A5.2. BTM PV Behavior 

Kevala simulated hourly resolution (8760) PV production curves using PVWatts, with weather 

inputs from the NSRDB. To reduce computation, Kevala generated typical production curves of a 1 

kW DC system by Census tract and customer class and then scaled these curves by the kW DC 

rating determined by the PV sizing algorithm to derive the production of a given premise. The 

inputs to PVWatts for the normalized production curves for each Census tract were as follows: 

● Weather: NSRDB Actual Meteorological Year 2020. 

● Location: Latitude and longitude of centroid of Census tract. 

● Tilt and AC-to-DC ratio: Derived by customer class from the Tracking the Sun dataset and 

reported in Table A5-1. Kevala used the Commercial customer class in the Tracking the Sun 

dataset for all non-residential systems. 

● PVWatt’s default values were used for all other specifications, except azimuth. 

 

Kevala selected the two most common azimuths from the Tracking the Sun dataset—south-facing 

(180°) and west-facing (270°)—and ran PVWatts twice, once with each azimuth. Kevala then used 

the distributions of the azimuth by customer class in the Tracking the Sun dataset to produce 

weights for blending these two curves into one standard curve by customer class and by census 

tract. Table A5-4 reports the weights. 
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Table A5-4: Weighting factor for each azimuth by customer class (Source: Kevala) 

Azimuth Residential Non-Residential 

180° (South) 0.754 0.876 

270° (West) 0.246 0.124 

 
As an example, Figure A5-2 illustrates this blended curve for one Census tract, showing the 

weighted south-facing, weighted west-facing, and the combined generation time-series for 2018- 

2020. Note that daily energy output is illustrated here, although the underlying behavior curve is 

still in units of average power at an hourly resolution. 2018-2020 Actual Meteorological Year 

weather data was used to model 2018-2020; Typical Meteorological Year weather data was used 

to model 2021 (due to a delay in the availability of recent weather data in the NSRDB), and Actual 

Meteorological Year 2020 was used for the forecasts for 2022 onward. 

Figure A5-2: Relative contributions of south- and west-facing components to the daily energy production of a 

1 kW DC system for a selected Census tract in PG&E (Source: Kevala) 

 
 
 
 
 
 
 
 
 
 
 

A5.3. BTM PV Adoption 

Kevala selected and trained a multilevel logistic regression (MLR) model to model PV adoption 

propensity using the features reported in Table A5-5. The features selected for this model 

included customer class, payback period, peak load, and demographic features from the U.S. 

Census Bureau’s American Community Survey (ACS). Kevala calculated the payback period based 
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on the sizing estimates. To train and validate the PV adoption model, Kevala calculated bills with 

Net Energy Metering (NEM) 2.0 rates
152

 and adjusted the bill and system cost to 2016 values.
153

 

The MLR model first grouped premises by the categorical variable (customer class) and then 

trained a regression model on the remaining numerical features. The overall regression model 

was the same for the two customer classes, but because the customer classes had unique training 

data, the regression resulted in unique parameters for each group. Each numerical feature was 

represented by a normal distribution in the MLR model; to better fit a normal distribution, some 

features with long tails were log-transformed.
154

 

Table A5-5: Categorical and numerical features used to train the PV adoption model (Source: Kevala) 

Categorical or 

Numerical 

 
Feature 

 
Granularity 

 
Data Source 

 
Log-Transformed? 

Categorical Customer class: 

residential or non- 

residential 

Premise level Rates N/A 

Numerical Payback period Premise level Rates and PV sizing 

outputs 

No 

Percentage of owner- 

occupied premises 

Census block group Census-ACS No 

Maximum daytime 

baseline load 

Premise level Baseline (gross) 

load
155

 

Yes 

Percentage of college or 

higher education degree 

holders 

Census block group Census-ACS No 

 

152

 Kevala made a simplifying assumption during the PV adoption model training that all historical PV 

adopters were on NEM 2.0 rates rather than a mix of NEM 1.0 and NEM 2.0 rates. During the bill calculations 

for future years, Kevala assigned historical adopters either the NEM 1.0 or NEM 2.0 rate they were assigned 

upon installation. 

153

 During the prediction stage when determining future PV adopters, Kevala assigned future adopters NEM 

2.0 in the Existing BTM Tariffs Scenario or the December 2021 Proposed Decision for proceeding R.20.08- 

020-inspired rate in the Modified Tariffs scenario. The bill and PV system cost reflected 2022 values. 

154

 For datasets with far outliers, also referred to as distributions with long tails, a logarithmic 

transformation can pull the outliers closer in so that a normal distribution better represents the underlying 

data. 

155

 During model training, Kevala calculated the baseline load input from customer AMI data plus a PV 

production estimate using PVWatts for those customers with known PV systems from historical 

interconnection data. During model forecasting, the baseline load input was the output from the baseline 

load forecast model (see Section 3.3.2). 
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Categorical or 

Numerical 

 

Feature 

 

Granularity 

 

Data Source 

 

Log-Transformed? 

 
Median household 

income 

Census block group Census-ACS No 

Median age Census block group Census-ACS No 

Census block group land 

area 

Census block group Census-ACS Yes 

Population density Census block group Census-ACS No 

 

For each IOU, Kevala selected a subset of feeders to train and validate an IOU-specific PV adoption 

model. Table A5-6 summarizes this data. Kevala randomly split the premises in each IOU’s subset 

into a training (in-sample) set (67%) and a validation (out-of-sample) set (33%). The MLR model was 

trained on the 67% of in-sample data and then the training and validation data were run through 

the trained model to generate adoption propensity scores for all premises. Kevala calculated the 

evaluation metrics precision
156

 and recall
157

 using an adoption threshold (see Table A5-6), which 

was based on the historical adoption rate in each IOU’s training and validation dataset. Kevala 

used the interconnection data to identify the historical adoptions. 

Table A5-6: Summary of the subset of IOU data used to train and validate each IOU-specific adoption model; 

each IOU’s subset was further split into training (67%) and validation (33%) datasets (Source: Kevala) 

IOU No. of Feeders Included True Adoption Rate Adoption Threshold 

PG&E 10 11% Prob >= 0.775 

SCE 14 15% Prob >= 0.66 

SDG&E 11 27% Prob >= 0.637 

 
 

156

 Precision is an evaluation metric that measures the adoption model’s ability to identify relevant data 

points, such as if a customer adopted. It is calculated by taking the number of true positives (number of 

times an actual adoption was predicted) divided by the number of true positives plus the number of false 

positives (the number of times an adoption was predicted that was not seen in the base data). Kevala 

calculated this metric at the IOU-specific adoption threshold reported in Table A5-6. 

157 
Recall is an evaluation metric that measures the adoption model’s ability to identify all relevant cases 

within a dataset. It is calculated by taking the number of true positives divided by the number of true 

positives plus the number of false negatives. Kevala calculated this metric at the IOU-specific adoption 

threshold reported in Table A5-6. 
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Table A5-7 reports the evaluation results for each IOU’s adoption model using three different 

metrics that describe the adoption model’s quality from different perspectives. Precision is the 

frequency at which a predicted PV adoption actually happened in the interconnection data. Recall 

is the percentage of all actual adoptions that were predicted by the model. Either of these metrics 

can be manipulated by selecting either a very high or very low adoption propensity score as the 

threshold of adoption; therefore, machine learning models of this type are often evaluated under 

all possible thresholds using area under the curve metrics. For highly unbalanced datasets, such 

as PV adoption where the likelihood of adoption is relatively low, the preferred metric is the 

precision recall area under the curve (PR AUC).
158

 

A few results attest to the quality of the models: 

 

● First, there is consistency in the evaluation metrics between the training and validation 

dataset, which indicates the model is not overfit and did a good job of generalizing to the 

out-of-sample data. 

● Second, the precision and recall values being greater than the historical adoption rate in 

this unbalanced dataset indicates a better-than-random adoption selection (e.g., values of 

~0.5 for PG&E are greater than the adoption rate of ~0.1). 

 

Across IOUs, the models for PG&E and SDG&E perform more strongly than the model for SCE. One 

possibility for this discrepancy is that historical adoptions in SCE territory have been correlated 

with different demographic features than those in the other two IOUs. 

Table A5-7: Adoption evaluation metrics for each IOU’s adoption model (Source: Kevala) 

 
Data Subset Precision Recall PR AUC 

PG&E Training 0.48 0.51 0.46 

Validation 0.49 0.49 0.47 

 
 
 

 

158

 PR AUC is the area under the precision recall curve; it is used to assess the performance over all the 

adoption thresholds as represented by the precision and recall metrics. There are a few areas under the 

curve metrics, and PR AUC is the most appropriate AUC metric for PV adoption, where the incidence of 

historical adoption is relatively low. This is referred to as a highly unbalanced dataset. For more information, 

see: Daniel Rosenberg, “Unbalanced Data? Stop Using ROC-AUC and Use AUPRC Instead,” Towards Data 

Science, June 6, 2022, https://towardsdatascience.com/imbalanced-data-stop-using-roc-auc-and-use-auprc- 

instead-46af4910a494. 

https://towardsdatascience.com/imbalanced-data-stop-using-roc-auc-and-use-auprc-instead-46af4910a494
https://towardsdatascience.com/imbalanced-data-stop-using-roc-auc-and-use-auprc-instead-46af4910a494
https://towardsdatascience.com/imbalanced-data-stop-using-roc-auc-and-use-auprc-instead-46af4910a494
https://towardsdatascience.com/imbalanced-data-stop-using-roc-auc-and-use-auprc-instead-46af4910a494
https://towardsdatascience.com/imbalanced-data-stop-using-roc-auc-and-use-auprc-instead-46af4910a494
https://towardsdatascience.com/imbalanced-data-stop-using-roc-auc-and-use-auprc-instead-46af4910a494
https://towardsdatascience.com/imbalanced-data-stop-using-roc-auc-and-use-auprc-instead-46af4910a494
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Data Subset Precision Recall PR AUC 

SCE Training 0.32 0.33 0.30 

Validation 0.32 0.32 0.31 

SDG&E Training 0.61 0.62 0.67 

Validation 0.62 0.62 0.69 

 

A5.4. BTM PV Base Case Results and Scenarios 

In addition to the base case scenario run for BTM PV that was calibrated to PV capacity forecasts in 

the 2021 Integrated Energy Policy Report (IEPR), Kevala ran scenarios for PV adoption to explore 

the change in adoption propensity resulting from an alternative rate design for NEM. The base 

case NEM pricing scenario assumed the NEM 2.0 structure to persist through the study period. 

The time-of-use (TOU) periods and rate differentials remained unchanged, and the cost of BTM PV 

installations was held constant. Therefore, the underlying assumption for this study is that the 

relationship between the cost of PV installations and rates remains unchanged. The second 

scenario involved adopting a new rate structure for residential NEM that included a monthly grid 

access charge of $5/kW and an export rate that offset the generation rate. This structure was 

consistent with the Proposed Decision in the proceeding to reform NEM (R.20-08-020) issued on 

December 13, 2021. Rather than modeling the exact proposal in that Proposed Decision, Kevala 

chose this simplified structure as a scenario because it was generally consistent with the Proposed 

Decision at the time. Since the study was conducted, the CPUC adopted a final Decision on 

December 15, 2022 to reform NEM by creating a Net Billing Tariff. 

The BTM PV forecast shows that PV’s percentage contribution to the system peaks is between 0% 

and approximately 23% across the three IOUs. The results at the feeder level are far more diverse. 

For example, for the base case for PG&E in 2025, PV’s percentage contribution to each feeder’s 

peak range from 0% to -75%, while the percentage contribution at the IOU level is -1.81%. Table 

A5-8 shows the PV percentage contribution to the system-level peak by IOU and forecast year. 

Due to PV production’s dependence on the sun, the relative impact of PV on the peak load 

depends not only on the capacity of PV installed but also the hour of day that the peak load 

occurs. For all scenarios and IOUs, the peak-load hour migrates from late afternoon (4 p.m. PT for 

SDG&E and SCE) or early evening (7 p.m. PT for PG&E) in 2025 to 9 p.m. PT by 2035; this is due to 

the deployment of electric vehicles (EVs) and evening EV charging. Therefore, even as the installed 
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capacity of PV increases over the study horizon, its impact on the peak load decreases to a 0% 

percentage contribution for all IOUs and scenarios by 2035, except for the SCE base case.
159

 

As reported previously, the Modified BTM Tariffs scenario results in a 4.3% reduction in installed 

PV capacity by 2035. When looking at impacts on the net-load hour, the relative difference 

between these two scenarios is smaller.
160

 In 2025, the Modified BTM Tariffs scenario reduces the 

magnitude of PV’s percentage contribution by less than 0.4% across the IOUs. By 2035 under any 

high transportation electrification scenario, there is no difference in PV’s impact on system-level 

peak load between the two BTM Tariff scenarios because the peak load hour occurs after the sun 

has set. 

