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California has some of the most progressive environmental policies and greenhouse gas reduction goals in the world.
Senate Bill (SB) 100 established a landmark policy requiring renewable energy and zero-carbon resources supply 100
percent of electric retail sales to end-use customers by 2045.

The California Public Utilities Commission initiated the High Distributed Energy Resources Grid Planning Rulemaking! in
July 2021 to prepare the electric grid for anticipated high adoptions of Distributed Energy Resources (DERs), including
those associated with transportation and building electrification.

The Electrification Impacts Study Part 1 (Part 1 Study) was prepared for review within the High DER Proceeding as a first
step towards examining the potential impacts of high adoptions of DERs on the distribution grid, identifying where and
when enhancements and investments could be needed, and estimating the potential costs of meeting these needs.

The Part 1 Study presents a granular bottom-up load forecasting methodology that provides locational and temporal
information on where and when distribution grid enhancements may be needed. Part 1 study also estimates potential
system level costs under an unmitigated scenario.

The preliminary results from the Part 1 Study estimate approximately $50 billion for distribution grid investments by
2035 to accommodate a High DER grid future if measures are not taken to reduce costs and manage load. It is important
to consider the system-level cost and load estimates presented in the Part 1 Study to be preliminary.

It should be noted that the Part 1 Study estimates the potential costs of meeting infrastructure needs being exclusively
met with distribution assets without considering new real-time dynamic rates and flexible load management strategies.
California’s aging grid will also require upgrades in certain areas to ensure continuity of service to support current DERs
and load, even in the absence of additional DERs.

This study is a learning experience and a starting point to open the discussion on how to reimagine distribution grid
planning for the twenty first century and consider the design and implementation of the distribution system needed to
accommodate a High DER grid future.

To meet this challenge, it is critical that we receive stakeholder participation in reviewing this study. The Energy Division
staff underscore that this is a beginning point in the discussion, and welcome feedback and comments on the Part 1
Study and the proposals for future iterations.
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Acronyms and Definitions

Acronyms
AADT: Annual Average Daily Traffic

AAEE: Additional Achievable Energy Efficiency

AAFS: Additional Achievable Fuel Switching

AB: Assembly Bill

AC: Alternating Current

ACC II: Advanced Clean Cars I

ACS: American Community Survey (U.S. Census Bureau)
AMI: Advanced Metering Infrastructure

AUC ROC: Area Under the Receiver Operating Characteristic Curve
BA: Balancing Authority

BE: Building Electrification

BESS: Battery Energy Storage System(s)

BEV: Battery Electric Vehicle

BTM: Behind-the-Meter

C&I: Commercial and Industrial

CARB: California Air Resources Board

CAISO: California Independent System Operator

CARE: California Alternate Rates for Energy

CBECS: Commercial Buildings Energy Consumption Survey

CCA: Community Choice Aggregator
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CEC: California Energy Commission

CEDARS: California Energy Data and Reporting System
CPUC: California Public Utilities Commission

D: Decision

DC: Direct Current

DCFC: Direct Current Fast Charging

DDOR: Distribution Deferral Opportunity Report
DER: Distributed Energy Resource

DIDF: Distribution Investment Deferral Framework
DOE: U.S. Department of Energy

DPAG: Distribution Planning Advisory Group

DPP: Distribution Planning Process

EE: Energy Efficiency

EV: Electric Vehicle

EVI-Pro: Electric Vehicle Infrastructure Projection Tool
EVSE: Electric Vehicle Service Equipment

FTP: File Transfer Protocol

GIS: Geographic Information System

GNA: Grid Needs Assessment

GVWR: Gross Vehicle Weight Rating

HD: Heavy Duty

HDV: Heavy-Duty Vehicle
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HEIAWG: High Electrification Inter Agency Working Group
ICE: Internal Combustion Engine

IEPR: Integrated Energy Policy Report

IOU: Investor-Owned Utility

IRP: Integrated Resource Plan

JASC: Joint Agency Steering Committee (CPUC, CEC, CAISO, CARB)
kV: Kilovolt

KVA: Kilovolt-Ampere

kW: Kilowatt

kWh: Kilowatt-Hour

L1: Level 1

L2: Level 2

LATCH: Local Area Transportation Characteristics for Households Data
LD: Light Duty

LDV: Light-Duty Vehicle

LOR: Load Offset Ratio

LSE: Load-Serving Entity

MD: Medium Duty

MDV: Medium-Duty Vehicle

MLR: Multilevel Logistic Regression

MSS: Mobile Source Strategy

MUD: Multi-Unit Dwelling
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MVA: Megavolt-Ampere

MW: Megawatt

MWh: Megawatt-Hour

NAICS: North American Industry Classification System
NEM: Net Energy Metering

NREL: National Renewable Energy Laboratory
NSRDB: National Solar Radiation Database
NWA: Non-Wires Alternative

OIR: Order Instituting Rulemaking

PCIA: Power Charge Indifference Adjustment
PEV: Plug-in Electric Vehicle

PG&E: Pacific Gas and Electric

PHEV: Plug-in Hybrid Electric Vehicle

Pll: Personal Identifiable Information

PR AUC: Precision Recall Area Under the Curve
PV: Photovoltaic Solar Energy System

R: Rulemaking

RASS: Residential Appliance Saturation Study
RCP 8.5: Representative Concentration Pathway 8.5
SB: Senate Bill

SCADA: Supervisory Control and Data Acquisition

SCE: Southern California Edison
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SDG&E: San Diego Gas & Electric
SIP: State Implementation Plan
SUD: Single-Unit Swelling

SUV: Sport Utility Vehicle

SSS: State SIP Strategy

T&D: Transmission and Distribution
TAC: Transmission Access Charge
TB: Terabytes

TOU: Time-of-Use

UEC: Unit Energy Consumption
U.S.: United States

VIO: Vehicles in Operation

VIUS: Vehicles in Use Survey

VMT: Vehicle Miles Traveled

ZEV: Zero-Emission Vehicle
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Definitions

8760: Generally refers to the number of hours in a typical (non-leap) year.

Adoption model: A model that predicts the consumer's likelihood to adopt a new technology. The

model considers multiple variables that can reliably predict the consumer’s ability and willingness
to adopt a new technology such as the characteristics of early adopters, factors that drive market
potential, and historical adoption rates.

Adoption propensity score: The output from the adoption model. It is a measure of the rank of a
customer’s likelihood to adopt relative to all other customers.

Advanced metering infrastructure (AMI): A time-series energy consumption data measurement
and collection system that includes advanced meters/smart meters at the customer site,
communication networks between the customer and utility, and data collection and management
systems that make the information available to the utility, customer, and authorized third-party
vendors.

Area under the receiver operating characteristic curve (AUC ROC): This metric summarizes
performance over all adoption thresholds and is designed to quantify how well a model is able to
separate adopting premises from non-adopting premises. AUC ROC quantifies how a model
performs on the tradeoff between the true positive rate (e.g., predicting adoption at a premise
where adoption actually occurred) and the false positive rate (e.g., predicting adoption at a
premise where adoption did not actually occur).

Bayesian: An approach to statistical inference that combines prior information about the

distribution of an unknown value with posterior evidence from information contained in a sample.
In data science, it is a popular technique for building models when labeled ground truth data is
relatively limited, but there is subject matter understanding to build upon.

Battery electric vehicle (BEV): Also known as an all-electric vehicle, BEVs use energy that is

stored in rechargeable battery packs. BEVs sustain power through the batteries and must be
plugged into an external electricity source to recharge.

Behind-the-meter (BTM): BTM refers to customer-sited distributed energy resources (DERs) such

as solar PV or battery storage that are connected to the distribution system on the customer’s side
of the utility’s service meter.

Behind-the-meter (BTM) tariff: A set of rate structures (energy based, demand based, or

customer charge) and components (costs related to generation, delivery, transmission, and other
costs) that apply to customers with DERs.
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Building electrification (BE): Refers to the electrification of appliances and equipment in

buildings (e.g., electric heat pump replacing gas heating, electric water heaters replacing gas water
heaters, electric cooktops replacing gas cooktops).?

Bottom-up forecast: A bottom-up method forecasts the generation and load impact from
distributed energy resources (DERs) based on adoption models while considering the
characteristics of early adopters, factors that drive market potential, and adoption rates applied to
the remaining potential customers. The forecast is predicted at a granular level (i.e., at the
customer premise level).

California Independent System Operator (CAISO): CAISO is the electric grid operator for
California’s electrical transmission system.

Coincident peak load: The maximum energy use in an hour compared to all other hours in the

year for a collection of loads, such as premises, feeders, or an entire service area. For example, a
system coincident peak is the peak of the system for all customers in that system.

Distributed energy resources (DERs): Includes distributed renewable generation resources,
energy efficiency measures, energy storage devices, electric vehicles (EVs) and electric vehicle
service equipment (EVSE), time-variant and dynamic rates, flexible load management technologies,
and demand response technologies. Most DERs are connected to the distribution grid behind the
customer’s electric meter, and some are connected in front of the customer’s electric meter.

Demand modifiers: Refers to the expected hourly behavior from DERs that changes the
customer’s overall energy use pattern.

Demand response: Refers to any change in net electricity demand made by the customer in

response to an economic incentive or grid signal to reduce, increase, or shift net-load relative to
what the net-load would have been absent the signal. The change could be temporary or
recurring.

Distribution Planning Process: A process, typically done annually, to forecast electric distribution

equipment upgrade, improvement, or maintenance needs to maintain safe, reliable, and
affordable service while efficiently operating the existing electrical distribution grid.

Electric vehicle service equipment (EVSE): The equipment that interconnects the electricity grid
at a site to an EV. Sometimes used more broadly to mean charging station, whether alternating

2 Electrification of appliances and equipment in buildings is also referred to as fuel switching. Kevala uses
building electrification (BE) throughout this Part 1 Study.
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current (AC) or direct current (DC) but not including other behind-the-meter (BTM) charging-
related infrastructure. EVSE equipment is classified as:

e Level 1 (L1):120 volts AC
e Level 2 (L2): 240 volts, AC
e DC fast charger (DCFC): 480 volts DC and higher

Energy burden: Percent share of the electricity bill costs with respect to the household income.

Fleet EV: Fleet EVs are zero-emission vehicles owned by or registered to an entity (not an

individual) and are used for business-related purposes. Fleet EVs can be LDVs, MDVs or HDVs.
Fleet EVs only have BEV powertrains and can be one of 10 vehicle classes.

Grid integration: The practice of developing efficient ways to deliver variable renewable energy

to the grid. Robust integration methods look at how to maximize the cost-effectiveness of
incorporating variable renewable energy into the power system while maintaining or increasing
stability and reliability.

Gross vehicle weight rating (GVWR): The gross vehicle weight rating of a vehicle is the maximum

allowable weight of the fully loaded vehicle (including passengers and cargo), as rated by the
automobile manufacturer.

Integrated Energy Policy Report (IEPR): California Senate Bill (SB) 1389 requires the California
Energy Commission (CEC) to conduct assessments and forecasts of all aspects of energy industry
supply, production, transportation, delivery and distribution, demand, and prices. The CEC adopts
an IEPR every two years and an update every other year. The energy and DER forecasts produced
in the IEPR are used in the California utilities’ Distribution Planning Process.

Integrated Resource Plan (IRP): A procurement plan used by utilities that details what resources

are to be procured and how they will be procured to comply with California's climate and energy
policies, adequately balance safety, reliability, and cost, while meeting the state’s environmental
goals described in SB 350 and SB 100.

Mean absolute error: Defined as the sum of absolute errors between predicted and actual
values, divided by the sample size. A smaller value is better.

Mean absolute percentage error: Average of the absolute percentage errors between the

predicted and the actual values. It quantifies the relative versus the absolute typical difference,
but it has limited usefulness if the actual values are near zero, where the mean absolute
percentage error tends towards infinity.
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Multilevel logistic regression (MLR): Logistic regression is a machine learning algorithm, similar
to linear regression but designed to predict a binary outcome with a score in [0.0, 1.0] so that it
can be applied to classification problems. A multilevel logistic regression separates the population
into clusters before applying a logistic regression to the population belonging to each cluster and
may be more effective if the differences between those clusters are consistently more substantial
than the differences within the clusters.

Net energy metering (NEM): Metering and billing arrangement designed to compensate any

generation from DERs that is exported to the utility grid during times when it is not serving onsite
load via a bill credit for excess generation.

Net-load: The expected address-level energy use served by the investor-owned utility (IOU) or, in
the case of reverse flow, the level of energy the customer is exporting to the grid and the IOU is
expected to accept and distribute. It is the sum of actual energy use behind the meter plus or
minus the demand-modifying behaviors from DERs.

Node: A transmission node refers to the interface between the distribution and the transmission
electric power systems. At transmission nodes, the distribution system is typically represented as
an aggregate lumped load in transmission models. Nodes can also be referred as
transmission/distribution interfaces or T-D interfaces.

Non-coincident peak load: The maximum energy use of customers, groups of customers, or grid
assets; it does not necessarily coincide with the hour of the coincident peak. For example, a
customer’s peak load is considered non-coincident as it may differ from the system coincident
peak. Similarly, a feeder coincident peak, or the peak on that feeder, may be non-coincident with
the system peak.

Non-wires alternative (NWA): An electricity grid investment or project that uses non-traditional

transmission and distribution (T&D) solutions, such as DERs and load management technologies,
to defer or replace the need for specific equipment upgrades, such as transmission lines or
transformers.

Order Instituting Rulemaking: Rulemaking proceeding opened by the California Public Utilities
Commission (CPUC) to consider the creation or revision of rules, general orders, or guidelines
affecting more than one utility or a broad sector of the industry. Comments, proposals, and
testimony are submitted by parties to the Order Instituting Rulemaking in written form; oral
arguments or presentations are sometimes allowed.

Peak load: The maximum energy use in an hour compared to all other hours in the year. Peak can
be used synonymously with coincident peak, which is the maximum energy use in an hour for a
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collective group of customers. For example, a system coincident peak is the peak of the system for
all customers in that system. Similarly, feeder peak is the peak load for all load connected to that
feeder. The individual peaks of customers may differ from the coincident peak and are referred to
as non-coincident peaks.

Plug-in hybrid electric vehicle (PHEV): Vehicles powered by an internal combustion engine (ICE)
and an electric motor that uses energy stored in a battery. The vehicle can be plugged into an
electric power source to charge the battery. Some can travel nearly 100 miles on electricity alone,
and all can operate solely on gasoline (like a conventional hybrid vehicle).

Power charge indifference adjustment (PCIA): A charge or credit to community choice
aggregator (CCA) customers that reflects the difference in the portfolio costs for each IOU and the
market value of the portfolio. This mechanism is designed to ensure customers are indifferent to
receiving services from a CCA versus the incumbent 10U, consistent with legislative requirements.
PCIA rates are based on the year the customer moves to a CCA to ensure the departing customer
is not responsible for incremental portfolio costs incurred after joining the CCA. These rates that
vary based on year are referred to as the “vintage” of the PCIA rate.