Table A5-8: PV percentage contribution to the net-load peak by IOU, forecast year, and scenario (Source: 

Kevala) 

 

 

Scenario 

PV Percentage Contribution to Peak Net-Load 

2025 2030 2035 

PG&E SCE SDG&E PG&E SCE SDG&E PG&E SCE SDG&E 

(1) Base Case 

2021 IEPR 

 

-1.81% 

 

-8.70% 

 

-23.22% 

 

-2.30% 

 

-4.92% 

 

-3.75% 

 

0% 

 

-4.39% 

 

0% 

(2) High 

Transportation 

Electrification 

+ Existing BTM 

Tariffs 

 

 

-1.84% 

 

 

-8.76% 

 

 

-23.42% 

 

 

0% 

 

 

-4.83% 

 

 

-3.62% 

 

 

0% 

 

 

0% 

 

 

0% 

(3) High 

Transportation 

Electrification 

+ Modified 

BTM Tariffs 

 

 

-1.77% 

 

 

-8.37% 

 

 

-23.35% 

 

 

0% 

 

 

-4.55% 

 

 

-3.59% 

 

 

0% 

 

 

0% 

 

 

0% 

(4) 

Accelerated 

High 

Transportation 

Electrification 

+ Existing BTM 

Tariffs 

 

 

-1.76% 

 

 

-4.46% 

 

 

-22.82% 

 

 

0% 

 

 

-1.18% 

 

 

0% 

 

 

0% 

 

 

0% 

 

 

0% 

 

 

 

 

159

 This scenario is an exception, at which the 2035 peak hour occurs at 6 p.m. PT instead of 9 p.m. PT. 

160

 The two BTM rate design scenarios can be compared for a given transportation electrification scenario 

(e.g., Scenario 2 versus 3 or 4 versus 5). 
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Scenario 

PV Percentage Contribution to Peak Net-Load 

2025 2030 2035 

PG&E SCE SDG&E PG&E SCE SDG&E PG&E SCE SDG&E 

(5) 

Accelerated 

High 

Transportation 

Electrification 

+ Modified 

BTM Tariffs 

 

 

-1.69% 

 

 

-4.26% 

 

 

-22.75% 

 

 

0% 

 

 

-4.43% 

 

 

0% 

 

 

0% 

 

 

0% 

 

 

0% 

 

For the Part 2 Study, other rate design scenarios may be considered as part of the mitigations in 

the case studies. Such scenarios may include changing DER behavior patterns to reflect reactions 

to new TOU periods to address high electrification scenario challenges. Kevala understands that 

rate design is a highly complex process that involves a deep understanding of each IOU’s avoided 

costs in the future as well as policy objectives and customer acceptance and response. Kevala will 

work in close collaboration with the CPUC on any rate design changes assumed to test PV 

adoption or other DER adoptions and will most likely rely on load shapes rather than expected 

marginal costs and maintain the same price differentials currently in TOU rates. 
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Appendix 6. Behind-the-Meter Battery Energy Storage 

System Modeling Methodology Details 
This appendix contains detailed information about the behind-the-meter (BTM) battery energy 

storage system (BESS) sizing, behavior, and adoption algorithms, including evaluation results used 

to validate each model on historical data. Kevala believes the results of the BESS analytics 

completed for this Part 1 Study provide reasonable and sufficient estimates of the impacts of BESS 

adoption on distribution planning given the nascent nature of this technology in California. Figure 

53 (see Section 3.4.3) summarizes the complete BESS modeling process. 

A6.1. BTM BESS Sizing 

The BESS sizing model analyzed a premise’s net (baseline) load (demand plus photovoltaic (PV)) to 

select the number of commercially available battery modules to potentially install. Kevala adjusted 

the battery features for capacity (kWh) and power (kW) to a set of standard commercially available 

batteries (see Table A6-1). For residential systems, the power rating of a BESS system was sized to 

meet a defined percentage of maximum daily energy consumption.
161

 The model then selected a 

corresponding number of Tesla Powerwalls to exceed this threshold. 

Table A6-1: Ratings of commercially available BESS systems considered by the BESS sizing model162 (Source: 

Kevala) 

Options by 

Customer Class 

Power rating (kW) Energy rating 

(kWh) 

Energy-to-Power Ratio Manufacturer 

Residential 5 14 2.8 Tesla 

Non-Residential 5 13.5 2.7 Tesla 

13.5 10 1.3 Solaredge 

7.6 17 1.9 Pika/Generac 

9 11 2.2 Energport 

5 64.5 2.2 Energport 

29 45 1.6 Energport 

 

 

161

 Kevala defined this percentage by calculating daily energy consumption on a 24-hour basis and selecting 

the maximum consumption over the year; it was not calculated from the peak demand hour. 

162

 Kevala assumed a standard 90% round-trip efficiency for all models. 
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Options by 

Customer Class 

Power rating (kW) Energy rating 

(kWh) 

Energy-to-Power Ratio Manufacturer 

 
29 129 2.2 Energport 

60 129 2.2 Energport 

55 110 2.0 Delta 

125 268 2.1 CPY 

125 250 2.0 Dynapower 

130 232 1.8 Tesla 

 

For non-residential premises, Kevala assumed the BESS systems to charge from the grid, so the 

size was optimized to reduce demand charges over a given duration. (The battery attempts to 

charge during the daily intervals in which load is lowest and discharges during the daily intervals in 

which load is highest.) If the model did not find a commercially available battery that provided the 

desired autonomy duration, then the model returned the largest battery system available (Tesla 

Powerpack with power rating of 130 kW and energy rating of 232 kWh). 

The sizing model included two important configuration options: 

 

● Duration (the maximum number of hours of a battery autonomy) for non-residential 

premises 

● Percentage of maximum daily energy consumption the BESS can serve for residential 

premises 

To find the best parameters, Kevala used a grid search approach, considering duration from a 

range of 2-4 hours and the percentage of maximum daily load from 0.05 to 0.8. Kevala compared 

predicted sizes to actual interconnection records for the premises in each IOU territory that had 

BESS installed: 

● 18,500+ premises in Pacific Gas and Electric (PG&E) 

● 11,000+ premises in Southern California Edison (SCE) 

● 8,000+ premises in San Diego Gas & Electric (SDG&E) 

 

As discussed further in the Interconnection Data section, these counts were based on April 2021 

interconnection data, after BESS mapped to the same premise were combined together and BESS 

that could not be mapped to a unique premise were excluded. Also, as noted, approximately 80% 
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of interconnection records were missing energy ratings and only provided power ratings, so 

Kevala imputed energy ratings using a 2-to-1 energy-to-power ratio. Because of this missing 

data,
163

 Kevala emphasized the power rating estimation over the energy rating in conducting this 

evaluation. Using this historical data, Kevala found the thresholds that resulted in the lowest mean 

absolute error,
164

 root mean squared error,
165

 and mean absolute percentage error
166

 to be 3 

hours’ duration for non-residential systems and 8% of maximum daily energy consumption for 

residential premises. The 8% threshold corresponds to about 2 hours of energy backup over a 24- 

hour period. 

Table A6-2 shows the results of the evaluations. The mean absolute percentage error on the 

power ratings is about 30%. The vast majority of residential premises were allocated a single Tesla 

Powerwall, which reflects current market availability and limited historical data. The results are 

also skewed by some very high commercial outliers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

163

 This issue is expected to persist for Part 2 even if Kevala receives a more up-to-date interconnection 

dataset unless the IOUs have updated their data gathering practices. 

164

 Mean absolute error is defined as the sum of absolute errors between predicted and actual values, 

divided by the sample size. It quantifies the typical difference between the predicted BESS rating and the 

actual rating in the interconnection data, and a smaller value is better. 

165

 Root mean squared error is the square root of the average squared difference between the predicted 

and actual values. It is similar to mean absolute error, but it is more sensitive to outliers where the 

prediction was far from the actual value. 

166

 Mean absolute percentage error is the average of the absolute percentage errors between the predicted 

and the actual values. It quantifies the relative vs. the absolute typical difference, but it has limited 

usefulness if the actual values are near zero, where the mean absolute percentage error tends toward 

infinity. 
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Table A6-2: Ratings of commercially available BESS systems considered by the BESS sizing model 

(Source: Kevala) 

 

IOU 

Power Rating Energy Rating 

MAE (kW) RMSE (kW) MAPE (%) MAE (kWh) RMSE (kWh) MAPE (%) 

PG&E 3.45 25.4 31% 60.6 590 60% 

SCE 3.60 20.7 26% 10.3 42.6 53% 

SDG&E 8.0 69.6 29% 17.1 140 48% 

MAE: mean absolute error; RMSE: root mean squared error; MAPE: mean absolute percentage error 

 

A6.2. BTM BESS Behavior 

The BESS behavior model implemented different sets of logic for residential versus non-residential 

premises using the outputs of the sizing model, the premises’ net-load (baseline plus PV) time 

series, a 90% depth-of-discharge limit, and a 90% round-trip efficiency estimate. 

For residential premises, Kevala assumed the premise is attempting to maximize its self- 

consumption of PV. The algorithm took in a time series (8760) of net-load data and tracked battery 

state-of-charge at the same temporal resolution (e.g., hourly). Charging occurred when net-load 

was negative, limited by that hour’s net-load value, the battery power rating, and the available 

state-of-charge headroom. Discharging occurred when net-load was positive, limited by that 

hour’s net-load value, the battery power rating, and the available stored energy. The algorithm 

took round-trip efficiency losses into account in the discharging stage, assuming a standard 90% 

round-trip efficiency for all BESS models. The discharge will typically happen in the early evening 

hours as the sun goes down, which coincides with current time-of-use (TOU) peak periods, 

although TOU optimization was not explicitly built into the algorithm. 

For non-residential premises, Kevala assumed the premise is attempting to reduce demand 

charges by reducing its peak periods. The battery charges at the times of day when demand is 

lowest and discharged when demand is highest. The algorithm took in a time series (8760) of net- 

load data but did not track state-of-charge on an hourly basis. Instead, the algorithm used the 

battery’s energy-to-power ratio to identify how many time series intervals (e.g., 1-hour intervals) it 

would take for the battery to discharge from full capacity to empty at the battery’s maximum 

discharge rate. For example, a 29 kW battery with 45 kWh energy rating could operate during two 

(n=2) 1-hour intervals (one at maximum power output, one at less-than-maximum output). 

Then, for each 24-hour period (in this case, in the UTC time zone), the algorithm selected the n- 

lowest hourly intervals in the net-load data to charge and the n-highest hourly intervals to 
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discharge. This assumed a perfect forecast of each 24-hour period. The charge/discharge power 

was limited by the maximum power rating and the state-of-charge but not by the net-load value; 

that is, the battery was allowed to discharge more than the simultaneous net-load, potentially 

resulting in net-exports during discharging rather than a zeroing out of the net-load. Figure A6-1 

illustrates this behavior for a premise with PV and BESS. For this n=2 battery, there are two 

intervals of charging or discharging a day, where the magnitude of the first interval is at the 

maximum power rating, and the second interval is at a less than maximum power rating due to 

state-of-charge limits. 

Figure A6-1: Example of a non-residential premise’s baseline load plus PV, PV, and BESS profiles for July 

2020. Battery is sized to 29 kW and 45 kWh; time stamps shown are in UTC as opposed to local time in 

California. (Source: Kevala) 
 

 
A6.3. BTM BESS Adoption 

Kevala selected and trained a multilevel logistic regression (MLR) model to model BESS adoption 

propensity using the features reported in Table A6-3. The features selected for this model 

included customer class, whether or not the premise had PV, maximum load, and demographic 

features from the U.S. Census Bureau’s American Community Survey (ACS). The MLR model first 

grouped premises into four groups by the categorical variables (customer class, has/does not have 

PV), then trained a regression model on the remaining numerical features. The overall regression 

model was the same for the four groups, but because each group had unique training data, the 

regression resulted in unique parameters for each group. Each numerical feature was 

represented by a normal distribution in the MLR model; to better fit a normal distribution, some 

features with long tails were log-transformed.
167

 

 

 

 

 

 

167

 For datasets with far outliers, also referred to as distributions with long tails, a logarithmic 

transformation can pull the outliers closer in so that a normal distribution better represents the underlying 

data. 
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Table A6-3: Categorical and numerical features used to train the BESS adoption model (Source: Kevala) 

Categorical or 

Numerical 

Feature Granularity Data Source Log-Transformed? 