Precision: An evaluation metric that measures the adoption model’s ability to identify relevant

data points, such as if a customer adopted. It is calculated by taking the number of true positives
(number of times an actual adoption was predicted) divided by the number of true positives plus
the number of false positives (the number of times an adoption was predicted that was not seen
in the base data).

Precision recall area under the curve: The area under the precision recall curve, which is used

to assess the performance over all the adoption thresholds as represented by the precision and
recall metrics.

Premise: Contiguous geographic area used by a utility to track billing and usage. It contains
service points and meters and should have an address assigned to it.

Recall: An evaluation metric that measures the adoption model’s ability to identify all relevant

cases within a dataset. It is calculated by taking the number of true positives divided by the
number of true positives plus the number of false negatives.

Root mean squared error: The square root of the average squared difference between the

predicted and actual values. It is similar to mean absolute error, but it is more sensitive to outliers
where the prediction was far from the actual value.
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System-level cost estimate: For the purposes of Part 1 of the Electrification Impacts Study,
aggregate system-level costs for each investor-owned utility derived from premise-level load
profiles that are applied to known utility infrastructure elements and utility-specific network unit
costs (i.e., unit costs of traditional infrastructure). System-level cost estimates are designed to
holistically quantify the level of traditional grid investment required to meet the different policy-
based outcomes studied in this Part 1 Study in 2025, 2030, and 2035 for Pacific Gas and Electric,
Southern California Edison, and San Diego Gas & Electric. With the potential inclusion of mitigation
strategies in Part 23 of the Electrification Impacts Study, this definition may be updated.

Time-of-use (TOU) rate: A rate plan with rates that vary according to the time of day, season, and

day type (weekday or weekend/holiday). TOU rates can encourage the efficient use of the system
and can reduce the overall costs for the utility and its customers.

Top-down allocation: A method for providing a transmission system-level aggregate load and

DER forecast that disaggregates the load and DER forecast to distribution circuits based on utility
data for the circuit (e.g., load, energy, or number of customers) or statistical propensity models.

Vehicle duties: A vehicle duty refers to the three duty types that the U.S. Federal Highway
Administration uses to categorize vehicles by gross vehicle weight rating (GVWR). The duty types
are:

e Light-duty vehicle (LDV): <10,000 GVWR

e Medium-duty vehicle (MDV): 10,001-26,000 GVWR

e Heavy-duty vehicle (HDV): > 26,001 GVWR

Zero-emission vehicle (ZEV): Vehicles that produce no emissions from the onboard source of
power (for example, hydrogen fuel cell vehicles and EVs). Electric vehicles are broken further into
two categories: BEVs and PHEVs.

3The Research Plan for the Electrification Impacts Study had identified Part 2 as an evaluation of the I0Us’
Grid Needs Assessment (GNA)/Distribution Deferral Opportunity Report (DDOR) filings and
recommendations for near-term improvements, followed by a Staff Proposal. This step has been renamed
as the GNA/DDOR Evaluation and Staff Proposal. As such, the next part of the Electrification Impacts Study
will be referred to as Part 2 throughout this report (previously referred to as Part 3).

Part |: Bottom-Up Load Forecasting and System-Level Electrification Impacts Cost Estimates, Kevala, Inc. XX



kevalal R.21-06-017 ALJ/ML2/KHY/fzs

Executive Summary

The California Public Utilities Commission (CPUC) recognizes that successfully achieving
California’s electrification and decarbonization goals depends on an electricity grid that can
support diverse electrification technologies at scale while maintaining system reliability and
ensuring equity and affordability of electricity service for all Californians. This Electrification
Impacts Study aims to provide in-depth analysis in support of the policy questions under
deliberation at the CPUC.

Specifically, the two-part Electrification Impacts Study series seeks to address the following
question: what is the scope and scale of potential electric grid impacts and the associated
costs necessary to support California’s ambitious electrification goals?

This Part 1 Study provides preliminary estimates of the scope and scale of potential electric
distribution grid impacts for Pacific Gas and Electric (PG&E), Southern California Edison (SCE), and
San Diego Gas & Electric (SDG&E) from widespread transportation electrification and solar
photovoltaic (PV) penetration by 2035. This study develops, for the first time, a highly granular
load forecast for over 12 million premises across California for baseline load and distributed
energy resource (DER) adoption, including PV, battery energy storage systems (BESS), energy
efficiency (EE), building electrification (BE), and electric vehicles (EVs).

Kevala, Inc. (Kevala) developed and analyzed a base, or reference case, calibrated to California’s
Integrated Energy Policy Report (IEPR) and four unmitigated, policy-based alternate planning
scenarios; these alternate scenarios focused on modeling transportation electrification loads
under differing policy scenarios as transportation electrification is anticipated to be the most
significant factor driving increased loads in the near term.** The Part 1 Study also considered two
different behind-the-meter (BTM) tariffs in the scenarios (described further in Section 1.2.3).

It is important to highlight that this Part 1 analysis was conducted under unmitigated planning
scenarios, which assume only traditional utility distribution infrastructure investments. The Part 1
analysis assumed existing time-of-use (TOU) rates and BTM tariffs would be in place throughout

*The planning scenarios, assumptions, and data constraints are described in Section 1.2.1 and Appendix 3.
These constraints are expected to be addressed in follow-up studies. The follow-up study scenarios may be
revised based on stakeholder and agency feedback.

> BE loads are also expected to significantly impact the electric grid based on the California Air Resources
Board’s (CARB’s) 2022 State Implementation Plan, which includes zero-emission measures for space and
water heating to be implemented by 2030. BE scenarios are proposed to be part of future phases of the
analysis planned for the High DER Proceeding (i.e., Part 2 of the Electrification Impacts Study).
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the study timeframe. It did not consider alternatives or future potential mitigation strategies such
as alternative time-variant rates or dynamic rates and flexible load management strategies.

Follow-up analysis in the study series is proposed include additional statewide electrification
scenarios with baseline load and transportation electrification methodologies and scenarios that
will be updated with additional data. Kevala also proposes adding BE scenarios aligned to state
policy targets and considering potential mitigation strategies in case studies that could inform
ways of managing grid impacts and the costs of grid investments.

Background and Study Objectives

This report summarizes Kevala’s approach, results, and insights for Part 1 of the Electrification
Impacts Study: Bottom-Up Load Forecasting and System-Level Electrification Impacts Cost
Estimates. The CPUC commissioned the Electrification Impacts Study to support Rulemaking (R.)
21-06-017: the Order Instituting Rulemaking (OIR) to Modernize the Electric Grid for a High Distributed
Energy Resources Future.® This OIR is focused on preparing the grid to accommodate a high DER
future, capturing as much value as possible from DERs, and mitigating unintended negative grid
impacts. This OIR is referred to as the High DER Proceeding throughout this report, while Part 1 of
the two-part Electrification Impacts Study is referred to as the Part 1 Study.

The Electrification Impacts Study was designed to inform a number of the scoping questions
issued in the November 15, 2021, Scoping Ruling and was guided by the Electrification Impacts
Study Research Plan (Research Plan),” submitted to the CPUC on March 29, 2022. As defined in the
Research Plan, the Electrification Impacts Study (split into two parts) will:

e Enable the identification of grid enhancements and changes necessary to support
California’s stated transportation and building electrification policy goals by 2035.

e Consider alternatives for evaluating distribution capacity expansion and deferral options
into the utilities’ Distribution Planning Process (DPP).

e Explore increasing the granularity of technology adoption models in high electrification
scenarios to inform the development of mitigation strategies which will seek to optimize
grid planning, maximize the equity and reliability benefits, and minimize the costs of high
electrification.

6 R.21-06-017, opened with an Order Instituting Rulemaking to Modernize the Electric Grid for a High Distributed
Energy Resources Future, issued on July 2, 2021,
https://apps.cpuc.ca.gov/apex/f2p=401:56:0::NO:RP,57,RIR:P5_PROCEEDING_SELECT:R2106017

" The full scope of the Electrification Impacts Study is detailed in the Research Plan, dated March 29, 2022,
https://uploads-ssl.webflow.com/62a236€9692c48e1d16898b3/62d8509da2f405169ee10dd0_2022-
0329_Electrification%20lmpacts%20Study_Final%20Research%20Plan.pdf
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e Improve clarity and transparency of electrification scenario inputs, methodologies, and
outputs across state energy planning agency processes.

This Part 1 Study is a granular customer electricity consumption data analysis designed to
support electricity distribution grid planning processes that enable California to meet its state
energy goals. This part of the study builds the foundation for a novel framework for distribution
planners and policymakers to evaluate grid needs and value grid solutions based on the hyper-
granular location of electrification needs. The scope of this Part 1 Study includes the customers
and grid infrastructure for the three large California investor-owned utilities (IOUs): PG&E, SCE,
SDG&E.

This Part 1 Study is intended to address two main objectives:

1. Estimating system-level unmitigated grid infrastructure costs associated with achieving
California electrification policies over longer timeframes than current distribution planning
processes (inclusive of distribution grid requirements down to the service transformer
level).

2. Demonstrating and assessing new planning and analytic methods, including scenario
planning, that enable more granular forecasting accuracy, ability to estimate where and
when electrification loads will occur, and the potential impact of DER growth on forecasts.

Part 2° of the Electrification Impacts Study proposes to build on the Part 1 results. Leveraging
additional data, Part 2 proposes updating the load forecast developed in Part 1 and creating a
framework for estimating utility-specific grid investment and assessing programmatic
enhancements (e.g., TOU rate structures) and their costs under various scenarios with high DER—
namely transportation and BE forecasts, grid integration technologies such as advanced DER
controls and flexible load management, and the implications of managed DER growth.

Data Availability and Assumptions

Central to this study was the collection, ingestion, mapping, and analysis of many data sources.
Over 100 terabytes of time series data, geospatial and utility grid network data, and
socioeconomic data were collected and joined (or linked) to enable Kevala’s modeling of each
premise. The analysis described in this report relied on these multiple, voluminous datasets and
on specific sets of assumptions about each DER type and rate structures and designs that have

8The Research Plan for the Electrification Impacts Study had identified Part 2 as an evaluation of the IOUs’
Grid Needs Assessment (GNA)/Distribution Deferral Opportunity Report (DDOR) filings and
recommendations for near-term improvements, followed by a Staff Proposal. This step has been renamed
as the GNA/DDOR Evaluation and Staff Proposal. As such, the next part of the Electrification Impacts Study
will be referred to as Part 2 throughout this report (previously referred to as Part 3).
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since changed. Updated data beyond the study period used for this report is now available, and
certain programmatic assumptions have evolved since the Research Plan parameters of this
analysis were finalized in 2022.'8 All of the data elements requested and applied for this study are
identified in the Research Plan and further described in Section 1.2.1 and Appendix 2 of this
report. The methods and results documented in this reporteither discuss data types and uses or
depict aggregated data in charts and graphics. None of the methods or findings documented in
this report are considered confidential.

The Part 1 Study used the following modeling approach applied to the data received:

e Estimate each customer’s load over the study period using machine learning based on the
actual customer data received to date.

e Develop a premise-specific load profile that reflects adoption of EE, PV, BESS, BE, and EVs.

e Calibrate the results of this modeling to the California Energy Commission’s (CEC’s) 2021
Integrated Energy Policy Report’s (IEPR’s) system-level forecasts to ensure consistency with
the IOUs’ GNAs and the IEPR.®

e Aggregate premise-level load profiles that include DER-specific adoption up to the IOU
service territory level.

e |dentify the magnitude and location of DER adoption and resulting high electrification
anticipated for a base case and four alternate scenarios focusing on two DER types,
transportation electrification and net energy metering (NEM) BTM tariffs for 2025, 2030,
and 2035."°

e Identify system-level grid impacts, costs, and affordability of electricity service for
customers.

° This approach is similar to how the IOUs ensure the forecast used for annual GNA/DDOR preparation does
not exceed the IEPR demand forecast. However, the GNA/DDOR process for calibrating to the IEPR is
complicated by the known loads issue, as described in Section 3 (pp. 26-34) of the 2022 Independent
Professional Engineer Post DPAG Report.

' NEM BTM tariffs refer to a hypothetical alternative compensation structure for BTM PV based on the
December 2021 Proposed Decision for R.20-08-020 and incorporate a monthly grid access charge and
specific export rate. In December 2022, the CPUC adopted the Net Billing Tariff in proceeding Decision (D.)
22-12-056, which has a different structure than the scenarios included in this study; therefore, the results
of these scenarios do not reflect what will happen with the newly adopted Net Billing Tariff. For Part 2 of the
Electrification Impacts Study, the 2022 Net Billing Tariff (adopted December 15, 2022 by D.22-12-056) will be
used for analytical purposes.

The transportation electrification scenario inputs, drawn from CARB and CEC projections as discussed in
Appendix 9, incorporate a range of different zero-emission vehicle (ZEV) adoption levels, including personal
vehicles and medium- and heavy-duty freight and port vehicles that were incorporated into the CEC’s 2021
Updated IEPR.
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For this Part 1 Study, Kevala created different combinations of transportation electrification and
NEM BTM tariff outcomes for the scenarios. These two specific DERs were selected for the
scenario analysis, in part, to isolate the impact of these two relatively meaningful and dynamic
DERs. Further, at the time the Part 1 analysis was finalized, transportation electrification and NEM
BTM tariffs had existing or pending state-defined policy goal projections and definitions that
served to tie the scenarios studied to actual or proposed state policies. This is not to suggest other
DERs such as BE or PV will not be studied or impactful for California’s electrification efforts; rather,
the goal of Part 1 of the Electrification Impacts Study is to isolate and identify the likely grid
impacts from two specific DERs for which there is less program data or for programs that are
changing.

Further, this study applied existing BTM tariff assumptions and modified BTM tariff assumptions,
as described in Section 1.2.3. The existing BTM assumptions were based on the NEM 2.0 Tariff,
and the modified BTM tariff design was based on the December 13, 2021 Proposed Decision for
proceeding R.20-08-020.'"' This was the best available information at the time of the Research
Plan’s completion. For Part 2 of the Electrification Impacts Study, the 2022 Net Billing Tariff
(adopted December 15, 2022 by Decision (D.) 22-12-056) will be used for analytical purposes.

Results

California’s electricity grid is changing rapidly, driven by significant changes at the premise level.
Customer programs and rate designs tailored to elicit individual customer behaviors and
responses, changing customer technologies, ambitious statewide energy policy goals, and
localized wildfire and climate change impacts all contribute to dynamic electricity grid changes
that are unique to each premise. The results of this Part 1 Study build the foundation for an
improved framework for distribution planners and policymakers to evaluate grid needs and value
grid solutions based on the hyper-granular location of electrification needs.