Categorical Customer class: 

residential or non- 

residential 

Premise level Rates N/A 

Has PV: Yes or no Premise level PV adoption model N/A 

Numerical Percentage of 

owner-occupied 

premises 

Census block group Census-ACS No 

Maximum daytime 

baseline load 

Premise level Baseline (gross) 

load
168

 

Yes 

Percentage of 

college or higher 

education degree 

holders 

Census block group Census-ACS No 

Median household 

income 

Census block group Census-ACS No 

 
Compared with other distributed energy resources (DERs) such as PV, very few BESS systems have 

been installed in California, which complicates training the MLR model. Less than 0.5% of premises 

have BESS installed, which means the historical data available to train the BESS adoption model is 

considered a highly unbalanced dataset. Unless a method is added to account for this, data 

science models based on unbalanced datasets tend to predict only one outcome. In this case, a I 

model would always predict non-adoption because it is so much more prevalent in the training 

set. To address this issue, Kevala added a step during the BESS adoption model training called 

 

 

 

 

 

 

 

 

168

 During model training, Kevala calculated the baseline load input from customer advanced metering 

infrastructure (AMI) data plus a PV production estimate using PVWatts for those customers with known PV 

systems from historical interconnection data. During model forecasting, the baseline load input was the 

output from the baseline load forecast model (see Section 3.3.2). 
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undersampling,
169

 which is a data science technique that mitigates the impacts of unbalanced 

training data. 

To train each investor-owned utility’s (IOU’s) BESS model, Kevala randomly split all premises
170

 in 

that IOU into two subsets: a training (in-sample) set (67%) and a validation (out-of-sample) set 

(33%). Kevala conducted undersampling on the training set only to address the issue of the 

unbalanced dataset before training the MLR model. Then, both the training and validation data 

were run through the trained model to generate adoption propensity scores for all premises. 

Kevala calculated the evaluation metrics of precision and recall using an adoption threshold, 

which was based on the historical adoption rate in each IOU’s training and validation dataset. 

Kevala used the interconnection data to identify the historical adoptions. 

Table A6-4 reports the results for all three IOUs. The evaluation metrics are consistent between 

the training and validation dataset for each IOU, which indicates the models are not overfit and 

did a good job of generalizing to the out-of-sample data. While the precision and recall values are 

low, they are greater than the historical adoption rate in this highly unbalanced dataset, which 

indicates a better-than-random adoption selection (e.g., values are greater than the historical 

adoption rate of <0.005). The PR AUC metric is considered the most pertinent metric for highly 

unbalanced datasets, and while there is strong consistency in the PR AUC results, the values are 

considered low; this speaks to the challenges of modeling future adoption predictions on such a 

limited historical dataset.
171

 

Table A6-4: BESS adoption evaluation metrics for each IOU’s adoption model (Source: Kevala) 

 
Data Subset Precision Recall PR AUC 

PG&E Training 0.127 0.134 0.083 

Validation 0.126 0.133 0.082 

 
 

 

169

 Undersampling randomly removes samples from the majority class (e.g., premises that have not yet 

adopted BESS in the historical data) to resolve the challenges from unbalanced training data. For more 

information on undersampling, see: The imbalanced-learn developers, “3. Under-sampling — Version 0.9.1.,” 

https://imbalanced-learn.org/stable/under_sampling.html. 

170 
Premises must have all the data features listed in Table A6-3 to be eligible, and residential premises with 

BESS installed but no PV are ignored based on the behavior assumptions described previously. For example, 

the eligible dataset for PG&E comprises 4.8 million premises, after removing 252,000 premises for missing 

data and 169 residential records that have installed BESS but not PV. 

171

 See Appendix 5 for detailed definitions of precision, recall, and PR AUC. 

https://imbalanced-learn.org/stable/under_sampling.html
https://imbalanced-learn.org/stable/under_sampling.html
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Data Subset Precision Recall PR AUC 

SCE Training 0.090 0.093 0.059 

Validation 0.094 0.098 0.060 

SDG&E Training 0.094 0.095 0.071 

Validation 0.098 0.100 0.072 

 

A6.4. BTM BESS Base Case Results and Scenarios 

The Modified BTM rate design scenario results in slight differences in BESS outcomes compared to 

the Base Case scenario (calibrated to the 2021 Integrated Energy Policy Report, or IEPR) because 

of the linkage between BTM PV and BESS. Similar to PV, the adoption propensity score used to 

calibrate the Existing BTM Tariffs BESS scenario was used to calibrate the Modified BTM Tariffs 

BESS scenario. Kevala did not directly include payback period in BESS adoption modeling, but 

there are indirect follow-on effects for premises that switch from PV adopters to non-adopters. If a 

premise does not adopt PV, its adoption propensity for adopting BESS falls dramatically. 

Table A6-5 shows the BESS percentage contribution to system peak by IOU, year, and scenario. In 

all cases, the percentage contribution is negative (around -1% or less). A negative percentage 

contribution implies that BESS are discharging in aggregate during the peak load hour. As the 

system peak load hours are modeled to occur in the late afternoon, shifting to evening as the 

adoption of electric vehicles (EVs) progresses, this overlaps with the time when residential BESS 

are discharging following as or after the sun sets.
172

 The results at the feeder level are far more 

diverse, including some feeders that peak while BESS are charging in aggregate instead of 

discharging. For example, for the base case IEPR scenario for PG&E in 2025, BESS’s percentage 

contribution to each feeder’s peak ranges from -13% to 20%, while the percentage contribution at 

the IOU level is -0.77%. 

 

 

 

 

 

 

 

172

 This behavior is based on the current assumptions that TOU mid-peak and peak period will continue to 

be in the late afternoon and evening in the future. TOU periods are implicitly rather than explicitly included 

in the current residential BESS behavior algorithm. 



Part 1: Bottom-Up Load Forecasting and System-Level Electrification Impacts Cost Estimates, Kevala, Inc. 170 

R.21-06-017 ALJ/ML2/KHY/fzs 
 

 

Table A6-5: BESS percentage contribution to the net-load peak by IOU, forecast year, and scenario (Source: 

Kevala) 

 
 

Scenario 

BESS Percentage Contribution to Peak Net-Load 

2025 2030 2035 

PG&E SCE SDG&E PG&E SCE SDG&E PG&E SCE SDG&E 

(1) Base Case 

2021 IEPR 

 
-0.77% 

 
-0.04% 

 
-0.58% 

 
-1.80% 

 
-0.07% 

 
-1.73% 

 
-1.32% 

 
-0.06% 

 
-0.92% 

(2) High 

Transportation 

Electrification 

+ Existing BTM 

Tariffs 

 
 

-0.78% 

 
 

-0.04% 

 
 

-0.59% 

 
 

-0.91% 

 
 

-0.07% 

 
 

-1.67% 

 
 

-1.04% 

 
 

-0.06% 

 
 

-1.17% 

(3) High 

Transportation 

Electrification 

+ Modified 

BTM Tariffs 

 
 

-0.75% 

 
 

-0.03% 

 
 

-0.58% 

 
 

-0.87% 

 
 

-0.07% 

 
 

-1.64% 

 
 

-1.00% 

 
 

-0.05% 

 
 

-1.14% 

(4) Accelerated 

High 

Transportation 

Electrification 

+ Existing BTM 

Tariffs 

 

 
-0.75% 

 

 
-0.04% 

 

 
-0.57% 

 

 
-0.84% 

 

 
-0.12% 

 

 
-0.44% 

 

 
-1.06% 

 

 
-0.06% 

 

 
-1.18% 

(5) Accelerated 

High 

Transportation 

Electrification 

+ Modified 

BTM Tariffs 

 

 
-0.72% 

 

 
-0.03% 

 

 
-0.57% 

 

 
-0.80% 

 

 
-0.07% 

 

 
-0.43% 

 

 
-1.01% 

 

 
-0.06% 

 

 
-1.15% 
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Appendix 7. Energy Efficiency Modeling Methodology 

Details 
This appendix contains detailed information about the energy efficiency (EE) sizing, behavior, and 

adoption algorithms, including evaluation results used to validate each model on historical data. 

Kevala believes the results of the EE analytics completed for this Part 1 Study provide accurate and 

sufficient estimates of the impacts of EE adoption on distribution planning. Figure 54 (see Section 

3.4.4) shows the process flow of the EE evaluation method to develop the premise-level EE 

forecasts. Figure A7-1 summarizes EE modeling. 

Figure A7-1: EE modeling summary (Source: Kevala) 

 

A7.1. EE Sizing 

Kevala employed a stepwise approach to quantifying the estimated total annual energy savings 

from EE technologies for each premise. The key steps for sizing EE include the following: 

1. Identify historical EE program participants (i.e., participating premises). Using the 

California Energy Data and Reporting System (CEDARS) database,
173

 Kevala first identified 

which customers participated in EE programs between 2018 and 2020, and the estimated 

energy savings resulting from each participating premise. Next, Kevala matched those 

participating premises to the historical premise-level advanced metering infrastructure 

 

 

 

173

 California Public Utilities Commission (CPUC), “CEDARS: California Energy Data and Reporting System,” 

https://cedars.sound-data.com/. 

https://cedars.sound-data.com/
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(AMI) data received from the utilities to quantify the participant’s annual baseline load 

energy consumption prior to EE program participation. 

2. Calculate percent savings. Using only participating premises for which baseline load 

energy consumption prior to EE program participation could be calculated, Kevala 

calculated the ratio of the first year of gross annual energy (kWh) savings
174

 to the sum of 

the participating premise’s energy consumption the year prior to participating. 

3. Develop distribution of percent savings by customer group. First, Kevala classified each 

participating premise in the sample by customer class and California Energy Commission 

(CEC) climate zone. Next, Kevala calculated the distribution of percent savings for each 

classification. Figure A7-2 provides an example of these residential and commercial sector 

percent savings distributions. Table A7-1 shows the customer class and CEC climate zones 

for which Kevala computed the distribution of savings. 

 

Figure A7-2: Example distribution of percent savings by grouped premises using EE program 

portfolio participation data (Source: Kevala analysis) 

 

Note: CZ = climate zone 

 

Table A7-1: Customer classes and CEC climate zones (Sources: Kevala, CEC) 

Customer Classes CEC Climate Zones 

Residential 

Commercial 

Agricultural 

Industrial 

Public 

1-16 

 
 
 

 

174

 Estimate of gross annual savings was based on data from the CEDARS database. 
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4. Estimate potential annual savings by premise. Based on a premise’s class and CEC 

climate zone, Kevala randomly selected the percent annual savings for each premise from 

the relevant sample distribution. Kevala multiplied the baseline load forecast for 2025, 

2030, and 2035 for each premise by the percent annual savings to estimate the annual 

energy savings from EE participation for each premise. 

A7.2. EE Behavior 

Kevala assumed the hourly shape of savings to be the same as the baseline load forecast for the 

premise. That is, Kevala calculated the premise EE load profile by multiplying an identified 

premise’s annual percent savings by the forecasted hourly baseline load for that premise. Kevala 

recognizes that the profile of energy savings depends on the EE technologies employed by the 

participating premise. Ideally, a profile of savings by measure would be applied to the premise. 

Kevala was not able to identify which EE measures were installed at each premise. 

A7.3. EE Adoption 

To forecast which premises will adopt EE, Kevala applied the following process based on historical 

EE program participation. Kevala understands that many more premises implement EE without 

participating in an EE program. Additionally, some EE is implemented via changes in codes and 

standards that impact all new construction and influence what is available in the market (e.g., a 

customer can only choose from available equipment to replace an air conditioner, light bulbs, 

etc.). 

1. Estimate EE adoption propensity. Kevala analyzed data from historical EE program 

participation to understand those premise-level characteristics that drive EE adoption. 

Using a Bayesian modeling approach, Kevala trained a model that related premise 

attributes (features) to actual EE adoption (target) to estimate EE adoption propensity 

scores. 

Some key assumptions go into this adoption modeling approach: 

 

● The adoption of EE in the sample of adoptions from 2018 through 2020 is 

representative of adoption in the population for 2025, 2030, and 2035. 

● There is a statistically robust relationship between the features and target. 

 

To evaluate the performance of the adoption model, Kevala chose the area under the 

receiver operating characteristic curve (AUC ROC) metric. This metric summarizes 
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performance over all adoption thresholds.
175

 Kevala chose this metric because it is 

designed to quantify how well the model is able to separate the adopting premises from 

the non-adopting premises. Specifically, AUC ROC quantifies how the model performs on 

the tradeoff between the true positive rate (e.g., predicting adoption at a premise where 

adoption actually occurred) and the false positive rate (e.g., predicting adoption at a 

premise where adoption did not actually occur). The AUC ROC is bounded between 0.0 and 

1.0, with higher scores indicating better performance and 0.5 indicating that the model 

performs at the same level as random chance. 

This metric is appropriate for this study because adoption levels are based on targets that 

vary for different scenarios or time horizons, and the best choice of model is one that 

performs well regardless of the threshold value selected. The best performing and 

conceptually reasonable feature set based on the AUC ROC score of 0.68 (see Figure 

A7-3)
176

 included the following features: 

 

● Log-scaled mean daily delivered energy: An indicator of the magnitude of load at 

the premise. The prominence of this metric in driving adoption could be caused by the 

limited data available, which may be biased to measures with larger savings driven by 

high energy use and misses smaller, behavior-related actions such as home energy 

reports. 

● Log-scaled ratio of max to mean daily delivered energy: An indicator of the 

peakiness of load at the premise. 