The results of this Part 1 Study illustrate how consolidating these extensive data sources yields
important insights into where and when distribution grid enhancements are likely to be
needed to support the premise-level impacts of grid electrification, which is critical as California
enters a period of capacity expansion and DER proliferation to support state policy goals. These
results also help to understand the quality and scope of utility data and to challenge some

" Modified BTM tariff assumptions were based on the December 13, 2021, Proposed Decision for
proceeding R.20-08-020 (Order Instituting Rulemaking to Revisit Net Energy Metering Tariffs). The Proposed
Decision was not adopted by the Commission; it is available at:
https://docs.cpuc.ca.gov/PublishedDocs/Efile/G000/M430/K903/430903088.PDF. Instead, D.22-12-056
adopted the Net Billing Tariff.
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traditional DER program assumptions. The following summarizes these and other results of
Kevala’s Part 1 Study.

Grid Requirements and Associated Costs

Electric distribution grid requirements and their associated costs increase significantly
beyond the traditional distribution grid planning cycle, risking stranded investments or
missed investment opportunities altogether if datasets are not connected and analyzed
holistically.

e Across these unmitigated load scenarios, Kevala estimates up to $50 billion in
traditional electricity distribution grid infrastructure investments by 2035 (see Figure
ES-1). This estimate reflects distribution grid needs across the PG&E, SCE, and SDG&E
service territories under the policy assumptions used in this report. These costs are
estimated with a focus on traditional utility distribution infrastructure investments. Existing
TOU rates and BTM tariffs were assumed. The study did not consider alternatives or future
mitigation strategies such as alternative time-variant or dynamic rates and flexible load
management strategies.

e Kevala examined several scenarios'? for this Part 1 Study. Both of the High Transportation
Electrification scenarios would result in almost doubling the current rate of spend reported
by the I0Us in the GNA reports for capacity requirements related to feeders, transformer
banks, and substations.” These Part 1 Study costs reflect the impact of unmitigated loads.

e Secondary transformer and service upgrades alone are a non-negligible contribution to the
total grid capacity upgrade costs, comprising an estimated $15 billion of the $50 billion
identified previously and are currently not accounted for in the IOUs’ annual GNA reports.
PG&E’s distribution circuits are projected to reach capacity sooner than SCE and SDG&E.
SDG&E is expected to have the least number of feeders reaching full capacity by 2035, with
22% compared to SCE’s 36% and PG&E's 48% of feeders.

e The system-level peak load increase from 2025 to 2035 is 56%, on average, across the three
IOUs and High Transportation Electrification scenarios' (see Figure ES-2); this dramatic

'2 Kevala generated premise-specific forecasts for five scenarios. The base case represents a premise-level
forecast that calibrates the baseline load forecast and the individual demand modifier forecasts to the 2021
IEPR mid-mid case. Each of the four alternate scenarios considers a different combined projection for NEM
BTM tariffs and the speed and scope of transportation electrification.

¥ This Part 1 Study evaluates upgrades at the substation, transformer bank, feeder, and service transformer
level. It does not include line section upgrades related to the primary lines between the feeder head and the
service transformers.

“These High Transportation Electrification scenarios are based on the expected level of transportation
electrification necessary to meet California’s policy goals, such as the transportation electrification goals

Part |: Bottom-Up Load Forecasting and System-Level Electrification Impacts Cost Estimates, Kevala, Inc. ES-6



kevala" R.21-06-017 ALJ/ML2/KHY/fzs

increase in peak load for the scenarios considered in Part 1 is primarily due to
transportation electrification impacts, with over 60% of this demand coming from light-duty
vehicles (LDVs).'” Peak load is the primary driver of the grid capacity upgrades considered

in this Part 1 Study.
e The average percent change in peak load from 2025 to 2035 for the High Transportation

Electrification scenarios is more dramatic for PG&E (69%), followed by SDG&E (53%) and
SCE (44%).

Figure ES-1: Estimated total capacity upgrade costs for the three large California IOUs, including new
substations, transformer banks, feeders, and service transformers (Source: Kevala)
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.J..ulle

2025 2030 2035

Upgrade Cost in Billions ($)

B (1) Base Casa 2021 IEPR W (2) High Transportation Elactrification + Existing BTM Tariffs
B (3) High Transportation Electrification + Modified BTM Tarifls W (4) Accal. High Transportation Elactrification + Existing BTM Tariffs
B (5) Accel. High Transporiation Electrification + Modifled BTM Tariffs

promulgated in Executive Order N-79-20 and incorporated into CARB regulation in 2022. The main
difference between the High Transportation Electrification and Accelerated High Transportation
Electrification scenarios is the speed at which transportation electrification will occur in 2030 and 2035.

'* Kevala can revisit considering BE targets aligned with state and federal policy goals and incentives in the

Part 2 Study.
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Figure ES-2: Peak demand percent change by IOU, study year, and scenario (Source: Kevala)
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Transportation Electrification Grid Impacts

Of the DERs selected in this Part 1 Study for alternate scenario development—transportation
electrification and NEM BTM tariffs—transportation electrification results in significantly
greater distribution grid impacts relative to the BTM tariffs assumed in the Part 1 Study.®

e Transportation electrification grid requirements and costs escalate in earnest in 2030 and
dramatically increase by 2035 regardless of scenario. The current DPP looks out only five
years. This planning framework may not be able to plan for the expected rapid increase in
transportation electrification-related infrastructure due to the lead times involved for

'* To distinguish between the two BTM tariff scenarios, the existing BTM rate design assumed that the NEM
2.0 Tariff structure would persist through the study period. The modified BTM rate design includes a
monthly grid access charge of $5/kW and an export rate that offsets the generation rate identified. This
structure was consistent with the proposed decision in the proceeding to reform NEM (R.20-08-020) issued
on December 13, 2021. Rather than modeling the exact proposal in that proposed decision, Kevala chose
this simplified structure as a scenario because it was generally consistent with the proposed decision at the
time. Since the study was conducted, the CPUC adopted a final Decision on December 15, 2022 to reform
NEM by creating a Net Billing Tariff.
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electric distribution grid infrastructure, including mitigation strategies to large capital
expenses.

e The NEM BTM tariff scenario used in this Part 1 Study has relatively minimal impact on total
electrification grid upgrade costs.

Granular Approach
The premise-level approach taken in this Part 1 Study enables a robust assessment of utility
distribution grid needs, including:

e The What: Identification of a broader scope of infrastructure needs than other studies and
an understanding of the relative contribution to net-load of the DERs studied.

e The When: A longer planning time horizon than the current DPP.

e The Where: The ability to analyze premise-level data and aggregate up provides
transparency and opportunities for multiple scenario analysis, including specific locational
grid needs and the demographic characteristics of those needs.

e The How Much: Differences in unit cost assumptions and grid need calculations between
utilities that require further transparency and analysis.

Recommendations for Distribution Planning Process Improvements
This Part 1 report also proposes recommendations for improvements on DPPs. The substantial
difference between the estimated capacity expansion costs, in the several tens of billions of
dollars, in this study and the recent filings by the IOUs suggest there is a disconnect between the
data and the current planning process and framework that, to date, results in minimal-to-no
deferral opportunities being implemented.

Also, the significant future grid requirements identified in this study enable the examination of all
least-cost options for meeting the reliability, resiliency, and most equitable solutions for those grid
requirements on a location-specific basis. Those solutions could include traditional utility
distribution upgrades and investments, as well as alternative time-variant rates or dynamic rates,
and flexible load management strategies.

In this Part 1 Study, Kevala has demonstrated that it is possible to disaggregate load and DER
growth at a premise level:

e Over a 15-year time horizon, which is a longer forecast time horizon (to 2035) than is
currently performed for regulatory filings.

e Incorporating multiple scenarios for each of the three IOU service territories in less than
one year (the timeframe to conduct the study).
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e |dentifying significant potential capacity costs previously not identified in current utility
distribution planning filings.

As such, Kevala proposes the following key recommendations:

Recommendation 1: PG&E, SCE, and SDG&E should increase the planning horizon for
their distribution planning filings. The expected adoption rate of technologies at the grid
edge (i.e., at the premise level) in the long term to meet federal and state decarbonization and
electrification policies may require the distribution planning horizon to be increased to align
with the CEC’s IEPR planning horizon (15 years)'” and the California Independent System
Operator’s (CAISQ’s) transmission planning horizons (10 years for annual planning and 20
years for transmission outlook). Increasing the planning horizon for distribution planning
filings should help to prepare more efficiently for a distribution grid that can maximize the
cost-effectiveness of incorporating DERs and load management technologies to increase
system capacity and reliability.

Recommendation 2: PG&E, SCE, and SDG&E should incorporate additional policy-based
demand scenarios into their DPPs and annual GNA/DDOR filings. For example, scenarios
can consider managed charging assumptions or different rates of EV and BE adoption to better
understand the impact of higher or lower electrification loads on planned investments for grid
infrastructure. As this Part 1 Study shows, an uncertain load and DER future requires scenario
planning that would result in multiple load and DER scenarios being disaggregated in the DPP
to better inform the overbuilding and underbuilding risks involved in planning for grid
infrastructure needs.

This Part 1 Study, by leveraging advanced metering infrastructure (AMI) consumption data and
performing a premise-level modeling of load and DER potential futures, was able to estimate grid
upgrades for the scenarios considered at the service transformer level across the PG&E, SCE, and
SDG&E territories. Kevala recommends that the DPP consider secondary distribution

17 As stated in the 2021 IEPR at p. 2, “For the 2021 forecast, these energy demand forecasts are extended
out beyond 10 years to 2035 to provide planners with a longer forecasting horizon and support planning for
transportation electrification goals.” The 2021 and 2022 IEPRs went beyond 10 years to 2035 (15 years), and
the 2021 IEPR also included long-term energy demand scenarios to 2050 (30 years) because of increasing
policy and planning focus on climate change. See also Public Utilities Code Section 454.57(e)(1), which as of
2022, requires “at least 15 years” to ensure adequate lead time for permitting and construction of approved
transmission facilities.

Part |: Bottom-Up Load Forecasting and System-Level Electrification Impacts Cost Estimates, Kevala, Inc. ES-10


https://leginfo.legislature.ca.gov/faces/codes_displaySection.xhtml?lawCode=PUC&sectionNum=454.57

kevala R.21-06-017 ALJ/ML2/KHY/fzs

infrastructure grid needs,'® as described in Recommendation 3, so that such grid upgrades do not
become a bottleneck for electrification and are proactively planned for in a cost-effective way.

Recommendation 3: PG&E, SCE, and SDG&E should provide an estimate of secondary
distribution infrastructure grid needs to support future state electrification goals in the

GNA/DDOR filings, so that secondary infrastructure can be accounted for and proactively
planned in a high DER future.

The scope of this Part 1 Study, in terms of understanding the impact on the unmitigated load and
DER growth in the scenario considered, stopped at the distribution substation level. However, it is
becoming important to also understand the impacts on the sub-transmission and transmission
infrastructure. In addition to the recommendations from its evaluation of the IOUs’ 2022 GNAs
and DDORs, " Kevala recommends that the DPP should be able to map the transmission and
distribution nodes that are at risk of large capacity grid infrastructure needs, as identified in this
Part 1 Study, to enable coordinated and integrated planning of grid infrastructure and mitigation
strategies between the distribution and transmission planning processes.

Recommendation 4: PG&E, SCE, and SDG&E should provide information in the GNA
regarding distribution planning areas located in transmission- and sub-transmission-

constrained nodes,2° and DDOR planned investment cost estimates should consider
associated higher voltage upgrade costs that may be triggered by the distribution investment.

Improving California’s understanding of where and when electricity grid enhancements will be
needed will likely require additional changes on multiple policy fronts. Data collection and

integration across California load-serving entities (LSEs) beyond the three I0Us studied in this
Electrification Impacts Study, for example, would enable more complete forecasting for DER

'8 The secondary grid is the part of the electric distribution system between the primary feeder and the
customer. The secondary distribution system includes distribution service transformers and secondary main
and service conductors to the customer meter. The primary distribution grid is the feeder lines between the
substation and the distribution service transformer.

' See Kevala’s Distribution Investment Deferral Framework: Evaluation and Recommendations report, provided
to the R.21-06-017 service list on November 14, 2022. The report can be found here: https://uploads-
ssl.webflow.com/62a236e9692¢48e1d16898b3/63729a90e35f9cb53c617a14_DIDF%20Evaluation%20and%?2
ORecommendations_Kevala_11.14.22.pdf.

20 A transmission node refers to the interface between the distribution and transmission electric power
systems. At transmission nodes, the distribution system is typically represented as an aggregate lumped
load in transmission models.
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technologies like EVs that transcend traditional utility boundaries. Specific technology and
program policy modifications and regulatory process changes that enable enhanced scenario
planning can also be effective tools to increase transparency and manage grid integration risks.
Kevala’s observations relating to additional policy-related changes related to data, DER forecasting
methodologies, and distribution planning processes gleaned in the course of completing this Part
1 Study are outlined in Section 4 of this report.

CPUC Energy Division Staff are conducting a stakeholder review process that will include formal
comments to receive input on the current study (Part 1 of the Electrification Impacts Study) and
the scope of the future analysis (Part 2 of the Electrification Impacts Study).

Considerations for the Part 2 Study

There are numerous areas of focus to consider in Part 2 of this Electrification Impacts Study.
Kevala’s options for evolving the premise-based analysis began in this Part 1 Study and will be
further refined for inclusion in the Part 2 Study. These options are provided in Section 4.3, and
they center on:

e Improvements and updates to certain methodologies developed for Part 1, particularly for
transportation electrification and BE.

e Development of scenarios that reflect the most recent policy goals, programs, adopted
IEPR demand forecast, and targets adopted by state agencies, in particular those related to
BE.”

e Potential localized detailed case studies to be identified in Part 2 that would be designed to
show the geographic, demographic, and economic impacts on specific customer groups in
identified geographic regions.

e Additional and improved data, both from the three IOUs that were the foundation of this
Part 1 Study and from other LSEs and regulatory agencies across California.

The Part 2 Study will be designed to support the Phase 1, Track 2 questions identified in the High
DER Rulemaking Scoping Memo? by building on the framework created in Part 1.

21 “Appendix F - Building Decarbonization,” California Air Resources Board Draft 2022 Scoping Plan, May
2022, and reflected in the CEC IEPR 2022 as described in “Scoping Order for the 2022 Integrated Energy
Policy Report Update,” California Energy Commission Docket No. 22-1EPR-01.

22 “Assigned Commissioner’s Scoping Memo and Ruling” for R.21-06-017, Order Instituting Rulemaking to
Modernize the Electric Grid for a High Distributed Energy Resources Future, effective November 15, 2021,
https://docs.cpuc.ca.gov/PublishedDocs/Efile/G000/M422/K949/422949772.PDF.
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| .Introduction

This report summarizes Kevala, Inc.’s (Kevala’s) approach, results, and insights for Part 1 of the
Electrification Impacts Study: Bottom-Up Load Forecasting and System-Level Electrification
Impacts Cost Estimates.? The California Public Utilities Commission (CPUC) commissioned the
Electrification Impacts Study to support Rulemaking (R.) 21-06-017: the Order Instituting Rulemaking
(OIR) to Modernize the Electric Grid for a High Distributed Energy Resources Future.** This OIR is
focused on preparing the grid to accommodate a high distributed energy resource (DER) future,
capturing as much value as possible from DERs and mitigating unintended negative grid impacts.
(This OIR is referred to as the High DER Proceeding throughout this report, while Part 1 of the two-
part Electrification Impacts Study is referred to as the Part 1 Study.) The Part 1 Study was guided
by the Electrification Impacts Study Research Plan (Research Plan), submitted to the CPUC on March
29, 2022. The Research Plan stated the following goals:

e Enable the identification of grid enhancements and changes necessary to support
California’s stated transportation and building electrification policy goals by 2035.

e Consider alternatives for evaluating distribution capacity expansion and deferral options
into the utilities’ Distribution Planning Process (DPP).

e Explore increasing the granularity of technology adoption models in high electrification
scenarios to inform the development of mitigation strategies which will seek to optimize
grid planning, maximize the equity and reliability benefits, and minimize the costs of high
electrification.

e Improve clarity and transparency of electrification scenario inputs, methodologies, and
outputs across state energy planning agency processes.

The Research Plan outlined a multi-part study approach, as shown in Figure 1.%

2 The full scope of the Electrification Impacts Study is detailed in the Research Plan, dated March 29, 2022,
https://uploads-ssl.webflow.com/62a236e9692c48e1d16898b3/62d8509da2f405169ee10dd0_2022-
0329_Electrification%20Impacts%20Study_Final%20Research%20Plan.pdf

24 R.21-06-017, opened with an Order Instituting Rulemaking to Modernize the Electric Grid for a High Distributed
Energy Resources Future, issued on July 2, 2021,
https://apps.cpuc.ca.gov/apex/f2p=401:56:0::NO:RP,57,RIR:P5_PROCEEDING_SELECT:R2106017

2> The Research Plan for the Electrification Impacts Study had identified Part 2 as an evaluation of the IOUs’
Grid Needs Assessment (GNA)/Distribution Deferral Opportunity Report (DDOR) filings and
recommendations for near-term improvements, followed by a Staff Proposal. This step has been renamed
as the GNA/DDOR Evaluation and Staff Proposal. As such, the next part of the Electrification Impacts Study
will be referred to as Part 2 throughout this report (previously referred to as Part 3).
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Figure 1: The Electrification Impacts Study parts and deliverables (Source: Kevala)
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This Part 1 Study is a granular customer electricity consumption data analysis across all customer

classes designed to support electricity distribution grid planning processes that enable California
to meet its state energy goals. This part of the study builds the foundation for an improved
framework for distribution planners and policymakers to evaluate grid needs and value grid
solutions based on the hyper-granular location of electrification needs.

Part 2 of the Electrification Impacts Study is designed to build on these Part 1 results, leveraging

additional data to develop an updated framework for estimating localized grid requirements and
mitigations that will facilitate the electrification of California’s energy system.

The local grid impacts and associated costs developed through this Part 1 Study are indicative of
the scope and scale of potential unmitigated loads and the associated traditional grid buildout to
support electrification. These results are not comprehensive. In Part 2, Kevala proposes to update
the data used, refine key elements of analysis, and identify potential mitigations for specific
locations to build out a localized distribution planning framework.

The scope of this Part 1 Study includes the customers and grid infrastructure for the three large
California investor-owned utilities (IOUs): Pacific Gas and Electric Company (PG&E), Southern
California Edison (SCE), and San Diego Gas & Electric Company (SDG&E). The small multi-
jurisdictional utilities located in California (PacifiCorp, Liberty Utilities, and Bear Valley Electric
Service) are not included in this study. Figure 2 shows the service territories of the six IOUs in
California for reference.
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Figure 2: California investor-owned utilities (Source: ArcGIS)
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This report contains the scope, approach, and Kevala’s results from this Part 1 Study. It is
organized in the following sections:

e Section 1 presents an overview of the High DER Proceeding; the data inputs, modeling
approach, and DER scenarios developed and used for the Part 1 Study; and the literature
review Kevala conducted on load and DER forecasting to inform its work.

e Section 2 presents the results of Kevala’s electrification cost, net-load, and DER adoption
and behavior scenarios.

e Section 3 discusses Kevala’s approach, including data ingestion and management, the
baseline net-load methodology, and the modeling and calibration methodologies for
estimating the hourly demand-side modifiers and electrification grid upgrade costs.

e Section 4 summarizes Kevala’s recommendations for improvements to the DPPs and for
planning for Part 2 of the Electrification Impacts Study.

The report also includes several appendices that provide further detail on Kevala’s methodology
and I0U-specific results.

CPUC Energy Division Staff are conducting a stakeholder review process that will include formal
comments to receive input on the current study (Part 1 of the Electrification Impacts Study) and
the scope of the future analysis (Part 2 of the Electrification Impacts Study).
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I.1. High DER Proceeding Overview

The CPUC recognizes that successfully achieving California’s electrification and
decarbonization goals depends on an electricity grid that can support diverse electrification
technologies at scale while maintaining grid reliability and the affordability of electricity
service for all Californians. As stated in the July 2021 High DER Proceeding, DER growth is
expected to continue to increase in California, especially due to policies and programs driving
transportation electrification and its associated DERs (i.e., electric vehicles (EVs) and electric
vehicle service equipment (EVSE)). By 2025, EVSE infrastructure in the United States is forecasted
to result in more annual DER capacity additions than solar.? In California, state-specific
transportation electrification and climate goals are expected to result in millions of EV-related
DERs by 2030.% In addition, state legislation, CPUC proceedings, and local building reach codes are
expected to further drive building and mobility electrification. For example, Senate Bill (SB) 1477
and Assembly Bill (AB) 3232,% designed to reduce greenhouse gas emissions from buildings and
support local electrification laws, are likely to further drive DER penetration and electrification.

The High DER Proceeding does not seek to set policy on the overall number of DERs. Rather, it
focuses on preparing the grid to accommodate what is expected to be a high DER future,

capture as much value as possible from DERs, and mitigate unintended negative impacts.
As such, this Electrification Impacts Study is focused on grid preparation, and specifically on
estimating the scope and scale of grid impacts from electrification while investigating new
methods and tools, consistent with the DER Action Plan 2.0, to “align the CPUC’s vision and
actions to maximize ratepayer and societal value of an anticipated high DER future.”® The

¢ Ben Kellison and Fei Wang, “What the Coming Wave of Distributed Energy Resources Means for the US
Grid,” Greentech Media, June 18, 2020, https://www.greentechmedia.com/articles/read/coming-wave-of-der-
investments-in-us.

270n August 25, 2022, the California Air Resources Board (CARB) codified the light-duty vehicle (LDV) goals
set out in Governor Newsom’s Executive Order N-79-20 by approving the Advanced Clean Cars Il rule (ACC
I). ACC Il establishes an annual roadmap for achieving 100% of new cars and light trucks sold in California to
be zero-emission vehicles (ZEVs), including plug-in hybrid electric vehicles (PHEVs).

8 SB 1477 was passed on September 13, 2018 and sets new state policy standards for low-emission
buildings and sources of heat energy.
https://leginfo.legislature.ca.gov/faces/billTextClient.xhtmI?bill_id=201720180SB1477

2 AB 3232 was passed on September 13, 2018 and sets new state policy standards for zero-emission
buildings and sources of heat energy.
https://leginfo.legislature.ca.gov/faces/billTextClient.xhtmI?bill_id=201720180AB3232

%0 California Public Utilities Commission, “Final CPUC DER Action Plan 2.0,” adopted April 21, 2022,
https://docs.cpuc.ca.gov/PublishedDocs/Published/G000/M467/K470/467470758.PDF.
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follow-up parts to this study described
previously will refine Part 1 estimates and
explore potential methods to mitigate
forecast electrification loads.

The Electrification Impacts Study was
designed to inform and support several
scoping questions for the High DER
Proceeding.?' Specifically, the CPUC’s
“Assigned Commissioner’s Scoping Memo
and Ruling” in the High DER Proceeding®?
outlined the key questions to be answered by
this study (see sidebar).

These scoping questions indicate a need to
review existing electric distribution planning
processes—and the data used in each of
those disparate processes—to ensure they
are sufficient for timely selection and
deployment of traditional distribution
infrastructure and DER solutions to meet grid
needs. Dynamic factors such as new
customer and utility technologies, changing
customer behaviors, and extreme weather
events are likely to require much more
precise and timely distribution planning
processes to meet California’s ambitious
electrification requirements while minimizing
costs and barriers of equitably distributing
the benefits of electrification.

The CPUC’s current electric utility annual DPP
GNA evaluates necessary grid investments

R.21-06-017 ALJ/ML2/KHY/fzs

Scoping Questions from the "Assigned Commissioner's
Scoping Memo and Ruling,” High DER Proceeding

Track 1, Phase 1

+  Scoping Question 1: Should the Utilities’ Distribution
Planning Processes (DPPs) be modified to address
policy-based issues such as forecasting scenarios for
increased electrification, improved data sharing, EV
adoption, adopticn of real-time rates and related flexible
load management technologies, and equity? Should

pnli? forecasting scenarios for higher electrification be

used for determining potential grid investments needed
to address electrification?

»  Scoping Question 2: How should Ukilities' Grid Needs
Assessment (GMNA) and Distribution Deferral
Opportunities Report (DDOR) be cogrdinated with the
draft Transportation Electrification Framework andfor
any existing or future Utility transportation
electrification planning efforts stemming from the
transportation electrification proceeding (R.18-12-008)
and any successor proceeding?

»  Scoping Question 3: How can the GMA and DDOR
reports better reflect the types of Transpertation
Electrification investments identified in the draft
Transportation Electrification Framework and the
legislative directives from AB 8417

Track 1, Phase 2

+  Scoping Question 1: Should Utilities better integrate
DERs into their standard annual DPP? If so, in what ways
should the Utility DPPs improve with respect to planning
for DERs (e.g., capturing additional value from these
respurces and optimizing resource siting)? How should
Utility cwnership of DERs be considered in these
changes to DPP?

+  Scoping Question 2: Should the DIDF be modified to
better capture DER value and optimize DER siting?
Improvements may indude better aligning the DIDF with
Utility DPPs, implementing key insights from the
Standard Offer Contract pilot and Participation Pilots
adopted in D.21-02-006, and considering additional
pilots, as well as evaluating how can DERs provide
resgurce adequacy services when not being used for
deferral.

+  Scoping Question 3: Leveraging the analysis identified in
Track 1, Phase 1, are there ways in which utility
distribution planning representatives could better
engage with local and tribal governments,
ervironmental and social justice communities, and local
developers to ensure new planned loads and
developments are factored into Utility DPPs and |ocal
concerns regarding distribution planning are adeguately
addressed?

3" Proceeding R.21-06-017, opened with an Order Instituting Rulemaking to Modernize the Electric Grid for a
High Distributed Energy Resources Future, issued on July 2, 2021,
https://apps.cpuc.ca.gov/apex/f2p=401:56:0::NO:RP,57,RIR:P5_PROCEEDING_SELECT:R2106017

32 “Assigned Commissioner’s Scoping Memo and Ruling” for R.21-06-017, Order Instituting Rulemaking to
Modernize the Electric Grid for a High Distributed Energy Resources Future, effective November 15, 2021,
https://docs.cpuc.ca.gov/PublishedDocs/Efile/G000/M422/K949/422949772.PDF.
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based on a single forecast scenario and informs the CPUC of the utilities’ plans to invest in grid
infrastructure to meet these needs. The forecast used for the GNA is tied to the California Energy
Commission’s (CEC’s) latest adopted Integrated Energy Policy Report (IEPR) forecast,* which
provides a statewide forecast of energy needs based on an integrated process with multiple
California stakeholders. As described in the following section, this Part 1 Study takes a different,
premise-based (or bottom-up) approach to forecasting baseline load and anticipating the impacts
that meeting the state’s ambitious electrification goals could have on the distribution grid if not
identified and mitigated. This analysis takes a bottom-up approach, which means the forecast is
based off address-specific estimates of energy use. Kevala took this approach to reflect that the
implications of electrification start at the address level and must be analyzed at this level to more
accurately understand the impacts to the distribution system. Exploring this bottom-up approach
compared to current approaches to bottom-up that apply expected load growth and DER
adoption at higher aggregation levels allows for an understanding of capacity needs and
subsequent capital costs for all asset types in the distribution system (such as secondary
transformers, feeders, and feeder banks). In other words, the bottom-up approach enables
identification and assessment of grid impacts and costs not commonly identified through existing
approaches.

1.2. Part | Study Overview and Constraints

This Part 1 Study was designed to anticipate distribution grid impacts due to electrification based
on a geographically and temporally granular approach that reflects the unique effects of
electrification on each utility circuit for the three large electric IOUs in California. Over 100
terabytes of time series data, geospatial and utility grid network data, and socioeconomic data
across all customer classes for each IOU were collected and linked to enable Kevala’s modeling of
each premise. Data ingestion, identification, and joining comprised the great majority of the Part 1
analysis.

1.2.1. Data Overview and Constraints

Kevala’s baseline net-load forecast is based on each I0U’s advanced metering infrastructure (AMI)
data, which comprised over 60% of the total data ingested and was the most readily joinable with
geospatial data. While AMI data enabled the development of the baseline net-load forecast,
ideally it would be linked and validated by supervisory control and data acquisition (SCADA)
data to provide the most accurate premise-specific grid requirements. For this Part 1 Study,

33 SB 1389 (Bowen and Sher, Chapter 568, Statutes of 2002) requires the CEC to: "[Clonduct assessments
and forecasts of all aspects of energy industry supply, production, transportation, delivery and distribution,
demand, and prices. The Energy Commission shall use these assessments and forecasts to develop energy
policies that conserve resources, protect the environment, ensure energy reliability, enhance the state's
economy, and protect public health and safety.” (Pub. Res. Code § 25301(a)).
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Kevala was unable to collect and validate all IOU SCADA data and community choice aggregator
(CCA) enrollment for SDG&E.** Also, key connectivity and cost data was received late in the
analysis with minimal processing time in order to be used for Part 1.3 Kevala is working with the
IOUs to complete those datasets for Part 2, which will enable even more accurate 8760 modeling.
Other constraints in key datasets available for this Part 1 study include:

e Lack of data for other California utilities outside CPUC jurisdiction (i.e., municipal utilities).
Having access to this data would enable projecting requirements that cross traditional
utility boundaries, especially for large infrastructure requirements such as airports or ports
that host or are likely to host EV fleets.

e Limited data on distributed generation and other historical DER program performance
data, constraining the ability to develop data-driven adoption for nascent technologies
such as batteries.

e Non-availability of IOU location-specific cost data required the use of generic unit costs that
did not take into account terrain, property value, and other location-specific cost drivers.

e Lack of data on address-specific vehicle registrations and granular locational driving
patterns required the use of the IOUs’ limited EV rate enrollment data as well as Census
block group-level vehicle registration data and Census tract-level driving pattern data.

e Kevala did not use future costs of distribution capacity additions, DERs, and future rate
designs or levels that were in development and therefore assumed they would remain
constant 2022 values over time for the purposes of the Part 1 analysis.3®

1.2.2. Modeling Overview and Constraints

The modeling approach started with estimating each customer’s load over the study period,
using machine learning based on the actual customer data received to date to develop a premise-
specific load profile that reflects adoption of energy efficiency (EE), photovoltaics (PV),
battery energy storage systems (BESS), building electrification (BE), and EVs.>” Kevala then
calibrated the results of this modeling to the IEPR’s system-level forecasts to ensure

34 CCA rates were incorporated into the bill calculations for PV payback and equity for SCE and PG&E; the
then-current CCA rates were acquired via the CCA websites. Vintaging for the power charge indifference
adjustment (PCIA) was not incorporated due to the lack of vintage data for CCA customers.