● Log-scaled parcel building footprint square feet: An indicator of the size of the 

buildings at the premise. 

● Residential or non-residential premise indicator variable: Used to create the 

multilevel split in the model such that residential premises are modeled with different 

parameters from non-residential premises. 

 

 

 

 

 

 

 

 

 

 

 

175

 Wikipedia provides a helpful overview of this model at: 

https://en.wikipedia.org/wiki/Receiver_operating_characteristic. 

176

 Kevala had a better performing model with a score of 0.75 on the validation data and 0.76 on the training 

data, but it was deemed to be overfit and had lower validation set scores. 

https://en.wikipedia.org/wiki/Receiver_operating_characteristic
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Figure A7-3: AUC ROC score for EE adoption modeling (Source: Kevala analysis) 
 

 

To follow up on the analysis, Kevala examined the distribution of predicted probabilities 

produced by the model to understand any patterns the model is capturing. 

Figure A7-4 shows the distribution of predicted probabilities for residential versus non- 

residential premises. The predicted probabilities for residential premises appear to follow a 

skewed normal distribution, while the non-residential premises have a flatter distribution 

with a higher mean probability. 
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Figure A7-4: Distribution of predicted probabilities for residential versus non-residential premises 

(Source: Kevala analysis) 
 

Note: The y-axis (Density) is normalizing the data so the area under the histogram integrates to 1. 

 

Kevala reviewed whether climate zones or percent of savings features were statistically 

significant drivers of adoption. Neither were found to be strong drivers of adoption. 

After experimenting with including payback (calculated as average measure costs per first 

year kWh saved basis per sector), Kevala found that feature also did not prove to be a 

significant contributor. This may be due to the lack of data available to determine which EE 

measures participating premises implemented. That is, these payback estimates ignored 

the potential distribution of costs (on a per kWh of savings basis) based on the varying 

costs of measures adopted (e.g., the cost per kWh of savings for efficient lighting could be 

very different for weatherization measures, which may be influenced by premise-specific 

characteristics). Further, actual costs and associated incentives of measures installed 

through programs are highly dependent on the savings delivery mechanism, be it codes 

and standards, a rebate program, a behavioral program, or market forces. 

The Part 1 Study findings related to the lack of statistically significant drivers of adoption 

are further supported by the CPUC’s 2021 California Energy Efficiency Market Adoption 

Characteristics Study.177

 This study identified that true customer purchase decision behavior 

 

177

 Guidehouse and Opinion Dynamics, California Energy Efficiency Market Adoption Characteristics Study 

Methodology and Results, April 2021, https://www.cpuc.ca.gov/-/media/cpuc-website/divisions/energy- 

https://www.cpuc.ca.gov/-/media/cpuc-website/divisions/energy-division/documents/energy-efficiency/2021-potential-goals-study/market-adoption-report-final.pdf?sc_lang=en&hash=131848F75C4A50EB35D9247F45FB4257
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is not solely based on financial indicators and the complexities of the decision for each 

unique measure or customer cannot be simply captured via a survey or objective 

characteristics. The study attempted to inform willingness-to-adopt algorithms with 

financial and non-financial indicators in customer decision-making using behavioral science 

research. The non-financial indicators included the customer’s perception of a technology’s 

environmental impacts, social status/statement signaling, ease of installation, and 

aesthetics or features unrelated to energy use as key data points. 

2. Rank premises by adoption propensity. Kevala used the adoption propensity scores for 

each premise to rank premises with the highest level of propensity for each customer class 

listed first. 

With the sizing, behavior, and adoption propensity results, Kevala then calibrated adoption to the 

2021 Integrated Energy Policy Report’s (IEPR’s) mid-mid case scenario. 

1. Develop EE adoption targets by class. To ensure the level of EE adoption is calibrated to 

the IEPR mid-mid case scenario, Kevala used the EE forecast from the IEPR estimated for 

each transmission access charge (TAC). This forecast was then further divided by customer 

class to generate a target for each class by IOU. These targets were annual non-coincident 

peak energy savings from EE by class by year. 

 

2. Select premises for adoption by forecast year. For each class, Kevala selected premises 

for adoption by selecting premises in their ranked order until the annual target savings for 

the forecast year for the class was reached. Once a premise was selected for adoption, 

Kevala assumed the EE savings would persist for the remaining forecast years. For 

example, if a premise was chosen to provide savings in 2025, those savings remained in 

place through 2035, effectively lowering the incremental targets of EE adoption in 

subsequent years. 

Because the total portfolio EE adoption was based on the 2021 IEPR mid-mid case scenario, 

when the adopted premises reached maximum non-coincident demand savings, the data 

pipeline stopped the adoption calculation. Based on the 2021 IEPR analysis, a range of 

percent savings were achieved across the sectors. As a result, the EE adoption aligns to the 

IEPR mid-mid case energy forecast allocation by sector. 

 

 

 

 

 

division/documents/energy-efficiency/2021-potential-goals-study/market-adoption-report- 

final.pdf?sc_lang=en&hash=131848F75C4A50EB35D9247F45FB4257 

https://www.cpuc.ca.gov/-/media/cpuc-website/divisions/energy-division/documents/energy-efficiency/2021-potential-goals-study/market-adoption-report-final.pdf?sc_lang=en&hash=131848F75C4A50EB35D9247F45FB4257
https://www.cpuc.ca.gov/-/media/cpuc-website/divisions/energy-division/documents/energy-efficiency/2021-potential-goals-study/market-adoption-report-final.pdf?sc_lang=en&hash=131848F75C4A50EB35D9247F45FB4257
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Appendix 8. Building Electrification Modeling 

Methodology Details 
This appendix contains detailed information about the building electrification (BE) sizing, behavior, 

and adoption algorithms, including evaluation results used to validate each model on historical 

data. Figure 55 (see Section 3.4.5) shows the key steps for the BE analysis. Figure A8-1 summarizes 

BE modeling. 

Figure A8-1: BE modeling summary (Source: Kevala) 

 
A8.1. BE Sizing 

Typically BE (also known as fuel substitution) sizing would be a function of the amount of fuel that 

electricity would replace, such as replacing a natural gas heater with an electric heater. Kevala 

originally planned to base BE sizing on annual gas consumption at the premise; however, that 

data was not available for this study.
178

 As a result, Kevala’s approach involved sizing BE at the 

premise using the premise’s existing baseline consumption. Kevala used the following steps to 

calculate the size of BE potential at each premise. 

1. Calculate annual kWh baseline load. Using the baseline forecast (net-load less 

photovoltaic (PV) behavior), Kevala estimated the baseline load at each premise for each of 

the forecast years (see Section 3.3).
179

 

 

178

 Kevala requested gas usage data from the investor-owned utilities (IOUs) but only Southern California 

Gas’ data was available at the time of this study. 

179

 Kevala assumes energy efficiency (EE) and BE to be embedded in the baseline load. 
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2. Develop BE load ratios. Kevala calculated BE load ratios for the residential and 

commercial sectors by climate zone. Kevala did not develop BE load ratios for the 

agricultural or industrial sectors because there is limited application of BE to agriculture 

and fuel substitution at industrial sites is highly diverse. 

The methodology to generate these load ratios varied by the residential and commercial 

sectors: 

a. For the residential sector, Kevala used the California Residential Appliance 

Saturation Survey (RASS)
180

 by climate zone unit energy consumption (UEC) for: 

i. Heat pump and furnace fan unit 

ii. Whole home 

iii. Electric water heating 

iv. Space cooling 

b. For the commercial sector, Kevala used 2012 Pacific Region Commercial Buildings 

Energy Consumption Survey (CBECS) data 
181,

 The specific end uses for potential 

electrification in commercial buildings included space heating, water heating, and 

cooking. The percent increase in kWh of the baseline whole premise consumption 

was the multiplication of the following three values by end use. 

i. Percentage of the population of buildings with natural gas consumption 

ii. Percentage of buildings with the end use of interest 

iii. Percentage of the whole building consumption attributed to that end use 

3. Apply BE load ratios. After developing the BE load ratios and matching them to a premise 

based on the premise’s class and climate zone, these ratios were applied to the premise 

baseline load forecast calculated in the first step. 

Kevala had planned a more detailed sizing approach using natural gas data but did not receive it 

in time for this study. Kevala has since received and processed the natural gas data from the IOUs 

for the Part 1 Study sample period (2018-2021). Kevala proposes requesting additional natural gas 

data for Part 2 to match the additional advanced metering infrastructure (AMI) data being 

requested (post-2021 and potentially before 2018). 

Further, some of the data Kevala used in the existing method was dated. Specifically, Kevala used 

the 2012 Pacific Region CBECS data because the 2018 end use-related tables had not yet been 

 

 

180

 California Energy Commission, 2019 California Residential Appliance Saturation Study, Volume 2: Results, 

Tables 37-39, July 2021, https://www.energy.ca.gov/sites/default/files/2021-08/CEC-200-2021-005-RSLTS.pdf. 

181

 U.S. Energy Information Administration, 2012 CBECS Survey Data, Tables E1, E2, and E5, 

https://www.eia.gov/consumption/commercial/data/2012/index.php?view=consumption. 

https://www.energy.ca.gov/sites/default/files/2021-08/CEC-200-2021-005-RSLTS.pdf
https://www.eia.gov/consumption/commercial/data/2012/index.php?view=consumption
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published. Kevala has confirmed that the U.S. Energy Information Administration released the 

2018 CBECS data on September 28, 2022, so it is available for use in the Part 2 Study. 

Kevala also proposes to explore creating different sizing models for residential versus non- 

residential to further refine its approach in Part 2. 

A8.2. BE Behavior 

Typically, new consumption from BE would be based on the end use converted to electricity, such 

as space heating, water heating, or clothes drying. Unfortunately, this data was not available at the 

premise level for the Part 1 Study. As a result, Kevala defined a load profile appropriate for the 

new electricity consumption using the National Renewable Energy Laboratory’s (NREL’s) 

ResStock
182

 and ComStock
183

 databases. Specifically, Kevala randomly chose a load shape from the 

used distribution of the all-electric default load shapes from those two NREL databases for each 

premise. Kevala then applied these randomly chosen load shapes to the electrification size for the 

premise. 

While the NREL databases are a good choice for the load shapes and should continue to be used 

for the Part 2 Study, Kevala proposes improving on these profiles by pursuing two options: 

● First, Kevala will look at refining BE to specific technologies, such as heat pumps, for sizing 

and load shapes. In this case, Kevala will use the same process for BE for other 

technologies that are less prevalent but could emerge as more dominant during the study 

period (e.g., natural gas-intensive industrial processes). 

● Second, Kevala will look to estimate the change in load profile versus the electrification 

profile. That is, in using NREL’s electric-only load profiles as the load shape, the results may 

not be reflecting the change in use. For example, using the load profile for an all-electric 

home for the incremental BE load that is layered on a baseline load forecast that does not 

include electric load could underestimate the peak use of the home that results from 

electric heat as the peak use is muted by a shape that includes other less weather sensitive 

loads. 

A8.3. BE Adoption 

Historical data on adoption of BE technologies is needed to train a model that predicts future 

adoptions. Further, BE only occurs if there are other fuels that can be substituted with electricity, 

 

 

182

 ResStock is an NREL load profile library using a combination of building models and metered data. 

Kevala filtered the data to California with the space and water heating fuel set to electricity only. 

183

 ComStock is an NREL load profile library. Kevala filtered the data to California with the space and water 

heating fuel set to electricity only. 
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such as natural gas. Therefore, BE adoption is uniquely dependent on the level of natural gas use 

at the premise. For this study, Kevala was not able to develop a robust BE adoption model due to 

the lack of historical adoption data and natural gas data for all IOUs. Kevala requested data 

regarding gas use from each IOU, but it was not received in time to incorporate into this study. As 

a result, Kevala used the same adoption propensity scores from EE for BE to rank order the BE 

adoption by premise. Appendix 7 provides the EE adoption and adoption evaluation results used 

to validate each model on historical data before its use in the prediction pipeline. 

Kevala proposes several efforts to address this gap in Part 2: 

 

● Kevala has received and processed the natural gas data from Pacific Gas and Electric 

(PG&E), San Diego Gas & Electric (SDG&E), and Southern California Gas. The first planned 

modification is to include gas use or other related metrics in testing a new BE adoption 

model. 

● Kevala plans to request additional data from the IOUs regarding granting incentives to their 

customers for adopting BE technologies, such as electric water heaters and electric heat 

pumps. 

● Kevala will research other jurisdictions to see if there are any studies that may provide 

useful in further refining the adoption model and results. 

For the Part 1 Study, Kevala held the BE forecasts constant across all scenarios. For the Part 2 

Study, Kevala proposes to explore potential scenarios for accelerated BE adoption that are 

consistent with Senate Bill (SB) 1477
184

 and Assembly Bill (AB) 3232.
185

 Kevala will work with the 

California Public Utilities Commission (CPUC) in developing these high BE scenarios. 