** PG&E data was generally the most complete and was received first; key datasets required for grid needs
and cost analysis for SCE and SDG&E were not received until October 2022.

36 Rate levels only impacted payback estimates for PV and equity estimates for energy justice. Similarly, DER
cost estimates only impacted PV payback.

37 Baseline load growth (expected load growth due to economic and weather factors) was incorporated into
modeled load profiles. Load growth for commercial and industrial customers was assigned to existing
premises while load growth for residential assumed new premises with a commensurate load profile
proximate to the premise.
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consistency with the I0Us’ GNAs and the IEPR.* Essentially, premise-level load profiles that
include DER-specific adoption were then aggregated up to the IOU service territory level; this
aggregated load was not allowed to exceed the IEPR demand forecast prepared for each IOU
service territory.

Next, these calibrated premise-level forecasts were used to identify the magnitude and
location of DER adoption and resulting high electrification anticipated for a base case and
four alternate scenarios focusing on two DER types: transportation electrification and net
energy metering (NEM) behind-the-meter (BTM) tariffs for 2025, 2030, and 2035. As detailed in
the Research Plan, Kevala selected transportation electrification and NEM BTM tariffs for the Part
1 Study scenarios to isolate the impact of two relatively dynamic DERs for which alternate
scenarios tied to then-existing state programs or projections could be defined. NEM BTM tariffs
refer to a hypothetical alternative compensation structure for BTM solar PV based on the
December 2021 Proposed Decision for proceeding R.20-08-020 and incorporates a monthly grid
access charge and specific export rate. This is not to suggest other DERs such as BE or PV will not
be studied or impactful for California’s electrification efforts; rather, the goal of the Electrification
Impacts Study Part 1 is to identify the likely grid impacts from DERs for which there is less
program data or for programs that are changing. For example, in December 2022, the CPUC
adopted the Net Billing Tariff in Decision (D.) 22-12-056, which has a different structure than the
scenarios included in this study; therefore, the results of these scenarios do not reflect what will
happen with the newly adopted Net Billing Tariff. The transportation electrification scenario
inputs, drawn from California Air Resources Board (CARB) and CEC projections (as discussed in
Appendix 9), incorporate a range of different ZEV vehicle adoption levels, including personal
vehicles and medium- and heavy-duty freight and port vehicles.

Finally, by aggregating up to the service transformer, feeder, transformer bank, and
distribution substation levels for the premise-level forecasts, the magnitude and location of
electrification impacts were determined and used to identify system-level grid impacts,
costs, and affordability of electricity service for customers.

3 This approach is similar to how the IOUs ensure the forecast used for the annual GNA/DDOR does not
exceed the IEPR demand forecast. However, the GNA/DDOR process for calibrating to the IEPR is
complicated by the known loads issue, as described in Section 3 (pp. 26-34) of the 2022 independent
Professional Engineer Post DPAG Report.
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Specifically, in this Part 1 Study, Kevala used machine learning of I0U-specific datasets to develop:

e Hourly baseline net-load3® estimates for each customer of the three large electric IOUs
for 2025, 2030, and 2035.

e Hourly premise-specific (i.e., customer-level) net-load forecasts for the base case and four
scenarios (discussed in Section 1.2.3) that incorporate the adoption and behavior profiles
of DERs for 2025, 2030, and 2035.

e |Initial distribution capacity expansion and system-level cost estimates for the base
case and each scenario in 2025, 2030, and 2035.

e Aggregated load profiles and cost estimates at the service transformer, feeder, and
distribution substation levels for the base case and four scenarios to provide insights into
distribution planning capacity upgrades and costs.

e Net-load aggregated to each IOU’s service territory to provide future insights into
transmission planning investments.

The hourly premise-specific net-load forecast serves as the backbone to understanding the
impacts of electrification on distribution planning and grid infrastructure needs. While the
premise-level forecast was continuous from 2022 through 2035 (i.e., premise-specific hourly load
forecasts were generated over the 13-year time period), Kevala selected the forecast years of
2025, 2030, and 2035 for the in-depth cost and equity analyses because:

e 2025 captures the current distribution planning cycle (five years through approximately
2025).

e 2030 (a mid-range year) captures when DERs and the distribution system are likely to be
the predominant resources for meeting grid needs.

e 2035 (an outer year) is the timeframe in which transmission solutions could be capable of
addressing grid needs.

1.2.3. DER Scenarios

In coordination with the CPUC, CEC staff, and their other consultants, Kevala used the 2021 IEPR
for IOU service territory-level load and demand-side modifiers to inform the load and DER targets
for the premise-level load and DER calibration to the different scenarios. The 2022 IEPR had not
yet been adopted by the time of the Part 1 Research Plan completion in March 2022. Kevala

3 Net-load references the customer’s metered load and is what is expected to be delivered by the IOU or, in
the case of reverse flow, the level of energy the customer is exporting to the grid and the IOU is expected to
accept and distribute. Because baseline net-load is the customer’s metered load, it reflects customer load
with the impact of any DERs applicable to that customer, bundled into the metered load amount.

Part |: Bottom-Up Load Forecasting and System-Level Electrification Impacts Cost Estimates, Kevala, Inc. 9
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generated the premise-specific forecasts for a base case, based on the 2021 IEPR mid-mid case
forecast or likely scenario through 2035,* and four additional scenarios:

e Base Case 2021 IEPR (mid-mid case)

e High Transportation Electrification + Existing BTM Tariffs*

e High Transportation Electrification + Modified BTM Tariffs*

e Accelerated High Transportation Electrification + Existing BTM Tariffs
e Accelerated High Transportation Electrification + Modified BTM Tariffs

The base case represents a premise-level forecast that calibrates the baseline load forecast and
the individual demand modifier forecasts to the 2021 IEPR mid-mid case. Each of the four
alternate scenarios considers a different combined projection for BTM tariffs and the speed and
scope of transportation electrification. These scenarios are based on the expected level of
electrification necessary to meet California’s policy goals, such as the transportation electrification
goals promulgated in Executive Order N-79-20 and incorporated into CARB regulation in 2022.%

Although the 2022 IEPR* had not been adopted at the time of the Part 1 Research Plan
completion in March 2022, ongoing coordination with the CPUC Energy Division and CEC staff
enabled the transportation electrification assumptions of the two High Transportation
Electrification scenarios to be similar to those applied to the adopted 2022 IEPR demand forecast
mid-mid case. The 2022 IEPR demand forecast mid-mid case (i.e., now called the Planning

“ The IEPR mid-mid scenario includes mid-level adoption scenarios for EE and building and transportation
electrification. EE and fuel substitution (BE) aligns to the adopted CPUC goals for proceeding R.13-11-005.
Mid-mid refers to Scenario 3 when referring to additional achievable energy efficiency (AAEE) or additional
achievable fuel switching (AAFS) load modifiers applied to the mid baseline forecast.

*' The existing BTM rate design assumptions are based on the NEM 2.0 tariff.

42 The modified BTM rate design assumptions are based on the December 13, 2021, Proposed Decision for
the proceeding titled, Order Instituting Rulemaking to Revisit Net Energy Metering Tariffs Pursuant to Decision 16-
01-044, and to Address Other Issues Related to Net Energy Metering (R.20-08-020). The Proposed Decision was
not adopted by the Commission; it is available at:
https://docs.cpuc.ca.gov/PublishedDocs/Efile/G000/M430/K903/430903088.PDF. Instead, D.22-12-056
adopted the Net Billing Tariff.

43 Governor Gavin Newsom signed Executive Order N-79-20 on September 23, 2020, establishing the state’s
goals related to decarbonizing the transportation sector. CARB subsequently adopted its ACC Il regulations,
which became effective on November 30, 2022. Pursuant to this regulation, all new passenger cars, trucks,
and SUVs sold in California will be zero emissions by 2035 (see https://ww?2.arb.ca.gov/our-
work/programs/advanced-clean-cars-program/advanced-clean-cars-ii).

44 CEC, 2022 Integrated Energy Policy Report Update, February 2023, https://www.energy.ca.gov/data-
reports/reports/integrated-energy-policy-report/2022-integrated-energy-policy-report-update.
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Forecast)® reflected transportation electrification levels similar to the Interagency Working Group
High Electrification Scenario, which was adopted as a 2021 IEPR demand scenario by the CEC on
May 24, 2022 (Resolution No. 22-0524-5).

Transportation electrification and PV are the only demand modifiers that reflect different
assumptions for the scenario analyses. Specifically, transportation electrification scenarios
assume different levels of EV targets; for PV, the NEM BTM tariff was modified to reflect key
components of anticipated NEM reform at the time the study was conducted. This approach was
designed to isolate the impact of two factors likely to impact the distribution grid, recognizing
there are other factors as well, and to maintain consistency with the 2021 IEPR mid-mid case to
the greatest extent possible. Kevala can revisit considering BE targets aligned with state and
federal policy goals and incentives in the Part 2 Study.

Table 1 shows the base case and four scenarios in more detail. Section 3.4.7 describes the CEC
scenarios and files used to calibrate the different scenarios.

4> Refer to the 2022 IEPR at p. 46: https://www.energy.ca.gov/sites/default/files/2023-
02/Adopted_2022_IEPR_Update_with_errata_ada.pdf.
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Table 1: Demand and adoption scenarios used in the Part 1 Study (Source: Kevala)

2021 IEPR mid-mid case forecast

2021 IEPR mid-mid case forecast

2021 IEPR mid-mid case forecast

2021 IEPR mid-mid case forecast

2021 IEPR mid-mid case forecast

Held constant through study period at early 2022 levels for each I0U#°

Assumed to be integrated in the peak forecast

CARB 2021 Advanced Clean Cars Il
CEC 2021 | (ACCII)

IEPR mid
scenario

CEC 2021 IEPR bookend scenario

CARB 2020 State SIP Strategy (SSS) CEC 2021 IEPR high scenario

“6 For EE, the 2021 IEPR mid-mid scenario uses AAEE Scenario 3.

*7 For BE, the 2021 IEPR mid-mid scenario uses AAFS Scenario 3.

* While the solar PV and energy storage growth forecasts are listed as using 2021 IEPR mid-mid
assumptions, these forecasts will change with any modification in BTM rate design, which is listed as a
separate demand modifier. Further, the same adoption propensity score cut-off was used for PV between
the two BTM scenarios because the purpose of the Modified BTM scenario was to identify the change in
adoption propensity and where PV systems would be adopted given different NEM considerations.

*9 Rates and DER costs were held constant, implying the relationship between rates and the cost of DERs
remains constant throughout the study period. Assumptions regarding where IOU rates and costs will go in
future years is outside the scope of this study; as a result, rate increase assumptions will mirror cost
changes in DERs generally.

**The base forecast includes demand response expectations that are already incorporated into IOU
forecasts. As a result, Kevala did not complete separate modeling of demand response in Part 1 because it
was expected to be negligible in the overall forecast. Kevala can revisit demand response in the Part 2 case
studies as a mitigation to alleviate distribution system constraints.
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3,172,598 10,013,953 9,530,034

227,140 | 218,710 230,876

Existing Existing BTM Modified BTM Existing BTM Modified BTM
BTM rate | rate design rate design®3 rate design rate design
design®?

*The two High Transportation Electrification scenarios incorporate transportation electrification
assumptions similar to those applied to the 2022 IEPR demand forecast mid-mid case (i.e., the 2022 IEPR
Planning Forecast). At the time the Part 1 Study was developed, the 2022 IEPR had not yet been adopted, so
the 2021 IEPR mid-mid case was used for the Part 1 base case.

To distinguish between the two BTM tariff scenarios, the existing BTM rate design assumed that
the NEM 2.0 Tariff structure would persist through the study period. The time-of-use (TOU)
periods, rate differentials among TOU periods, and the cost of BTM PV installations remained
unchanged as well. The underlying assumption for this scenario is that the relationship between
the cost of PV installations and rates remains unchanged. The modified BTM rate design includes
a residential monthly grid access charge of $5/kW and an export rate that offsets the generation
rate identified. This structure was consistent with the Proposed Decision in the proceeding to
reform NEM (R.20-08-020) issued on December 13, 2021. Rather than modeling the exact proposal
in that Proposed Decision, Kevala chose this simplified structure as a scenario because it was
generally consistent with the Proposed Decision at the time. Since the study was conducted, the

*' The values in this table represent the forecasted ZEV adoption counts from 2022 to 2035 that the model
allocated based on the CARB and CEC ZEV adoption forecasts. These values exclude all ZEV counts prior to
2022, thus they do not represent the total cumulative ZEV counts for all three IOUs.

2 Existing BTM rate design assumptions based on NEM 2.0 Tariff.

¥ Modified BTM rate design assumptions are based on the December 13, 2021, Proposed Decision for the
proceeding titled, Order Instituting Rulemaking to Revisit Net Energy Metering Tariffs Pursuant to Decision 16-01-
044, and to Address Other Issues Related to Net Energy Metering (R.20-08-020). The Proposed Decision was not
adopted by the Commission; it is available at:
https://docs.cpuc.ca.gov/PublishedDocs/Efile/G000/M430/K903/430903088.PDF. Instead, D.22-12-056
adopted the Net Billing Tariff.
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CPUC adopted a final Decision on December 15, 2022 to reform NEM by creating a Net Billing
Tariff.>*

|.3. Summary of the Literature Review on Load and DER Forecasting

Kevala conducted a literature review to determine how other technical studies have approached
questions regarding the electric grid’s readiness to support higher electricity loads. Specifically,
Kevala was interested in publicly available studies that have modeled high electrification futures
for similar geographic scope and temporal periods as this study. Each study included in the review
presented at least two electrification scenarios involving various DERs. The literature review
included nine existing studies; these studies focused on individual cities or service areas (Los
Angeles, Washington, DC, PG&E’s service area in northern California) and on the United States as a
whole during similar forecasting periods (approximately 2016-2050).