The Part 2 Study proposes exploring mitigation options to reduce the implications of high DER 

adoption. 

 

 

 

 

 

 

 

 

 

 

184

 SB 1477 was passed on September 13, 2018 and sets new state policy standards for low-emission 

buildings and sources of heat energy. 

https://leginfo.legislature.ca.gov/faces/billTextClient.xhtml?bill_id=201720180SB1477. 

185

 AB 3232 was passed on September 13, 2018 and sets new state policy standards for zero-emission 

buildings and sources of heat energy. 

https://leginfo.legislature.ca.gov/faces/billTextClient.xhtml?bill_id=201720180AB3232. 

https://leginfo.legislature.ca.gov/faces/billTextClient.xhtml?bill_id=201720180SB1477
https://leginfo.legislature.ca.gov/faces/billTextClient.xhtml?bill_id=201720180AB3232
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Appendix 9. EV and EVSE Modeling Methodology 

Details 
This appendix contains additional details regarding the data sources and methods Kevala used to 

generate the premise-level electric vehicle (EV) adoption allocations and EV service equipment 

(EVSE) siting forecasts that animate the EVSE charging behavior and their subsequent grid impacts. 

EV counts serve as inputs to the EVSE model (see Figure A9-1). 

Figure A9-1: EV and EVSE pipeline modeling overview (Source: Kevala) 
 

 
A9.1. EV and EVSE Modeling Overview 

Figure A9-2 summarizes the high-level, interconnected computational steps that Kevala executed 

for the EV and EVSE modeling pipelines. As the figure indicates, the EV pipeline was executed first, 

and the outputs from the EV steps then served as inputs to the EVSE pipeline. The EV and EVSE 

pipeline executed specific calculations for personal (i.e., privately owned) and fleet (i.e., owned by 

a fleet operator) vehicles and for these vehicles’ associated EVSE. 

The EV and EVSE modeling pipelines began by identifying the target number of total assets (i.e., 

vehicle counts or charging port counts) to be allocated or sited for a given year. Following this 

step, the EV and EVSE models conducted the sizing step, which determined the type of vehicles or 

charging ports available—i.e., personal, light-duty (LD), battery electric vehicle (BEV), small car, or 

fleet, depot, direct current fast charging (DCFC) 50 kW—and the total potential count of vehicles or 

charging ports for a given premise. Importantly, the sizing step only determined what type of asset 

and how many of those assets could be adopted in the event that premise is selected in the 

adoption step; the step of actual adoption occurred in the adoption step. 
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Next, the models ran an adoption propensity analysis that calculated the actual type and count of 

the vehicle(s) or charging port(s) adopted at a given premise for a given year (i.e., one personal, 

LD, BEV, small car at a residential premise or 10 fleet, depot, DCFC 50 kW at a commercial 

premise). The adoption step was the last step for the EV model. 

For the EVSE pipeline, the behavior step was the final step. It involved determining the annual 

hourly charging profile for a given parcel for a given year based on the energy requirements of the 

vehicle(s) projected to charge at the given parcel. 
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Figure A9-2: Summary of the high-level EV and EVSE pipeline modeling steps (Source: Kevala) 

 
The EV and EVSE modeling methodologies differed from the Part 1 Study’s other DER modeling 

approach in several important ways. 

 

● Forecasted EVs were taken as an input into the EV model: For each scenario, the EV 

model used one of three California state agency zero-emission vehicle (ZEV) adoption 
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forecasts as direct modeling inputs. These forecasts represented the most reasonable and 

robust reflection of California’s ambitious ZEV adoption policies at the time of their 

selection in the second quarter of 2022. To reflect the grid impacts associated with the 

achievement of the state’s ZEV adoption policies, the Part 1 Study used state forecasts that 

are already serving as inputs to inform other statewide modeling and planning decisions. 

For the other DER models, Kevala calculated or estimated the forecasted number of DER 

counts for given technology (i.e., PV or BESS) based on an analysis of the data. Further 

details about these adoption forecasts are provided in the following sections. 

● Target setting—not sizing—was done as the first step of the EV and EVSE modeling 

process: Whereas the Part 1 Study’s other DER modeling pipelines began with a sizing step, 

the EV and EVSE modeling pipelines began with a target step. As described previously, this 

is because Kevala designed the EV analysis to reflect the obtainment of the state’s 

ambitious 2035 ZEV adoption targets, which are contained in the state agency ZEV adoption 

forecasts that set the targets the EV model seeks to achieve for each year in each scenario. 

● The EV and EVSE modeling steps followed a different sequence than other DERs: The 

other DERs modeled in the Part 1 Study follow a sizing-behavior-adoption sequence. The EV 

and EVSE models did not follow this sequence. Instead, the EV model followed a target- 

sizing-adoption approach, and the EVSE model followed a target-sizing-adoption-behavior 

approach. 

● The EVSE model contained four steps: target, size, adoption, behavior: The EVSE model 

was the only DER model with four steps. As described previously, this is because it 

contained a target step in addition to the three other core steps (size-adoption-behavior). 

The following sections contain further details on the target, sizing, adoption, and behavior steps 

illustrated in Figure A9-1. 

A9.2. EV Adoption Targets 

In consultation with the California Public Utilities Commission (CPUC), Kevala selected publicly 

available light-duty vehicle (LDV), medium-duty vehicle (MDV), and heavy-duty vehicle (HDV) ZEV 

adoption forecasts produced by the California Air Resources Board (CARB) and California Energy 

Commission (CEC) to serve as the ZEV adoption forecast inputs for the Part 1 Study’s five 

electrification scenarios. Table A9-1 summarizes the CEC and CARB LDV, MDV, and HDV ZEV 

adoption forecasts and the associated vehicle counts that Kevala used in the Part 1 Study. 
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Table A9-1: Summary of CEC and CARB LDV, MDV, and HDV ZEV adoption forecasts used for the Part 1 Study 

scenarios (Sources: CARB, CEC, Kevala) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

*The values in this table represent the forecasted ZEV adoption counts from 2022 to 2035 that the model 

allocated based on the CARB and CEC ZEV adoption forecasts. These values exclude all ZEV counts prior to 

2022, thus they do not represent the total cumulative ZEV counts for all three investor-owned utilities 

(IOUs). 

**The two High Transportation Electrification scenarios incorporate transportation electrification 

assumptions similar to those applied to the 2022 IEPR demand forecast mid-mid case (i.e., the 2022 IEPR 

Planning Forecast). At the time the Part 1 Study was developed, the 2022 IEPR had not yet been adopted, so 

the 2021 IEPR mid-mid case was used for the Part 1 Base Case. 

Kevala selected the three CARB and CEC ZEV adoption forecasts for the Part 1 Study because they 

represent a meaningful range of ZEV adoption levels that align with California policy goals and 

market forecasts. The CPUC project team facilitated the acquisition of these adoption forecasts, 

which CARB and CEC provided directly to CPUC. 

As Table A9-2 shows, the number of LDV ZEVs in the High Transportation Electrification scenario 

(10,013,953) are greater than the number of LDV ZEVs in the Accelerated High Transportation 

Electrification scenario (9,530,034), which is counterintuitive because the scenario names indicate 

that the Accelerated High Transportation scenario should have higher adoption than the High 

Transportation Electrification scenario. This difference occurred because Kevala identified and 

selected the Base Case and Accelerated High Transportation Electrification scenarios' ZEV 
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adoption forecasts prior to the High Transportation Electrification scenario’s ZEV adoption 

forecast.
186

 At the time Kevala selected these inputs, it was not known that the High 

Transportation Electrification scenario’s LDV ZEV adoption forecast would have a greater number 

of 2035 adoptions compared to the Accelerated High Transportation Electrification scenario. As 

such, it was the timing—not a deliberate modeling choice—that drove this counterintuitive 

outcome. 

Because the CARB and CEC ZEV adoption forecasts use different vehicle classification systems, 

Kevala needed to harmonize the forecasts’ classification systems into a common set of vehicle 

classes based on the CEC’s vehicle classification system. Table A9-2 summarizes Kevala’s 

harmonized CARB and CEC vehicle classes. Importantly, the LDV, MDV, and HDV harmonized 

classification system also aligns to the Experian Vehicles in Operation (VIO) data, which was 

Kevala’s source of vehicle registration data. 

The VIO data is a purchased dataset that provides vehicle registration information at the Census 

block group level for the year, make, model, duty, powertrain, and vehicle class for the vehicles 

registered in a given Census block group. Kevala used this data to develop detailed insights into 

where current vehicle types (i.e., duty, powertrain, vehicle class) are registered so that it could 

appropriately allocate vehicles from the CARB and CEC ZEV adoption forecasts in a manner that 

corresponded to their historic geographic registration location. 

Table A9-2: Summary of Kevala’s harmonized CARB and CEC vehicle classes (Sources: CARB, CEC, Kevala) 

Duty Powertrains Vehicle Classes 

LDV BEV, Plug-in Hybrid 

Electric Vehicle (PHEV) 

Small Car, Large Car, Small Sport Utility Vehicle (SUV), Large SUV, 

Pickup, Van, Sport Car 

MDV BEV Gross Vehicle Weight Rating (GVWR) 3, GVWR 4-5, GVWR 6, 

GVWR6 - Delivery 

 
 
 
 
 
 
 

186

 The LDV, MDV, and HDV ZEV adoption forecasts were determined by the Joint Agency Steering 

Committee (JASC) High Electrification Interagency Working Group and selected in March 2022, after the ZEV 

adoption forecasts for the Base Case and Accelerated High Transportation Electrification scenarios had 

been selected. For more information about the Interagency Working Group’s high electrification scenario, 

refer to the May 24, 2022, CEC Resolution (No. 22-0524-5) that adopted it for use in transmission planning 

and as part of the 2021 IEPR “single forecast set,” at https://www.energy.ca.gov/filebrowser/download/4171. 

https://www.energy.ca.gov/filebrowser/download/4171
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Duty Powertrains Vehicle Classes 

HDV BEV GVWR7, GVWR8*, GVWR8 - Box Truck, GVWR8 - Long Haul 

Tractor, School Bus, Urban Bus 

*GVWR8 - Box Truck and GVWR8 - Long Haul Tractor were differentiated from GVWR8 to model their 

distinctly long daily average vehicle miles traveled (VMT). 

A9.2.1. Personal EV Targets 

Personal EVs are vehicles that are owned—or expected to be owned—by an individual user and 

are not registered or used as an asset by a fleet operator. Kevala undertook the following steps to 

generate scenario-specific personal EV targets (i.e., vehicle counts by duty, powertrain, and vehicle 

class) from the three CARB and CEC ZEV adoption forecasts and scenarios: 

● For each year of each forecast or scenario, isolated the LDV adoptions and then separated 

these ZEV adoptions into personal LDVs from the fleet LDVs. Set targets using only 

personal LD ZEV counts. 

● Harmonized the associated vehicle counts by duty, powertrain, and vehicle class to the 

common Kevala vehicle class system (see Table A9-2). 

● Allocated the state- and forecast zone-level associated vehicle counts to the IOU service 

area level. 

As Figure A9-3 illustrates, there were important differences between the personal EV adoption 

rates across the three IOUs and vehicle powertrains for the Base Case, High Transportation 

Electrification, and Accelerated High Transportation Electrification scenarios. 

● For all three IOUs and across powertrains, the Base Case scenario ZEV adoption forecast 

(CEC 2021 IEPR forecast mid case) had the lowest level of overall personal EV adoptions. 

● For the PHEV powertrain type, the High Transportation Electrification scenario (which used 

an early version of CARB’s ACC I vehicle populations to 2025 and ACC II vehicle populations 

after 2026) had the highest adoption level. 

● For the BEV powertrain type, the Accelerated High Transportation Electrification scenario 

(CEC 2021 IEPR Bookend Forecast Case) had the highest level of adoption. 

The differing rates of personal EV adoption by powertrain types, which vary significantly in their 

energy requirements, and across the various forecasts and scenarios created differing energy and 

demand requirements that influence the grid impacts associated with the vehicles. 
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Figure A9-3: Personal EV targets by scenario, utility, powertrain, and year. Y-axis is the number of vehicles. 

(Sources: CARB, CEC, Kevala) 

 
While the personal EV target did contain a small number of MDVs (such as motor homes, RVs, or 

MD trucks), these counts were sufficiently small and the uncertainty associated with them was 

sufficiently small that Kevala excluded them from the Part 1 analysis. 

A9.2.2. Fleet EV Targets 

Fleet EVs are vehicles registered—or expected to be registered—by an entity or operator that will 

not be using the vehicle for personal use. While these EV targets are described as fleet targets, 

Kevala designed them to represent the total population of non-personally owned or registered 

vehicles; they were not organized or grouped in a manner that enables adoption forecasting for 

an individual fleet operator's specific fleet vehicle. As such, identifying the fleet EV targets does not 

constitute the development of individual, fleet entity-level EV targets. 

For the fleet EV targets, Kevala followed steps similar to those it executed to develop the personal 

EV targets to develop scenario-specific fleet EV targets (i.e., vehicle counts by duty, powertrain, and 

vehicle classes) from the three CARB and CEC ZEV adoption forecasts: 
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● For each year of each forecast, isolated the LDV adoptions and then separated these ZEV 

adoptions into personal LDVs from the fleet LDVs. Set targets using only fleet LD ZEV 

counts. 

● Identified all MD and HD ZEV counts and added these vehicles to the fleet target. 

● Harmonized the CARB and CEC forecasted vehicle counts by duty, powertrain, and vehicle 

classes to the common Kevala vehicle class system (see Table A9-2). 

● Allocated the state- and forecast zone-level CARB and CEC forecasted vehicle counts to the 

Census tract level using Experian VIO data for each year of each forecast. 

After completing these steps, Kevala had the flexibility to aggregate each adoption forecast’s 

annual Census tract-level fleet EV target counts across a variety of geographic levels, including 

counties and the IOUs’ service areas. 

The series of charts contained in Figure A9-4 present the cumulative fleet EV adoption counts, 

broken out by vehicle class, powertrain, and year. Some noteworthy trends emerge across the 

three scenarios from the detailed comparison of these vehicle class adoption rates. 

● GVWR3 BEV counts for the High Transportation Electrification scenario, the inputs for which 

are sourced from CARB’s 2020 SSS MDV/HDV ZEV adoption forecast, were low compared to 

the adoption rates of this vehicle class compared to the other two scenarios. This 

difference is because for the harmonized vehicle class mapping Kevala developed to align 

the disparate vehicle classes contained in the CARB and CEC forecasts, the GVWR3 vehicle 

class only maps to CARB’s LHD2 vehicle class, and CARB’s 2020 SSS MDV/HDV adoption 

forecast contains relatively few of these vehicles. 

● For the GVWR8 Combo Box and GVWR8 Combo Long Haul vehicle classes, the Base Case 

scenario had greater vehicle counts compared to the High Transportation Electrification 

and Accelerated High Transportation Electrification scenarios. This difference is a reflection 

of the underlying vehicle class breakdowns contained in the CEC ZEV adoption forecasts 

used to set these scenarios. Similarly, the High Transportation Electrification scenario’s 

relatively large number of GVWR7 and GVWR8 counts compared to the Base Case and 

Accelerated High Transportation Electrification scenarios are also a reflection of the 

underlying vehicle class breakdown contained in each respective scenario’s ZEV adoption 

forecast targets. 
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Figure A9-4: Fleet EV targets by scenario, statewide, vehicle class powertrain, and year. Y-axis is the number 

of vehicles. (Sources: CARB, CEC, Kevala) 

 
Unlike the personal EV targets, which excluded MDV (and HDV) vehicles, the fleet EV targets 

contained all MDV and HDV vehicles the state agency forecasts identified as non-personally owned 

vehicles. 

A9.3. EV Sizing 

The EV sizing stage involved determining the vehicle type and the quantity of EVs that could 

potentially be adopted at a given EV-eligible premise in a given year. 

A9.3.1. Vehicle Type – Personal and Fleet 

For personal and fleet EVs, Kevala specified each vehicle type by duty, powertrain, and vehicle 

class. The vehicle type combinations for LDV, MDV, and HDV are presented in Table A9-3 and align 

with the harmonized CARB and CEC vehicle classes contained in Table A9-2. The MDV and HDV 

duty, powertrain, and classes apply exclusively to fleet EVs whereas the LDV duty, powertrain, and 

classes may apply to fleet and personal EVs. 



Part 1: Bottom-Up Load Forecasting and System-Level Electrification Impacts Cost Estimates, Kevala, Inc. 192 

R.21-06-017 ALJ/ML2/KHY/fzs 
 

 

Table A9-3: Summary of vehicle type duty, powertrain, and vehicle class used for sizing personal and fleet 

EVs (Sources: CARB, CEC, Kevala) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Each premise was eligible to adopt only one vehicle type at a premise. If more than one vehicle 

were adopted at a premise, say for a fleet, they would all be of the same vehicle type. This is a 

simplifying assumption Kevala made in the absence of sufficient empirical evidence regarding the 

exact composition of premise- or address-level vehicle registration data. Kevala proposes 

exploring additional data sources to support this analysis in the Part 2 Study. 
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After determining the possible vehicle type combinations by duty, powertrain, and vehicle class, 

Kevala assigned each of the vehicle types a forecast of the vehicle battery capacity (in kWh) and 

range (in miles). Kevala sourced LDV battery capacity and range forecast data from the CEC’s 

Assembly Bill (AB) 2127 Report. For MDV and HDV battery capacity and range information, Kevala 

sourced current model year data from the U.S. Department of Energy’s (DOE’s) Alternative Fuels 

Data Center.
187

 Because the MDV and HDV data did not contain a forecast of the necessary vehicle 

attributes, Kevala applied the rate of change observed in the CEC’s AB 2127 Report for the LDV 

BEV Pickup vehicle class forecast data to develop the necessary forecast for the MDV and HDV 

attributes. 

Taken together, these two values provided a vehicle type’s fuel economy in kWh per mile, which 

was the amount of energy (kWh) a given vehicle type requires to travel the number of miles it is 

expected to cover in a given year. Each vehicle type combination (i.e., duty x powertrain x vehicle 

class) had its own fuel economy (kWh/mile) forecast, and each vehicle class had its own annual 

VMT. 

Kevala sourced LDV VMT values from the U.S. Bureau of Transportation Statistics’ Local Area 

Transportation Characteristics for Households (LATCH) data, which provides personal vehicle 

mileage by county.
188

 Kevala sourced MDV and HDV VMT values from the U.S. Bureau of 

Transportation Statistics’ Vehicles in Use Survey (VIUS), as summarized by M.J. Bradley & 

Associates.
189

 

A9.3.2. Vehicle Quantity – Personal and Fleet 

Similar to vehicle type, Kevala assigned a vehicle count to each premise eligible to adopt an EV. In 

the sizing step, the vehicle quantity being assigned to a given premise is determining the number 

of vehicles that would be adopted in the adoption stage should the given premise be selected by the 

adoption propensity algorithm. Thus, although each EV-eligible premise was assigned a vehicle 

quantity for each year, not all premises were selected for a given scenario in a given year. Details 

on the adoption stage are provided in the EV Adoption section. 

For premises eligible to adopt personal EVs, which include single-unit dwellings (SUDs) and multi- 

unit dwellings (MUDs), the vehicle count was randomly assigned to each premise based on 
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probabilities Kevala assumed for SUDs and MUDs. The probabilities of vehicle quantity at each 

premise varied based on the year and whether the premise was a SUD or MUD. For SUD premises, 

the quantity of vehicles that could be adopted was either one or two, with the probability of 

adopting two vehicles increasing slightly in each year. For MUD premises, Kevala assumed just one 

vehicle could be adopted. Kevala made these simplified assumptions because there is a lack of 

data to determine exactly the number of vehicles that are appropriate to assume for SUD and 

MUD premises, and these assumptions were assumed to be conservative. Importantly, these 

assumptions did not limit the total number of vehicles that could be adopted; they simply 

restricted the number of vehicles that could be adopted at a single premise. 

For fleet EV-eligible premises, Kevala used the following procedure to assign a count of fleet EVs: 

 

1. Identify the total number of adoptions expected to occur for the combination of scenario, 

year, Census tract, and vehicle type that applied to the premise. 

2. Based on the year, assume no more than 50% of the total adoptions in a Census tract could 

occur at any one premise. 

3. Calculate the maximum number of adoptions that could occur at a premise by multiplying 

the results of steps 1 and 2. 

4. Gather the percentile ranking of the premise within its Census tract in terms of area. 

Premise area was estimated by dividing each parcel’s area by the number of premises on 

the parcel. Normalized the rank to the range [0,1], so the lowest-ranked premise had a 

score of 0 and the top-ranked premise had a score of 1. 

5. Multiply that score by the maximum number of adoptions that could occur at a premise to 

obtain the number of EVs adopted at the premise. 

To give an example of the entire process: if a Census tract will adopt 300 fleet BEV LDVs in 2025, 

and the maximum percentage of adoptions that could be assigned to a premise in this tract is 

50%, then the maximum number of fleet BEV LDVs in the premise is 300 * 0.50 = 150 for that year. 

If a premise is ranked in the 33rd percentile for the area, it will be sized with 0.33 * 150 = 50 

vehicles. 

Kevala also set an upper limit on the number of fleet vehicles that could be adopted at one 

premise. This value, 180, was based on the 99.9th percentile of the Federal Motor Carrier Safety 

Administration’s Motor Carrier Census data.
190
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A9.4. EV Adoption 

The EV adoption model incorporated a variety of inputs to calculate a premise-level score that was 

used to rank a premise’s likelihood to adopt either personal EVs or fleet EVs based on the eligibility 

criteria of the premise itself. 

After each EV-eligible premise within a geographic area was scored, the adoption model then 

selected the number of premises based on their score (starting from the highest ranking 

premises, then moving down the ranking) until the number of vehicles—by duty, powertrain, and 

vehicle class—achieved the personal EV and fleet EV targets for the given scenario and year. (The 

number and type of personal EVs and fleet EVs assigned to a given premise were determined in 

the EV sizing stage, described previously.) 

Importantly, while the overall number of ZEVs is still very low across the three IOUs service areas, 

the number of personal EVs was sufficient to enable more sophisticated premise-level adoption 

modeling compared to the modeling that is possible with fleet EVs. This is because the number of 

fleet (i.e., non-personally owned) EV adoptions, particularly of MDVs and HDVs is, at this point in 

time, too low to enable the type of more complex adoption modeling that is possible with 

personal EVs. 

A9.4.1. Personal EV Adoption 

The personal EV adoption model provided a premise-level score for the adoption of vehicles 

categorized for personal use on a subset of residential premises. 

The underlying personal EV adoption model framework was based on Bayesian multilevel logistic 

regression (MLR), which provides an adoption propensity score for a given premise in a year. 

Kevala used the urban group feature (i.e., urban, suburban, and rural) provided in the U.S. Bureau 

of Transportation Statistic’s dataset as the grouping level of the multilevel model with the 

assumption that different urban groups have different drivers of EV adoption. 

In addition to the urban group features, the personal EV adoption MLR model considered the 

following categories of features to score a premise’s likelihood of adopting the vehicle type and 

the quantities determined in the sizing stage. 

1. Parcel-level features (Source: Regrid third-party parcel data) 

a. Average premise area and footprint 

2. Utility customer data (Source: utility’s customer information) 

a. Residential customer sector 

b. SUD or MUD residences (determined using utility data and parcel data) 
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3. Demographic features (Source: U.S. Census data) 

a. Home ownership 

b. Education 

c. Race 

d. Age 

e. Income 

f. Population density 

4. Hourly energy usage features (Source: utility’s advanced metering infrastructure (AMI) 

data) 

a. Max daytime hourly netload aggregated by premise (net kWh) 

5. Vehicle population features (Source: Experian VIO data) 

a. EV density (number of ZEV vehicles per population in a Census block group) 

 

To score premises for personal EV adoption, Kevala conducted a rigorous, multiple-step process to 

evaluate and identify the categories and features contained in the above list, along with the 

decision to use the urban group feature as the level in the MLR. This process involved the 

following five steps: 

1. Data exploration: Kevala conducted a detailed data exploration exercise involving the 

cleaning and merging of multiple utility and third-party datasets to identify a group of 

premises with sufficiently complete features and EV adoption data to support the EV 

adoption model development. Ultimately, because only Pacific Gas and Electric (PG&E) had 

enough premises with utility-provided EV identification data, Kevala selected its data for the 

model development process. Kevala then applied this model to the other IOUs’ service 

areas because there was not sufficient data to develop IOU-specific models based on 

Southern California Edison (SCE) and San Diego Gas & Electric’s (SDG&E’s) current data. 

 

PG&E’s service area contained 4.3 million usable residential premises in its service area, 

where 116,000 premises were labeled by PG&E as being EV adopters. The number of 

labeled EV adopters is fewer than the 331,000 LD EVs that PG&E reported residing in its 

service area in its 2021 Annual EV Report.
191

 The discrepancy between the number of EVs 

that can be positively identified at a premise compared to the total number of registered 

vehicles in a service area occurs because not all EV owners enroll on utility EV rates or EV 

programs. As such, the number of premises where EV adoption could be positively 
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confirmed was low: only 2.5% of 4.3 million premises. This type of highly unbalanced 

dataset, with relatively thin data on which Kevala could conduct its analysis, created 

challenges in identifying features that were consistently highly predictive of EV adoption. 

Despite this challenge, Kevala was able to develop a strong, defensible personal EV 

adoption model. 