The literature review presented outcomes on several topics relevant to this study including
transmission and distribution (T&D), environmental justice, load flexibility, EE, BE, EVs, and
decarbonization. These studies are briefly summarized below:

e The two studies that focused on individual cities—the National Renewable Energy
Laboratory’s (NREL’s) LA100 study,* released in March 2021, and the Brattle Group’s
Assessment of Electrification Impacts on the Pepco DC System study,® released in August
2021 —resulted in annual peak demand growth scenarios within 1% of each other, ranging
from 1.0% to 1.7% annually.

e The sole service area study, the Energy Institute at Haas’ Can Distribution Grid Infrastructure
Accommodate Residential Electrification and Electric Vehicle Adoption in Northern California?,>”
released in June 2022, focused on EV and residential electrification through 2050,
presenting increased loads and total upgrade costs.

>4CPUC’s D.22-12-056 can be found at:
https://docs.cpuc.ca.gov/PublishedDocs/Published/G000/M500/K043/500043682.PDF.

>> NREL, LA100: The Los Angeles 100% Renewable Energy Study, March 2021, https://maps.nrel.gov/la100/1a100-
study/report.

*¢ Brattle Group, Assessment of Electrification Impacts on the Pepco DC System, prepared for Pepco, August
2021,
https://www.pepco.com/Documents/1167%20%20Pepco%27s%20Electrification%20Study%20%20082721.p
df

°” Energy Institute at Haas, Can Distribution Grid Infrastructure Accommodate Residential Electrification and
Electric Vehicle Adoption in Northern California?, June 2022, https://haas.berkeley.edu/wp-
content/uploads/WP327.pdf
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e The three studies focused nationally on varying DER scenarios—NREL’s Electrification
Futures Study series,*® released between 2018 and 2021; Brattle Group’s The Coming
Electrification of the North American Economy,*® released in March 2019; and Princeton
University and Evolved Energy Research’s Net-Zero America: Potential Pathways,
Infrastructure, and Impacts,® released in October 2021—ranged greatly in nationwide
energy demand forecasts because they did not encompass the same DER scenarios.

e Three studies—CEC’s Electric Vehicle Charging Infrastructure Assessment Analyzing Charging
Needs to Support Zero-Emission Vehicles in 2030,°' released in May 2021; the Institute of
Transportation Studies, University of California, Davis, and Cadmus Group’s Distribution grid
impacts of electric vehicles: A California case study,®? released in December 2021; and Boston
Consulting Group’s Revving Up the Grid for Electric Vehicles,*® released in December 2019—
focused solely on EV growth.

Most relevant to the Part 1 Study is that, of all the studies reviewed, only one used a bottom-up
analysis of electrification impacts that included secondary infrastructure: NREL’s LA100 study. The
remaining studies used a more traditional top-down and holistic approach. This finding further
emphasizes the importance of the proof-of-concept in applying a premise-level forecast to
improve distribution planning, a key goal of the Part 1 Study. Appendix 1 contains the full
literature review. As noted in Section 1.1, this analysis takes a bottom-up approach, which means
the forecast is based off address-specific estimates of energy use. Kevala took this approach to
reflect that the implications of electrification start at the address level and must be analyzed at
this level to more accurately understand the impacts to the distribution system. This approach

*® NREL, NREL Electrification Futures Study, 2018-2021, https://www.nrel.gov/analysis/electrification-
futures.html

*° Brattle Group, The Coming Electrification of the North American Economy, prepared for WIRES, March 2019,
https://wiresgroup.com/wp-content/uploads/2020/05/2019-03-06-Brattle-Group-The-Coming-Electrification-
of-the-NA-Economy.pdf

% Princeton University, Evolved Energy Research, Net-Zero America: Potential Pathways, Infrastructure, and
Impacts, October 2021, https://netzeroamerica.princeton.edu/?explorer=pathway&state=national&table=e-
positive&limit=200

" CEC, Electric Vehicle Charging Infrastructure Assessment Analyzing Charging Needs to Support Zero-Emission
Vehicles in 2030, May 2021, https://www.ourenergypolicy.org/resources/electric-vehicle-charging-
infrastructure-assessment-analyzing-charging-needs-to-support-zero-emission-vehicles-in-2030/

2 Institute of Transportation Studies, University of California, Davis and Cadmus Group, Distribution grid
impacts of electric vehicles: A California case study, December 2021,
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8749456/

% Boston Consulting Group, Revving Up the Grid for Electric Vehicles, December 2019,
https://www.bcg.com/publications/2019/costs-revving-up-the-grid-for-electric-vehicles
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enables the identification and assessment of grid impacts and costs not commonly identified
through existing approaches.
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2.Results

California’s electricity grid is changing rapidly, driven by significant changes at the premise level.
Customer programs and rate designs tailored to elicit individual customer behaviors and
responses, changing customer technologies, ambitious statewide energy policy goals, and
localized wildfire and climate change impacts all contribute to dynamic electricity grid changes
that are unique to each premise. The results of this Part 1 Study indicate that these impacts, in the
aggregate, could result in tens of billions of dollars in additional necessary investments, across
discrete locations, to support California’s electrification goals.

California has already invested billions of dollars in infrastructure and technologies to capture,
track, and report energy data—from AMI and SCADA technologies to EV registrations and driving
patterns. The results of this Part 1 Study illustrate how consolidating these extensive data sources
yields important insights into where and when distribution grid enhancements are likely to
be needed to support the premise-level impacts of grid electrification, which is critical as
California enters a period of capacity expansion and DER proliferation to support state policy
goals. These results also help to understand the quality and scope of utility data and to challenge
some traditional DER program assumptions. This section summarizes the following and other
results of Kevala’s Part 1 Study:

o Electric distribution grid requirements and their associated costs increase
significantly beyond the traditional distribution grid planning cycle, risking stranded
investments or missed investment opportunities altogether if datasets are not
connected and analyzed holistically.

o Across these unmitigated load scenarios, Kevala estimates up to $50 billion in
traditional electricity distribution grid infrastructure investments by 2035.
This estimate reflects distribution grid needs across the PG&E, SCE, and SDG&E
service territories under the policy assumptions used in this report. These costs are
estimated with a focus on traditional utility distribution infrastructure investments.
Existing TOU rates and BTM tariffs were assumed. The study did not consider
alternatives or any of the existing and future mitigation strategies such
as alternative time-variant or dynamic rates and flexible load management
strategies.

o Kevala examined several scenarios® for this Part 1 Study. Both of the High
Transportation Electrification scenarios would result in almost doubling the current

 Kevala generated premise-specific forecasts for five scenarios. The base case represents a premise-level
forecast that calibrates the baseline load forecast and the individual demand modifier forecasts to the 2021
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rate of spend reported by the IOUs in the GNA reports for capacity requirements
related to feeders, transformer banks, and substations.® These Part 1 Study costs
reflect the impact of unmitigated loads.%

o Secondary transformer and service upgrades alone are a non-negligible
contribution to the total grid capacity upgrade costs, comprising about $15 billion of
the $50 billion identified previously. Such grid upgrades are important to be
considered so that they do not become a bottleneck for electrification and are
proactively planned for in a cost-effective way.

o The system-level peak load increase from 2025 to 2035 is 56%, on average, across
the three I0Us and High Transportation Electrification scenarios;®” this dramatic
increase in peak load for the scenarios considered in Part 1 is primarily due to
transportation electrification impacts, with over 60% of this demand coming from
light-duty vehicles (LDVs).% Peak load is the primary driver of the grid capacity
upgrades considered in this Part 1 Study.

o The average percent change in peak load from 2025 to 2035 for the High
Transportation Electrification scenarios is more dramatic for PG&E (69%), followed
by SDG&E (53%) and SCE (44%).

o Data tracking and reporting gaps across state regulatory agency datasets and load-

serving entities (LSEs) should be filled to develop timely forecast scenarios that
reflect the dynamic changes to the electricity grid.

e Of the DERs selected in this Part 1 Study for alternate scenario development—
transportation electrification and BTM tariffs—transportation electrification results in
significantly greater distribution grid impacts relative to the BTM tariffs assumed in
the Part 1 Study.

IEPR mid-mid case. Each of the four alternate scenarios considers a different combined projection for NEM
BTM tariffs and the speed and scope of transportation electrification.

® This Part 1 Study evaluates upgrades at the substation, transformer bank, feeder, and service transformer
level. It does not include line section upgrades related to the primary lines between the feeder head and the
service transformers.

 Rates and existing TOU periods were held constant. Assumptions regarding where IOU rates and costs
will go in future years is outside the scope of this study.

® These High Transportation Electrification scenarios are based on the expected level of transportation
electrification necessary to meet California’s policy goals, such as the transportation electrification goals
promulgated in Executive Order N-79-20 and incorporated into CARB regulation in 2022. The main
difference between the High Transportation Electrification and Accelerated High Transportation
Electrification scenarios is the speed at which transportation electrification will occur in 2030 and 2035.

% Kevala can revisit considering BE targets aligned with state and federal policy goals and incentives in the
Part 2 Study.
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o Transportation electrification grid requirements and costs escalate in earnest in
2030 and dramatically increase by 2035 regardless of scenario. The current
distribution planning process looks out only five years. This planning framework
may not be able to plan for the expected rapid increase in transportation
electrification-related infrastructure due to the lead times involved for electric
distribution grid infrastructure, including mitigation strategies to large capital
expenses.

o The NEM BTM tariff scenario used in this Part 1 Study has relatively minimal impact
on the adoption of PVs and thus on the total electrification grid upgrade costs
resulting from the Part 1 analysis.

e The premise-level approach taken in this Part 1 Study enables a robust assessment
of utility distribution grid needs, including:

o The What: Identification of a broader scope of infrastructure needs than other
studies and an understanding of the relative contribution to net-load of the DERs
studied.

o The When: A longer planning time horizon than the current DPP.

o The Where: The ability to analyze premise-level data and aggregate up provides
transparency and opportunities for multiple scenario analysis, including specific
locational grid needs and the demographic characteristics of those needs.

o The How Much: Differences in unit costs and grid need calculations between
utilities that require further transparency and analysis.

The following sections provide details of the results of Kevala’s Part 1 analysis.

e Section 2.1 provides an overview of the indicative costs of the electrification scenarios for
2025, 2030, and 2035.

e Section 2.2 outlines the results of Kevala’s net-load modeling.

e Section 2.3 discusses the DER-specific adoption and behavior results for BTM PV, BESS, EE
and BE, and EVs and EVSE.

e Section 2.4 provides an overview of the equity and electricity burden implications of
Kevala’s Part 1 analysis.

2.1. Costs of Electrification Scenarios

Kevala estimates in this Part 1 analysis total potential, unmitigated distribution system investment
costs across all three study I0Us of up to $50 billion in 2035 for the High Transportation
Electrification and Accelerated High Transportation Electrification scenarios (see Figure 3). As of
2022, the 2021 IEPR base case is no longer a projected state outcome for transportation
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electrification loads. The adopted 2022 IEPR mid-mid case (i.e., Planning Forecast)® reflects
transportation electrification assumptions similar to the two High Transportation Electrification
scenarios that Kevala modeled. These cost estimates reflect Kevala’s distribution grid
infrastructure and premise-specific forecast of long-term load and DER growth for the scenarios.

Figure 3: Total capacity upgrade costs for the three large California IOUs, including new substations,
transformer banks, feeders, and service transformers (Source: Kevala)
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For each of the four alternate scenarios (not including the Base Case 2021 IEPR), total cost levels
by 2035 are approximately the same. The cost differences between the High Transportation
Electrification and Accelerated High Transportation Electrification alternate scenarios in 2025 and
2030 are the result of different assumptions for those alternate scenarios about the pace of
transportation electrification between 2025 and 2030, and 2030 and 2035. The different
assumptions about the pace of transportation electrification are key drivers of anticipated
distribution upgrade requirements across the 2025-2035 period.

Regardless of the pace of transportation electrification, Figure 3 shows that the incremental cost

of electrification between 2025 and 2035 is about $40 billion. In other words, the difference
between 2025 and 2035 levels for each of the four alternate scenarios is the same regardless of

69 CEC, 2022 Integrated Energy Policy Report Update, February 2023, https://www.energy.ca.gov/data-
reports/reports/integrated-energy-policy-report/2022-integrated-energy-policy-report-update.
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alternate scenario. In every alternate scenario, transportation electrification is the key driver of
grid impacts. Further, the BTM tariff scenario did not result in a significant impact to distribution
system upgrade costs in this analysis.

These cost estimates, derived using distribution system design principles consistent with the
design principles used by each of the respective IOUs, are based on circuit-specific analyses of
four categories of distribution infrastructure:

e Distribution substations
e Transformer banks

e Feeders

e Service transformers

The other electrification impacts studies of which Kevala is aware, including the IOUs’ GNA
analyses, stop at the feeder level and do not include costs associated with service transformers.
For comparison purposes, Figure 4 illustrates the total and incremental costs if the costs of
secondary service transformers were excluded from Kevala’s estimate to be consistent with other
publicly available studies:

e The total costs of primary distribution infrastructure capacity upgrades are approximately
$35 billion in the High Transportation Electrification and Accelerated High Transportation
Electrification scenarios in 2035.7°

e The incremental costs of the transportation electrification scenarios by 2035 are $30
billion in new substations, transformer banks, and feeders.

For more information on the approach, methods, and assumptions to determine capacity
infrastructure upgrade costs, refer to Section 3.5.

70 Although the adopted mid-mid case of the 2022 IEPR (i.e., the Planning Forecast) effectively makes the
2021 IEPR Base Case used for Part 1 Study less relevant as of the time of the Part 1 report issuance in 2023,
it is worth footnoting that the total costs of primary distribution infrastructure capacity upgrades in 2035
pursuant to the 2021 IEPR Base Case was estimated to be approximately $22 billion for Part 1. The cost of
secondary infrastructure capacity upgrades was estimated to be approximately $9 billion for a combined
total of $31 billion under the Base Case.
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Figure 4: Capacity upgrade costs for the three large California IOUs, including new substations, transformer
banks, and feeders only (excluding service transformers) (Source: Kevala)
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2.1.1. Benchmarking Part | Upgrade Costs to 2022 Distribution Investment Deferral
Framework

Kevala compared the capacity upgrade costs estimates for the Base Case 2021 IEPR scenario in
2025 to the IOUs’ DDOR planned investments required by capacity grid deficiencies identified in
the GNA reports (see Figure 5). Kevala’s estimated cost for new substations, transformer banks,
and feeder values (in dark blue) can be compared to the 2022 estimates from the IOUs in the
DDOR capacity planned investments (in gray).

e For PG&E, Kevala’s capacity upgrade cost estimate for primary infrastructure is $4.2 billion
versus PG&E’s estimate of $5.3 billion.

e For SCE, Kevala’s primary infrastructure estimate for capacity upgrades is $3 billion versus
SCE’s reported planned investments of $2.2 billion. For SDG&E, the primary capacity
upgrades estimated by Kevala are higher than SDG&E’s. Kevala proposes further
investigating these differences in Part 2 when looking at mitigation strategies for capacity
grid requirements.

On top of the primary infrastructure, Kevala estimated additional upgrades required at the
secondary distribution level by estimating the cost of service transformers that would need to be
replaced. This non-negligible cost could be included in the Distribution Investment Deferral
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Framework (DIDF) in order for DERs to be able to capture the value of deferring or avoiding
service transformer costs in the future.

Figure 5: Capacity upgrade costs by IOUs for the Base Case 2021 IEPR scenario in 2025 for new substations,
transformer banks, and feeders compared to the DDOR planned investments identified by the IOUs through
2026 in the 2022 DIDF (Source: Kevala)
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2.1.2. Capacity Upgrade Costs by IOU

Figure 6 shows the total upgrade costs for new substations, transformer banks, feeders, and
service transformers by IOU and scenario. The upgrade costs by county for Scenario 2, High
Transportation Electrification + Existing BTM Tariffs are included in Figure 7, Figure 8, and Figure 9.
These maps illustrate how electrification impacts on grid infrastructure requirements will not be
geographically homogeneous, and the importance of beginning to understand where and when
the bottlenecks will occur so the grid does not become an impediment to transportation
electrification.
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Figure 6: Total capacity upgrade costs by IOU and scenario, including new substations, transformer banks,
feeders, and service transformers (Source: Kevala)
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Figure 7: Total capacity upgrade costs for PG&E by county for Scenario 2, High Transportation Electrification
+ Existing BTM Tariffs (Source: Kevala)
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Figure 8: Total capacity upgrade costs for SCE by county for Scenario 2, High Transportation Electrification +
Existing BTM Tariffs (Source: Kevala)
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Figure 9: Total capacity upgrade costs for SDG&E by county for Scenario 2, High Transportation
Electrification + Existing BTM Tariffs (Source: Kevala)
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Total grid upgrade costs by 10U for all scenarios are included in Table 2; these costs are further
identified by specific grid asset type in Table 3 and Table 4. The difference in costs by IOU are
primarily driven by the peak load magnitude served and the number of overloaded assets in the
system, and secondarily by the unit cost assumptions of new grid infrastructure.

Table 2: Estimate of total grid upgrade costs, including service transformers (Source: Kevala)

$6,155 | $4,921 $11,153 | $7,964

$17,876 | $11,814  $1,152

$5,255 | $4,673 $202 $13,407 | $9,206 $738 $27,599 | $20,330 | $3,123
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$7,801

$5,626

$344

$17,760

$11,147

$1,140

$27,647

$19,914

$3,149

$7,886

$5,641

$344

$17,834

$11,321

$1,140

$27,615

$19,936

$3,149

Table 3: Estimate of new substation, transformer bank, and feeder costs (Source: Kevala)
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$3,086 $7,930 $13,010 | $8,307
$3,677| $2,994 $148 $9,315 $6,238 $442 $19,141 | $14,662 | $2,149
$3,727| $3,012 $148 $9,451 $6,233 $442 $19,160 | $14,709 | $2,161
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$5,272

$3,479

$195

$12,174

$7,620

$620

$18,858

$14,151

$2,109

Table 4: Estimate of service transformer costs (Source: Kevala)

$1,581

$1,681

$4,096

$2,972

$8,463

$5,670

$2,612

$2,160

$149

$5,656

$3,698

$519

$8,751

$5,781

$1,040
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Figure 10 shows the aggregated number of grid assets analyzed in this Part 1 Study for the three
IOUs, along with the average percentage of overloaded assets by asset category.”

Figure 10: Percentage of overloaded assets, averaged across the three IOUs and Scenarios 2-5 (Source:

Kevala)
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Notes: The numbers in the pyramid are the number grid assets by category for the three 10Us.
Overload percentages are the average across the three |0Us and High Electrification scenarios,

Figure 11 shows the percentage of overloaded feeders over time by scenario and IOU. PG&E has a
higher number of feeders that reach the capacity threshold, while SDG&E has the lowest
percentage of feeders reaching capacity.

"' The percentage of overloaded assets in Figure 11 is averaged across the four High Transportation
Electrification and Accelerated High Transportation Electrification scenarios (Scenarios 2-5).
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Figure 11: Percentage of overloaded feeders by IOU and scenario in 2025, 2030, and 2035 (Source: Kevala)
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2.2. Net-Load Results
The Part 1 Study enables both:

e An aggregated view of total energy (GWh) and peak load (GW) for each IOU by scenario for
each of the three years of the study period.
e A more localized view of specific grid impacts for each 10U by scenario.

Figure 12 and Figure 13 illustrate the aggregate total load growth for each 10U, regardless of
scenario, from 2025 to 2035.
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Figure 12: Energy by IOU, study year, and scenario (Source: Kevala)
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Figure 13: Peak demand by IOU, study year, and scenario (Source: Kevala)
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Figure 14 and Figure 15 provide a different lens into total energy and peak load growth by
illustrating the dramatic load growth results for each IOU on a percent change basis from 2025 to
2030, and from 2025 to 2035. Peak load is the primary driver of the grid capacity upgrades
considered in this Part 1 Study. The detailed data from these figures are shown in Table 5 and
Table 6. The peak load increase for the Base Case 2021 IEPR scenario alone by 2035 is between
20% and 30%; for the High Transportation Electrification and Accelerated High Transportation
Electrification scenarios, the peak load increase is between 40% and 70% by 2035 depending on
the IOU.

Figure 14: Energy percent change by IOU, study year, and scenario (Source: Kevala)
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Figure 15: Peak demand percent change by IOU, study year, and scenario (Source: Kevala)
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This dramatic increase in peak load is due primarily to transportation electrification impacts.
Figure 16 and Figure 17 show the hourly net-load profile for PG&E on the peak day in 2035 for the
Base Case 2021 IEPR and the High Transportation Electrification + Existing BTM Tariffs scenarios,
respectively; these figures illustrate the large contribution to peak load from EVSE charging
infrastructure as well as the shift to a nighttime peak load.

Figure 18 and Figure 19 show the personal and fleet EVSE infrastructure charging demand
contribution on the peak day for the Base Case 2021 IEPR and the High Transportation
Electrification + Existing BTM Tariffs scenarios, respectively, and show the impact of the TOU
residential tariffs assumed in the modeling and previously described in Section 1.2; the figures
also show the overall large contribution of EVSE charging infrastructure to the system peak load.
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Figure 16: PG&E hourly net-load profile by customer sector and by load type for Scenario 1, Base Case 2021
IEPR, for the peak day, August 15, 2035 (Source: Kevala)
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Figure 17: PG&E hourly net-load profile by customer sector and by load type for Scenario 2, High
Transportation Electrification + Existing BTM Tariffs, for the peak day, August 15, 2035 (Source: Kevala)
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Figure 18: PG&E hourly EVSE profile for Scenario 1, Base Case 2021 IEPR, for the peak day, August 15, 2035

(Source: Kevala)
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Figure 19: PG&E hourly EVSE profile for Scenario 2, High Transportation Electrification + Existing BTM Tariffs,
for the peak day, August 15, 2035 (Source: Kevala)
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Table 5: Annual energy by study year, 10U, and scenario (Source: Kevala)

109,008

140,634

107,137 | 120,960 126,778

94,489 | 107,837 | 19,910 | 111,023 | 123,990 | 23,547 | 146,071 | 156,615 | 31,127

95,006 | 108,149 | 19,920 | 111,847 | 124,601 | 23,578 | 147,115 | 157,424 | 31,181

98,840 | 111,270 | 20,863 | 116,797 | 128,213 | 24,792 | 145,178 | 155,070 | 30,898

99,357 | 111,581 | 20,873 | 117,621 | 128,823 | 24,823 | 146,222 | 155,880 | 30,952

Table 6: Annual peak demand by study year, IOU, and scenario (Source: Kevala)
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2.3. Adoption and Behavior DER Results

To convert the baseline net-load forecast to the net-load forecast, Kevala modeled geospatial
adoption and behaviors for all of the demand-side modifiers included in this Part 1 Study (BTM,
PV, BESS, BE, EE, and EVs/EVSE). The approach ultimately required estimating the load size (i.e.,
peak demand), behavior of the modifier (i.e., energy use), and adoption of the modifier (did a
premise experience the demand modifier size and behavior implications?). The approach used for
each demand modifier was slightly modified depending on the calibration target. Specifically:

e The calibration targets for PV, EE, BE, and BESS were a capacity target (MW).
e The calibration target for EVs and EVSE used the number of vehicles (consistent with CARB
forecasts to meet state transportation electrification requirements).
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Kevala identified premises where economic and demographic characteristics (such as income
level) correlated with DER adoption and then the likelihood of adoption based on other factors
(e.g., rent versus own, multi-unit dwelling versus single occupant) as well as technology cost
curves, program and incentive features, etc.; Kevala then applied a probability distribution for
each technology type’s adoption. Kevala also simulated the behavior of the demand-side
modifiers, resulting in a forecasted net-load that reflects the behavior of EE programs and DERs.
The DER-specific results and key insights associated with each DER-specific methodology are
summarized in the following subsections.

2.3.1. BTM PV

Using multiple datasets that integrate weather, geospatial, and socioeconomic data enables
granular PV adoption and behavior results. Specifically, for PV, consideration of Census block
group land area, customer class, maximum baseline load, and median household income, in
combination with the traditional method of calculating payback period, enabled Kevala to
generate holistic customer PV adoption forecasts. Similarly, using actual weather data to model PV
behavior enables consideration of weather correlations between the load and DER forecasts,
which are not captured in current forecasts based on typical, averaged load shapes.

A primary question of the PV adoption modeling is the impacts that the existing BTM tariffs or
modified BTM tariffs are anticipated to have on long-term BTM PV adoption. The Existing BTM
Tariffs scenarios assumed the existing NEM 2.0 rate design would continue through the study
horizon and calibrated PV adoption to the 2021 IEPR mid-mid case forecast. In contrast, the
Modified BTM Tariffs scenarios assumed a new tariff with a monthly grid access charge of $5/kW
and an export rate that offset the generation rate, which was based on but not identical to the
proposal in the NEM reform proceeding at the time.”? The Modified BTM tariffs are anticipated to
increase a customer’s payback period. The Modified BTM Tariffs scenario was calibrated using the
same cutoff adoption propensity score (see Section 3.4.2) that was used to calibrate the Existing
BTM Tariffs scenario adoptions to the 2021 IEPR by year and locale. Due to the change in payback
period, some customers fall below the adoption threshold and switch from adopters to non-
adopters in the Modified BTM Tariffs scenario.

2 Modified BTM tariff assumptions were based on the December 13, 2021, Proposed Decision for the
proceeding titled, Order Instituting Rulemaking to Revisit Net Energy Metering Tariffs Pursuant to Decision 16-01-
044, and to Address Other Issues Related to Net Energy Metering (R.20-08-020). The Proposed Decision was not
adopted by the Commission; it is available at:
https://docs.cpuc.ca.gov/PublishedDocs/Efile/G000/M430/K903/430903088.PDF. Instead, Decision D.22-12-
056 adopted the Net Billing Tariff.
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By comparing these two scenarios, Kevala can estimate the potential extent of the modified BTM
tariff’s impact on PV adoptions. Figure 20 shows the outcomes for these two scenarios through
2035, including the number of PV systems and the total installed PV capacity (MW DC) over all
three IOUs. By 2035, total installed PV capacity under the modified BTM tariffs (26.6 GW DC) is
only 4.3% lower than total installations under the existing BTM tariffs (27.8 GW DC). To

understand further this relatively small difference between the two scenarios, payback period
should be understood in the context of Kevala’s premise-specific adoption model. While payback
period is one consideration in making an adoption decision, other factors can also play a part,
including social trends and barriers to or ease of access.

Figure 20: Total PV installations over all three IOUs by year, comparing the scenarios with existing BTM
tariffs or modified BTM tariffs. The left-hand axis shows the incremental number of PV systems added per
year, while the right-hand axis shows the cumulative installed capacity (MW).”3 (Source: Kevala)
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In developing its PV adoption model, Kevala considered not only payback period but also the
customer’s peak load™ and demographic information available through the U.S. Census to identify
those features most closely correlated with historical PV adoptions in California. Table 7 lists the
seven features selected as inputs to the PV adoption model; these were selected based on the
available data sources to find the collection of features that together produce the most accurate
PV adoption predictions, validated against historical interconnection data.” The table ranks these
features according to their feature importance, which is a score that indicates how important that
feature was when attempting to recreate historical PV adoption decisions.

”* The modeled jump in PV adoptions in 2022 is due to discrepancies between the interconnection data of
historical PV installations, which is current as of April 2021 and also has known data gaps, and the 2022 IEPR
PV production estimate. To reconcile those two data sources, Kevala sees 2022 as an adjustment year, after
which adoptions proceed much more gradually according to the IEPR forecast.

" Peak load might be a motivator particularly for non-residential customers that incur demand charges.

It is important to note that these features can only model correlation with PV adoption decisions, but not
causation.
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Table 7: Financial, electricity demand, and demographic features used in the PV adoption model, listed in
order of their feature importance (Source: Kevala)

Feature Importance Order Feature Source

1 Census Block Group Land Area’® ;JL.JSr.VSr(]ZL(J:sS;Sureau, American Community
2 Residential or Non-residential Rates / Parcel

3 Maximum baseline (gross) load AMI

4 Median Household Income U.S. Census Bureau, ACS

5 Payback period Rates

6 Population density U.S. Census Bureau, ACS

7 Percentage owner occupied U.S. Census Bureau, ACS

Out of the seven features, payback period is not the top predictor—it ranks fifth. When looking at
historical adopters in California, the average payback periods of premises that have adopted PV is
only a year or two shorter than those that are non-adopters. Figure 21 shows the distributions of
historical payback periods calculated by Kevala, comparing adopters and non-adopters for each
IOU. While more adopters have shorter payback periods, there are also adopters throughout the
range of payback periods, including some relatively longer ones. So while shorter payback period
is correlated with adopting PV, it is not the sole or in some cases likely even the main predictor in
California.