2. Feature selection: The 4.3 million PG&E premises that passed the screening process had 

164 potential features, from which Kevala selected 20 for initial inclusion for rigorous 

feature selection. The feature selection process included two steps. First, Kevala conducted 

an initial correlation analysis to measure the strength of the association between two 

variables, which supports the identification of features with stronger statistical correlations 

with the target variable (EV adopted) and helps identify features that should be removed 

from the analysis because they are cross-correlated and duplicative. Second, Kevala 

applied the two features’ selection methods to identify the optimal number of model 

features. Table A9-4 presents the final parameters selected for the MLR. 

Table A9-4: Personal EV adoption model features (Sources listed in the second column) 

Order Source Feature 

1 AMI Log of max hourly daytime load 

2 Vehicle Registration Log of density of existing EVs in census block 

3 Parcel Normalized number of premises on parcel 

 
4 

U.S. Census Bureau-American 

Community Survey (ACS) 

 
Log of census block group population density 

5 Parcel Multi-Unit Dwelling Label 

 
6 

 
Parcel 

Normalized estimated premise building 

footprint 

7 Census-ACS Median household income 

8 Census-ACS Percent of white householders 

9 Census-ACS Median age 

10 Census-ACS Percent education level of college or more 

11 Census-ACS Percent of households owner occupied 

12 Parcel Rank of estimated premise area in census tract 
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Order Source Feature 

 
13 

 
Census-ACS 

 
Urban group (rural, suburban, urban) 

14 Parcel Normalized estimated premise area 

 

3. Model structure: Determining the model structure, namely the levels in the MLR, was an 

important step that occurred roughly in parallel to the feature selection step. After 

conducting a variety of different tests, Kevala determined that adding urban group (urban, 

suburban, rural) levels to the MLR improved modeling performance compared to models 

without the urban group levels. Based on this observation, Kevala decided to use the urban 

group levels in its final model. 

4. Train model with in-sample data: After determining the model’s structure and features, 

Kevala iteratively trained the personal EV adoption model on a randomly selected subset of 

the data to refine the feature coefficients and determine their correlation with the target 

variable, EV adoption. 

5. Evaluate model’s performance with out-of-sample data: Once a version of the model 

was trained, Kevala tested its predictive performance against a subset of the data that was 

excluded from the model training step. Because the model had not been exposed to this 

out-of-sample data, this data could serve as a test of how well the model could predict the 

actual adoption of personal EVs. Steps 4 and 5 were conducted iteratively until the very 

best model coefficients were determined and the highest level of correct recall could be 

achieved. 

A9.4.2. Fleet EV Adoption 

Kevala assigned a score between 0 and 1 to each fleet EV-eligible premise; this score represents its 

propensity to adopt fleet EVs. After all premises were scored, Kevala ranked the premises and 

applied a threshold so that only the highest-scoring premises adopted ZEVs. 

For each non-agricultural premise, Kevala used the premise’s estimated area (i.e., the square 

footage of all building and non-building property associated with the premise) and the ratio of the 

premise’s estimated area to the premise’s estimated building footprint to rank the premise. This 

calculation essentially ranked a commercial, industrial, or other non-agricultural, non-residential 

premise by the amount of non-building area available at the premise. Because far too few 

adopted fleet EVs are currently registered, Kevala assumed this value to be the best proxy for a 

premise’s likelihood of adopting a fleet EV. This is an approach that Kevala can revisit in the Part 2 

Study. 
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Kevala used a similar method for agricultural premises, again using the premise's estimated area 

as the first feature, but the second feature was only the premise’s estimated building footprint— 

not the ratio of the premise’s area to its building footprint. Kevala made this choice to reduce 

higher scores on agricultural premises with large amounts of cropland (non-building area that is 

not available for fleets) and increase scores on agricultural premises with higher building 

footprints more likely to have non-EV fleet vehicles domiciled. 

A9.5. EVSE Adoption Targets 

Kevala determined the EVSE adoption targets using the ZEV adoption targets contained in each 

scenarios’ ZEV adoption forecasts and a ratio of how many EVSE charging ports are assumed to be 

required to support a given population of ZEVs. The concept of an EVSE-to-EV ratio is well- 

established; this approach is used for the U.S. DOE’s Alternative Fuels Data Center’s Electric 

Vehicle Infrastructure Projection Tool (EVI-Pro) Lite tool, which also underpins the EVSE forecasting 

model for the CEC’s AB 2127 Report.
192

 

EVSE-to-EV ratios are specific to the type EVSE charging port and its charging capacity, as well as 

the duty and powertrain of the ZEV. For the Part 1 Study, Kevala drew upon the EVSE use cases 

and demand levels contained in the AB 2127 Report, along with its own assumptions when they 

were not contained in the AB 2127 Report. Table A9-5 summarizes the EVSE use cases and 

charging level included in this Part 1 Study. Additional details regarding the combination of EVSE 

use cases and charging levels used for this study are contained in the EVSE Sizing section. 

Table A9-5: Summary of EVSE use cases and charging level by ZEV ownership type and duty (Sources: CEC, 

Kevala) 

Ownership Duty Use Case Primary / Secondary Use 

Case 

Demand Level 

 
 
 
 
 

Personal EV 

 
 
 
 

LDV 

SUD (Time-of-use 

(TOU), non-TOU) 

 
Primary 

 
Level 1 (L1), Level 2 (L2) 

MUD Primary L2 

Public Secondary L2, DCFC 

Workplace Secondary L2 

Corridor Secondary DCFC 
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 U.S. Department of Energy, Alternative Fuels Data Center, EVI-Pro Lite tool, https://afdc.energy.gov/evi- 

pro-lite/load-profile/assumptions. 

https://afdc.energy.gov/evi-pro-lite/load-profile/assumptions
https://afdc.energy.gov/evi-pro-lite/load-profile/assumptions


Part 1: Bottom-Up Load Forecasting and System-Level Electrification Impacts Cost Estimates, Kevala, Inc. 200 

R.21-06-017 ALJ/ML2/KHY/fzs 
 

 

 

Ownership Duty Use Case Primary / Secondary Use 

Case 

Demand Level 

 

 

 

 

Fleet EV 

LDV Fleet Primary L2 

 

 

MDV / HDV 

Fleet Primary DCFC 

Public Secondary DCFC 

Corridor Secondary DCFC 

 

 

Kevala categorized EVSE ports into two groups and generated EVSE adoption targets for these 

groups using slightly different approaches. The EVSE categories are as follows: 

● Primary charging use cases: EVSE use case where a ZEV sources its primary energy from, 

usually during nighttime charging. These can be conceptualized as home charging. 

○ SUD (enrolled on a TOU rate) 

○ SUD (not enrolled on a TOU rate) 

○ MUD 

○ Fleet depot 

● Secondary charging use cases: EVSE use cases that provide supplemental charging to 

meet the ZEV’s remaining energy needs. These can be thought of as daytime chargers that 

are used by personal EVs while at work, shopping, or on long distance trips and by fleet EVs 

when they are conducting long-haul routes or otherwise requiring charging away from 

their home base. 

○ Public (LDV and MDV/HDV) 

○ Workplace 

○ Corridor (LDV and MDV/HDV) 

 

For the SUD primary charging use cases, Kevala assumed that all adopted BEV and PHEV personal 

EVs received either an L1 or L2 charger, with 39% adopting an L1 and 61% adopting an L2. For 

MUDs, one L2 charger was allocated for every five personal EVs that were adopted. 

For the fleet depot primary charging use case, Kevala used the EVSE-to-EV ratio from the AB 2127 

Report, which is roughly 0.5, or one charger for every two vehicles. Kevala applied this ratio for 

LDV and MDV/HDV fleet EVs, where LDVs were assigned L2 chargers and MDV/HDVs were 

assigned DCFC chargers. 



Part 1: Bottom-Up Load Forecasting and System-Level Electrification Impacts Cost Estimates, Kevala, Inc. 201 

R.21-06-017 ALJ/ML2/KHY/fzs 
 

 

To find the number of EVSE counts for the secondary charging use cases of public, workplace, and 

corridor for a given scenario, year, county, and type of charger, Kevala found an appropriate ratio 

of EVSE ports to EVs and multiplied it by the number of relevant EVs that were adopted. Kevala 

calculated the EVSE-to-EV ratios as described below. 

Corridor LDV DCFC Ratio 

For the denominator of the EVSE-to-EV ratio, Kevala used the total number of BEVs from the AB 

2127 Report’s 2020 CARB Mobile Source Strategy (MSS) values for 2020, 2025, 2030, and 2035. For 

the numerator, the EVSE port count, Kevala took the predictions from AB 2127 Report, Tables E-1 

through E-4; for each charger level 150 kW and higher, Kevala took the median of the upper and 

lower bounds, then summed across charger levels for the total EVSE count. Kevala used linear 

interpolation to obtain values for intermediate years. 

Corridor and Public MD/HDV DCFC Ratio 

Kevala used a similar approach for these two use cases. The ratio of 350 kW chargers to 

MDV/HDVs in 2030 in the AB 2127 Report (roughly 0.08) was used for all scenarios and years. 

Kevala assumed these EVSE ports would be split 60/40 between the corridor and public use cases, 

so the ratio was multiplied by 0.6 or 0.4 depending on the use case. 

Public LDV L2 and DCFC, and Workplace L2 Ratios 

Kevala derived these EVSE port to EV count ratios from the annual forecasted statewide EVSE port 

and EV counts from the AB 2127 2020 CARB Mobile Source Strategy results. These statewide ratios 

were applied evenly to each county in the study area. 

EV Counts 

Kevala counted the relevant EVs (in a given scenario, year, county) for each EVSE type: 

 

● Corridor LDV DCFC: LDV BEV 

● Corridor MDV/HDV DCFC: MDHDV BEV 

● Public MDV/HDV DCFC: MDHDV BEV 

● Public LDV L2: LDV BEV plus PHEV 

● Public LDV DCFC: LDV BEV 

● Workplace L2: LDV BEV plus PHEV 

 

Kevala then multiplied these vehicle counts by the matching EVSE-to-EV ratio to obtain annual 

EVSE port targets by charging use case, county, and scenario. As described in the EVSE Adoption 

section, these county-level EVSE targets were ready for allocation to individual premises. 
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A9.6. EVSE Sizing 

EVSE sizing models determine the type and quantity of chargers to be adopted at a given premise, 

for a given year and a given scenario. In the EVSE sizing step, charger type and quantity are highly 

interrelated. As such, determining the type and quantity of EVSE that a premise is sized for 

effectively occurs simultaneously. This is particularly true for the primary charging use cases, 

where type and quantity are determined at the same time and are a direct function of whether the 

premise adopts an EV in the EV adoption stage. 

The EVSE sizing stage first determined an eligible premise’s charger type, such as SUD, MUD, and 

fleet or public, workplace, and corridor. After this, Kevala used the premise’s charger type as an 

input to the algorithm that determined the quantity of chargers the given premise could adopt in 

the EVSE adoption stage. 

Table A9-5 summarizes the EVSE use cases, primary and secondary use case categorization, and 

charging level included in the Part 1 Study. 

Primary Charging Use Cases 

Kevala determined the premise-level EVSE type and quantity for the primary charging use cases, 

including SUD, MUD, and fleet, using the following process: 

● SUD EVSE type: Premises marked as having the “Residential” customer sector based on the 

utility-provided rate code and the utility-assigned North American Industry Classification 

System (NAICS) code and determined by Kevala likely to be a SUD were eligible for any LDV 

and primary charging use case “Single-Unit Dwelling: TOU Rate” and “Single-Unit Dwelling: 

non-TOU” rate. 

○ SUD EVSE count: Every personal EV adopted at a SUD premise, regardless of TOU 

status, received either an L1 or L2 EVSE charger. Each personal EV was assumed to 

receive its own charger. 

● MUD EVSE type: Premises marked as having the “Residential” customer sector based on 

the utility-provided rate type and utility-assigned NAICS code and determined by Kevala 

likely to be a single unit at a MUD, or a premise with one master meter representing a 

whole MUD were eligible for any LDV and primary charging use case “Multi-Unit Dwelling.” 

○ MUD EVSE count: For MUDs, the EVSE-to-EV ratio was 0.2, meaning 1 L2 MUD charger 

was provided for every five personal EVs adopted. 

● Fleet EVSE types: Premises marked with “Commercial,” “Industrial,” “Agricultural,” “Public,” 

or “Non-Residential” customer sector based on their utility-provided rate type and utility- 

assigned NAICS code were eligible for any LDV or MDV/HDV with the primary charging use 

case “Fleet Depot.” 
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○ Fleet EVSE count: For fleet depot charging use cases, Kevala used a fixed EVSE-to-EV 

ratio from the HEVI-LOAD model in the AB 2127 Report, which was roughly one 

DCFC charger to every two MDV/HDV fleet EVs adopted at a given premise. LDV fleet 

EVs were allocated EVSE at the same ratio, but they were allocated L2 chargers, not 

DCFC ones. 

Kevala determined the execution of EVSE sizing for a given premise by whether the premise was 

selected to adopt one or more EVs in the EV adoption stage described previously. If a premise’s 

adoption score met a given scenario and year’s threshold for EV adoption, then that premise 

would automatically be sized in the EVSE sizing stage with the type and number of chargers its EVs 

require. 

Secondary Charging Use Cases 

Kevala determined the premise-level EVSE type for the secondary charging use cases, including 

public, workplace, and corridor, through the following process described. Unlike the primary 

charging use cases where the first step was a function of the premise type (i.e., residential, 

commercial, industrial, etc.), the secondary charging use case process began with calculating the 

quantity of chargers by EVSE type using the EVSE-to-EV ratios described in the EVSE Adoption 

Targets section. 

● Public and workplace EVSE types: There were three combinations of public EVSE chargers 

based on the vehicle duty that they support and their capacity level: Public LDV L2, Public 

LDV DCFC, and Public MDV/HDV DCFC. There was only one type of workplace charger: 

Workplace LDV L2. The probability of a given public or workplace EVSE type being assigned 

to an eligible premise was a function of the given EVSE type’s market share. For example, if 

the EVSE adoption target for public and workplace EVSE types for a given scenario and year 

was 10,000, if 2,500 of those chargers were Public LDV L2 charger, then the likelihood that 

an eligible premise would be assigned a Public LDV L2 charger was 25%. 

○ Public and workplace EVSE counts: Kevala determined the total quantity of public and 

workplace EVSE types for a given scenario and year in the EVSE adoption target step 

using the appropriate EVSE-to-EV ratios. The number of public or workplace EVSE 

chargers adopted at a given eligible premise was based on an analysis of the U.S. 

Department of Energy’s Alternative Fuels Data Center Alternative Fueling Stations 

Locations dataset, which contains the number of ports, by type, a given address has 

installed historically.
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● Corridor EVSE types: There were two combinations of corridor EVSE chargers based on 

the vehicle duty they support: Corridor LDV DCFC and Corridor MDV/HDV DCFC. The 

probability of a corridor-eligible premise being assigned either an LDV or MDV/HDV charger 

was a function of that charger type’s market share. For example, if the total corridor EVSE 

target for a given scenario and year was 1,000, if 750 of those chargers were MDV/HDV 

chargers, then the probability of a given corridor-eligible premise adopting an MDV/HDV 

charger was 75%. 

○ Corridor EVSE counts: Kevala determined the number of corridor-EVSE types for a 

given scenario and year in the EVSE adoption target step using the appropriate 

EVSE-to-EV ratios. As with the public and workplace EVSE types, the number of 

corridor-EVSE chargers adopted at a given eligible premise was based on an analysis 

of the U.S. Department of Energy’s Alternative Fuels Data Center Alternative Fueling 

Stations Locations dataset. Because this dataset contains limited information on 

corridor chargers, Kevala used the address-level public DCFC port counts as a proxy. 

Once the EVSE sizing state determined the EVSE type, it then assigned each charger its kW power 

rating based on its specific EVSE type and capacity level, as well as the year of adoption. Kevala 

used the following values, which are sourced from the AB 2127 Report. These values were derated 

from their nameplate capacity levels to reflect real-world operating performance. 

● SUD L1: 1.9 kW (assumed to be fixed across all forecast years and vehicle classes) 

● SUD L2: 

○ BEV: 7.7 kW-12.0 kW (depending on forecast year and vehicle class) 

○ PHEV: 3.9 kW-6.2 kW (depending on forecast year and vehicle class) 

● MUD L2: 

○ BEV: 7.7 kW-12.0 kW (depending on forecast year and vehicle class) 

○ PHEV: 3.9 kW-6.2 kW (depending on forecast year and vehicle class) 

● Fleet LDV L2: 

○ BEV: 7.7 kW-12.0 kW (depending on forecast year and vehicle class) 

○ PHEV: 3.9 kW-6.2 kW (depending on forecast year and vehicle class) 

● Fleet MDV/HDV DCFC: 45 kW (assumed to be fixed across all forecast years and vehicle 

classes) 

● Public LDV L2: 6.6 kW (assumed to be fixed across all forecast years and vehicle classes) 

● Public LDV DCFC: Varies by year according to the charging power and market share of BEV 

LDV vehicle types. For each year, Kevala took a weighted average of the charging power 

values in Table B-7 of the AB 2127 Report, with the weights given by the market share of 

each vehicle type. 

○ 116 kW-277 kW (depending on forecast year) 
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● Public MDV/HDV DCFC: 345 kW (assumed to be fixed across all forecast years and vehicle 

classes) 

● Workplace L2: 6.6 kW (assumed to be fixed across all forecast years and vehicle classes) 

● Corridor LDV: Varies by year according to AB 2127 Figure B-3: 

○ 2020: 145 kW 

○ 2025: 245 kW 

○ 2030: 345 kW 

○ 2035: 445 kW 

● Corridor MDV/HDV DCFC: 345 kW (assumed to be fixed across all forecast years and 

vehicle classes) 

 

A9.7. EVSE Adoption 

Kevala determined a premise’s EVSE adoption propensity by whether the EVSE was a primary 

charging use case or a secondary charging use case. 

 

Primary Charging Use Cases 

For primary charging use cases (SUD, MUD, and fleet), a premise’s EVSE adoption propensity was 

entirely dependent on whether the premise adopted one or more personal EVs or fleet EVs in the 

EV adoption stage. For example, if a residential SUD premise was sized with two BEVs in the EV 

sizing stage and the premise’s score ranked above the necessary threshold in the EV adoption 

stage, then the premise would automatically receive two SUD chargers. The probability associated 

with the type of SUD chargers it adopts (i.e., L1 or L2) were determined for the premise in the EVSE 

adoption target stage. 

Secondary Charging Use Cases 

Because secondary charger use cases were adopted at premises that do not domicile personal 

EVs or fleet EVs, their adoption propensities were based on premise-level features, not whether 

they have adopted an EV. 

Workplace and public adoption propensity scores were the average of two features: 

 

● The premise's percentile rank, based on area, in its county expressed as a value between 0 

and 1 

● The fraction of commercial premises in the premise's Census tract. 

 

The two features were given weights of 0.7 and 0.3, respectively, and Kevala added a degree of 

randomness to incorporate real-world uncertainty. 
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For corridor charger adoption propensity, Kevala assigned each premise a score based on the 

volume of traffic nearby. Kevala used the Caltrans traffic and truck volumes Annual Average Daily 

Traffic (AADT) datasets, which contain data for traffic markers throughout California. For 50 kW 

chargers, Kevala used the total traffic volume; for 350 kW chargers, the volume of trucks was used. 

Traffic volume was expressed as a rank between 0 and 1—that is, the traffic marker with the 

highest total traffic volume had a total traffic volume score of 1, and the marker with the median 

truck volume had a truck volume score of 0.5. To obtain the adoption score for a premise, Kevala 

found the five closest traffic markers and randomly chose one based on a range of different 

probabilities. Kevala added a degree of randomness to incorporate real-world uncertainty. 

A9.8. EVSE Behavior 

Across all EVSE charger types, Kevala generated the hourly EVSE behavior load curves on an hourly 

basis using a model that simulates hourly charging usage based on the input variables contained 

in Table A9-6. 

Table A9-6: EV and EVSE input variables for hourly EVSE load curves (Sources: U.S. Census Bureau, U.S. Bureau 

of Transportation Statistics, NREL, Kevala) 

Input Variable Description 

 
 
 

EVSE Vehicle Inputs 

List of vehicle attributes from EV sizing stage that contain the following 

attributes: 

● Vehicle class: Class of vehicle (e.g., Large SUV, GVWR3) 

● Vehicle quantity: Number of vehicles at the location 

● Capacity: Maximum range/capacity of EV 

● Efficiency: EV efficiency (miles/kWh) 

 
Mean Departure Time / Mean Return 

Time 

The average hour a vehicle departs/arrives at the charging location/ depot 

on an operational day 

Depart Time Standard Deviation / 

Return Time Standard Deviation 

Departure/return time standard deviation 

Mean Route Mileage / VMT Standard 

Deviation 

The average/standard deviation miles an EV travels during an operational 

day between departure and return time 

 
Active Days of Week 

Day of operations for a fleet EV 

Holidays Whether the fleet is operational on Federal U.S. holidays 
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Input Variable Description 

Charge Threshold The state of charge at which EV starts seeking a charge 

Simulation Start / Simulation End Start and end dates of the charging simulation 

 
Charger Type 

The type of charger (L1, L2, DCFC) that makes up the charger or group of 

chargers supporting the EVs at a given premise 

Charger Quantity The number of chargers sited at a given premise 

Power Charger power (kW) from EVSE sizing stage 

 
EVSE Use Case 

EVSE use case for which charging behavior simulation is run; it can be SUD, 

MUD, fleet, public, corridor, etc. 

 

Given a range of input variables provided for a given simulation, an EVSE behavior curve was 

generated such that the vehicles meet their charging requirements in the shortest time available 

given the charging quantity/power. Kevala ran these simulations millions of times across each year 

of each forecast and then aggregated them at scale for all of the appropriate vehicle and charger 

combinations. 

Primary versus Secondary Charging Use Cases 

There are important differences between the primary charging use cases (SUD, MUD, and fleet 

use cases) and the secondary charging use cases (public, workplace, and corridor use cases) for 

EVSE load modeling. 

For primary charging use cases, Kevala sized a premise for some vehicle(s) and then sized for EVSE 

to accommodate them. These vehicles were assumed to be consistently associated with their 

respective primary chargers. Therefore, it was possible to reasonably determine when these 

vehicles use their primary charger (e.g., in the evenings) and how much charge they need (daily 

VMT). For example, if a town had seven premises, and each premise had one small car, each 

premise would also have its own primary L1 or L2 charger (seven primary chargers in total). 

For secondary charging use cases, Kevala sized premises first for EVSE. Because these are 

secondary charge points, the number of assumed charging events (rather than the exact, unique 

vehicle expected to charge at the EVSE) was used to simulate the charger’s behavior curve. Kevala 
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used changing behavior analysis described in the AB 2127 Report,
194

 and the latest version of the 

U.S. DOE’s EVI-Pro 2 tool to develop its assumptions.
195

 The EVSE vehicle inputs (see Table A9-6) 

drawn from geospatially proximate vehicles that have been adopted served as inputs to the EVSE 

behavior curve simulation. Continuing the example from above, the modeling assumption would 

be that each of these small cars uses a public DCFC charger once per week. Table A9-7 provides 

the events-per-day assumptions Kevala made for the secondary charging use cases. 

Table A9-7: Secondary charging use cases: number of charging events per day, by year, EVSE use case, and 

EVSE type (Sources: CEC, Kevala, NREL) 

EVSE Use Case and Type Year Events Per Day 

 

Workplace, L2 

2025 2 

2030 2 

2035 2 

 

Public LDV, L2 

2025 2 

2030 3 

2035 3 

 

Public LDV, DCFC 

2025 4 

2030 5 

2035 6 

 

Public MDV / HDV, DCFC 

2025 4 

2030 4 

2035 4 

 

Corridor LDV, DCFC 

2025 5 

2030 7 

2035 8 

 

Corridor MDV / HDV, DCFC 

2025 6 

2030 6 

2035 6 

 

 

194

 California Energy Commission, Assembly Bill 2127 Electric Vehicle Charging Infrastructure Assessment: 

Analyzing Charging Needs to Support Zero-Emission Vehicles in 2030, July 14, 2021, p. B-6, 

https://efiling.energy.ca.gov/getdocument.aspx?tn=238853. 
195

 National Renewable Energy Laboratory, “Electric Vehicle Infrastructure Projection Tool (EVI-Pro): 

California Energy Commission (CEC) Integrated Energy Policy Report (IEPR) Workshop,” August 6, 2020, p. 10, 

https://www.nrel.gov/docs/fy21osti/77651.pdf. 

https://efiling.energy.ca.gov/getdocument.aspx?tn=238853
https://www.nrel.gov/docs/fy21osti/77651.pdf
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Appendix 10. PG&E Distribution Planning Assumptions 
Pacific Gas and Electric Company (PG&E) provided the capacity planning criteria and typical design 

parameters that are summarized in Figure A10-1. Kevala used these in determining the 

infrastructure requirements in this study. 

Figure A10-1: Assumed design parameters and capacity planning criteria for PG&E (subject to change) 
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Appendix 11. SCE Distribution Planning Assumptions 
Southern California Edison (SCE) provided capacity planning criteria and typical design parameters 

that are summarized in Figure A11-1. Kevala used these in determining the infrastructure 

requirements in this study. 

Figure A11-1: Design parameters and capacity planning criteria provided by SCE 
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Appendix 12.  SDG&E Distribution Planning Assumptions 
San Diego Gas & Electric Company (SDG&E) provided the capacity planning criteria and typical 

design parameters that are summarized in Figure A12-1. Kevala used these in determining the 

infrastructure requirements in this study. 

Figure A12-1: Design parameters and capacity planning criteria provided by SDG&E 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

(End of Attachment 1) 
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