® Census Block Group Land Area is a proxy for rural/urban/suburban. Suburban and rural premises have
higher historical PV adoptions than urban premises.
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Figure 21: Distributions of payback periods in the historical data used to train each IOU’s PV adoption
model. Historical payback periods are calculated with bill and system costs adjusted to 2016 values. (Source:

Kevala)
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Kevala’s PV adoption model then carried these trends in payback period and adoption forward
when predicting future adoptions. Figure 22 illustrates the predicted payback periods of future
adopters compared to those not predicted to adopt by 2035. As expected, calculated payback
periods under the modified BTM tariffs are longer than under the existing BTM tariffs, but the
difference is only about a year or less, on average. Therefore, the modified BTM tariffs lead to
lower adoption propensity scores—but not dramatically lower. The vast majority of customers still
adopt PV even with the higher payback period, leading to the relatively low 4.3% reduction in
installed capacity overall.
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Figure 22: Distributions of forecasted payback periods of (a) forecasted adopters by 2035 and (b) non-
adopters over all three I0Us, showing the residential and commercial sectors. Forecast payback periods are
calculated with bill and system costs using 2022 values. (Source: Kevala)
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To visualize the detailed, premise-level PV size and adoption modeling, Figure 23 illustrates each
PV system predicted for adoption in the area shown by 2035 under the existing BTM tariffs.
Comparing neighboring residential and commercial and industrial (C&I) areas, differences in PV
size and concentration are evident. The residential area is densely packed with small (~3 kW DC-6
kW DC) systems. In contrast, the C&I area, which has higher loads and much larger parcels, is
scattered with large (> 12 kW DC) PV systems. This level of geographic fidelity underpins the rest of
the feeder and I0U-aggregate results.
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Figure 23: PV system adoption in a primarily urban area of PG&E’s service territory by 2035, existing BTM
tariffs. (Source: Kevala)

Zooming out to the state level, the final distribution of systems throughout all three IOUs are
mapped in Figure 24 for 2025, 2030, and 2035 for the Existing BTM Tariffs scenario. PV adoption
overlaps the population centers as expected, with densely populated areas receiving a higher and
higher concentration of PV installations over the course of the forecasting horizon.

A few impacts of the calibration method on the results are important to note. First, as Figure 25
shows, the average size of PV systems adopted decreases over the forecasting horizon. This trend
is likely caused by the adoption model and calibration method.”” The adoption model includes
premises’ peak load as a predictor of adoption—premises with high loads are assigned larger
potential PV systems by the sizing algorithm and higher adoption propensity scores by the
adoption model. When adoption propensity scores are ranked during calibration, these premises
are ranked higher and adopt first. This also contributes to the clustering of late adopters in
densely populated areas for premises with low load, where the proposed PV system sized to offset
that load is very small.

"7 The Part 1 Study looked at each DER adoption independently and therefore will not capture those
premises that install up to 150% of load. Kevala can examine PV sizing in Part 2. Further, Kevala did not
make any assumptions about customers expanding their current PV systems.
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Figure 24: Concentration of PV adoptions throughout California in (a) 2025, (b) 2030, and (c) 2035 under the
Existing BTM Tariffs scenario (Source: Kevala)
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Figure 25: Average size (kW DC) of PV systems adopted by year in the forecasting horizon by IOU (Source:
Kevala)
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Second, Figure 20 shows, there is a significant jump in adoptions in 2022, before the rest of the
years smoothly follow the 2021 IEPR targets for the Existing BTM Tariffs scenario. This jump is due
to discrepancies between the interconnection data of historical PV installations, which is known to
have data gaps, and the 2021 IEPR estimate of PV production for that year. To reconcile those two
data sources, Kevala sees 2022 as an adjustment year, after which adoptions proceed much more
gradually for 2025, 2030, and 2035.

Kevala also examined the percent contribution of PV to the net-load of the feeder. Figure 26
shows the distribution of the ratio of PV peak load and the net-load in the peak hours. This figure
is a box and whiskers chart. The x-axis shows the individual scenarios by study year while the y-
axis shows the range of percent contribution of the DER to peak load. Peak load is the estimate of
the maximum load on a feeder after the DERs have been adopted. The “x” in each block denotes
the median, while the boxes designate the range of the lower and upper quartiles. The wider the
range of values, the more diverse the impact. This figure shows the values for 2025, 2030, and
2035. The values for 2025 demonstrate that the distribution of PV contribution to the peak load
from the Part 1 Study is narrower, for all scenarios, than the distribution of the same ratio for the
GNA. The figure also shows that the contribution to peak load of PV by 2035 is greatly reduced.
That is, even though PV peak capacity is increasing over this period, the peak of net-load peak is
also moving to hours in the late evening when PV capacity is not able to contribute to reducing
that peak load.
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kevala
Figure 26: Distribution of PV capacity contribution to peak load (Source: Kevala)
5%
:
2 0% —_— =
: e Wi **
E x
=
E -5% €L
i 4 4
aE
]
e T T
2 .10%
=
=l 4
s
S
..'l_;. - k3 :
n L]
-15% H :
5] w -
o € T $ i i i ! i :
4 i ' -
H i t . ] H H
B H | | ] ! § ! »
] ' . : : . : i . i
~20% ! i L t ' ] : - t : - N -
2025 2030 2035
Year
OGNA M (1) Base Case 2021 IEPR
@ (2) High Transportation Electrification + Existing BTM Tariffs O (3) High Transportation Electrification + Modified BTM Tariffs

W (4} Accel. High Transportation Electrification + Existing BTM Tariffs @ (5) Accel. High Transportation Electrification + Modified BTM Tariffs

Part |: Bottom-Up Load Forecasting and System-Level Electrification Impacts Cost Estimates, Kevala, Inc. 47



kevalal R.21-06-017 ALJ/ML2/KHY/fzs

Key takeaways from the PV analysis include:

e Changing from the existing BTM tariffs to the modified BTM tariffs is estimated to only
reduce installed PV capacity by 4.3% by 2035.

e Shorter payback period is correlated with PV adoptions, but it is not the only or main
predictor of adoption in California.

e Due to the current calibration method, the size of PV systems adopted is modeled as
decreasing over time, which might overlap with a real-world trend, and a jump in adoptions
is modeled in 2022, which is due to data discrepancies.

2.3.2. BTM BESS

To model BTM BESS, Kevala integrated multiple datasets including socioeconomic and geospatial
datasets and Kevala’s own premise-level PV models. Distributed BESS adoption and operation is
tightly tied to PV adoption and usage. By using the outputs of the PV adoption and behavior
models as inputs to the BESS models, Kevala was able to directly capture the interactions between
these DERs with much higher resolution and granularity than is commonly used.

In developing the BESS adoption model, whether or not a premise has PV was by far the most
important feature for predicting BESS adoption. In tandem, for residential customers, Kevala
assumed that residential BESS systems are operated to maximize self-consumption of PV. Based
on the real-world correlation and this behavior modeling assumption, Kevala further assumed
BTM BESS must be adopted with PV for residential premises—that is, BESS must be adopted
simultaneously with or after PV. In contrast, the model permits non-residential premises to adopt
BESS systems with or without PV, assuming non-residential premises will use BESS to minimize
peak demand periods and thus demand charges.

Figure 27 illustrates the BESS adoption results through 2035 for PG&E. The majority of BESS
systems are adopted by residential premises. Additionally, almost all BESS adoption includes a PV
as well. This is in part due to the high rate of adoption seen in historical data, exacerbated by
Kevala’s assumption requiring residential BESS to be adopted with PV and that most adopters are
residential; this assumption may change due to resiliency-based adoption. While shown here for
PG&E, the trends seen in SDG&E and SCE are the same.
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Figure 27: (a) MW BESS adopted by customer class and (b) MW BESS adopted with or without PV for PG&E.
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Figure 28 maps these BESS adoptions throughout all three IOUs for 2025, 2030, and 2035. The
concentration of BESS systems follows that of PV systems in highly populated areas, with the
highest concentrations seen in the Bay and San Diego areas by 2035.
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Figure 28: Concentration of BESS adoptions throughout California in (a) 2025, (b) 2030, and (c) 2035 under
the Existing BTM Tariffs scenario (Source: Kevala)
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BESS is one of the most versatile DERs in terms of its control algorithms, and while the most
popular control algorithms are yet to be determined as the industry matures, its behavior profile
depends entirely on the current modeling assumptions. For example, Figure 29 illustrates the
baseline load, net-load, and demand modifier profiles for a residential premise with PV, BESS, and
two Level 2 (L2) EV chargers.” Under current modeling assumptions, the BESS is assumed to
optimize self-consumption of PV generation given the baseline load profile. This results in a flat,
net-zero net-load profile around midday on many days. However, the BESS control algorithm used
for the Part 1 Study did not account for EV charging, thus any evening demand spike caused by EV

8 Figure 29 is based on modeled data and is illustrative based on the specific assumptions described.
Different seasonal, time horizon, or specific DER adoption projections—for example, policy-based building
electrification targets adopted by CARB in 2022 and reflected in demand scenarios adopted in the 2022
IEPR—can be explored in the Part 2 Study.
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charging was not directly mitigated by the BESS. Specifically, the customer’s BESS is not assumed
to be used for the customer’s EV charging needs; however, the customer is expected to discharge
their BESS during the high price evening peak while charging their EV during the lower priced late
evening or early morning hours.

Figure 29: Baseline load, net-load, and demand modifier profiles for residential premise that has adopted

PV, BESS, two large EVs, and two L2 chargers (Source: Kevala)
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Kevala also examined the percent contribution of BESS to the net-load of the feeder. A box and
whiskers chart, Figure 30 shows the distribution of the ratio of BESS peak load and the net-load in
the peak hours. This figure shows the values for 2025, 2030, and 2035. The values for 2025
demonstrate that the distribution of BESS contribution to peak load from the Part 1 Study is
slightly narrower, for all scenarios, than the distribution of the same ratio for the GNA. The figure
also shows that the contribution to the peak load of BESS by 2035 increases. That is, BESS
discharging can be adjusted to offset the peak load if given the right signal to charge at low net-
load periods and discharge during high periods.
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Figure 30: Distribution of BESS capacity contribution to peak load (Source: Kevala)
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Key takeaways from the BESS analysis include:

e Over 1 million customers have installed PV systems across the three IOUs, providing a
wealth of information on adoption propensity, while only a fraction of those customers
have installed batteries. This may impact the quality of future adoption predictions based
on this data.

e The vast majority of BESS are predicted to be adopted along with PV, which reflects a real-
world trend, is consistent with the recent Self-Generation Incentive Program (SGIP) Battery
Storage Market Assessment Study, and is reflected in Kevala’s assumption in the Part 1
Study that residential premises that adopt storage also adopt PV.

e BESS behavior is assumed to optimize self-consumption of PV (residential) or reduce peak
demand periods (non-residential).

2.3.3. EE and BE

To model EE and BE, Kevala integrated multiple datasets including socioeconomic, state studies of
BE- and EE-estimated savings, and premise-level AMI data. Distributed EE adoption and energy
savings are highly correlated to premise consumption. Due to limited data on BE participation and
potential, Kevala assumed BE adoption to be driven by the same factors that drive EE.

The EE and BE adoption calibration follows the 2021 IEPR consumption-level forecast by sector
and 10U service territory. EE and BE program delivery and adoption are highly variable by sector
due to sector-specific behaviors and the various 10U and state-targeted programs. Furthermore,
the 2021 IEPR demand modifiers for EE (additional achievable energy efficiency, or AAEE) and BE
(additional achievable fuel switching, or AAFS) are derived from detailed analysis. These analyses,
for example, result in zero AAFS impacts over the forecast period for the agricultural sector. Even
if Kevala adoption modeling indicates potential for the agricultural sector, the top-down target
adoption rate will be zero.

The end result of the EE analysis provides insights into the impact of EE to offset electrification at a
feeder level. The electrification comes from BE and EVs (see Section 2.2).

Energy Efficiency

Because EE has been a prevalent demand-side resource for a few decades, the value is embedded
in the baseline forecast; therefore, only future, newly adopted EE is included. EE potential is highly
variable on a premise-by-premise level, so the current results focus on the feeder-level impacts.
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One significant outcome of the analysis is that the current adoption propensity model targets
larger energy-consuming premises first based on historical data analytics.” Results tend to lean
heavily on the larger residential premises.

Kevala also examined the percent contribution of EE to the net-load of the feeder. A box and
whiskers chart, Figure 31 shows the distribution of the ratio of EE peak load and the net-load in
the peak hours. This figure shows the values for 2025, 2030, and 2035. The values for 2025
demonstrate that the distribution of EE contribution to peak load from the Part 1 Study is much
narrower, for all scenarios, than the distribution of the same ratio for the GNA. The figure also
shows that the contribution to the peak load of EE in 2030 is greater as EE is forecasted to
increase in the 2021 IPER; however, it does not continue to increase through 2035 as net-load
increases during that same time due to increased electrification, particularly for the High
Transportation Electrification scenarios. That is, because EE savings are highly correlated to energy
use at the premise, the contribution of EE toward reducing the net-load remains significant even
as the timing of the peak load shifts to later in the day.

” See Appendix 7 for adoption evaluation parameters.
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Figure 31: Distribution of EE capacity contribution to peak load (Source: Kevala)
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Key takeaways from the EE analysis include:

e Nearly 100% of PG&E and SDG&E residential premises adopt EE.

e SCE has a lower penetration because residential premise adoption depends on the
distribution of residential unit energy consumption.

e The high level of residential adoption reflects the mix of EE—codes and standards
programs, behavior, and operations and maintenance.

e Current analysis is less about independent premise-level adoption and more to reflect
what happens at a feeder.

Building Electrification

BE potential is highly variable on a premise-by-premise level and depends on existing non-
electricity end uses. For residential customers, there is a need to consider existing electric panel
service levels, adding barriers that do not exist for EE. For the current study, results focus on the
feeder-level impacts.

Because BE uses the same adoption propensity model as EE, the model targets larger energy-

consuming premises first based on historical data analytics.® Results tend to lean heavily on the
larger premises, reducing commercial penetration; however, the patchiness of adoption reflects
the cyclical nature of non-residential adoption and the novelty of commercial adoption of BE®
(industrial adoption is small in the IEPR forecast).

As with EE and other DERs, Kevala examined the percent contribution of BE to the net-load of the
feeder. A box and whiskers chart, Figure 32 shows the distribution of the ratio of BE peak load and
the net-load in the peak hours. This figure shows the values for 2025, 2030, and 2035. Unlike the
BTM PV, BESS, and EE comparisons shown previously, the GNA does not consider increased loads
due to BE. Nevertheless, the contribution of BE to peak load over time is clearly demonstrated as
the percentages increase over time. However, the impact of other electrification can also be seen
in this figure as the percentage of BE contribution declines noticeably for the other four scenarios.

8% See Appendix 8 for adoption evaluation parameters.

8 Commercial end users of natural gas that are targets for electrification include restaurants that are
generally hard to reach for EE but have additional barriers to electrification. Similarly, for larger buildings,
transitioning gas heating systems to electricity is an emerging technology.
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Figure 32: Distribution of BE capacity contribution to peak load (Source: Kevala)
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Key takeaways from the BE analysis include:

e Modeling BE adoption is highly dependent on the EE algorithms as a proxy because BE
adoption has been limited to date.

e Peak load depends on the electrified building load profile, which is typically different than
the summer peak.

e Adoption is primarily in residential areas. Commercial adoption varies in magnitude year of
year primarily due to impacts achieved in large buildings which meet calibration targets.

e Adoption follows EE feeder distribution but at a lower level of penetration. Feeders that are
impacted indicate more adoption in geographically (same feeder level) constrained areas.

e Calibration is at the sector level for 2021 IEPR energy consumption, with minimal-to-no
adoption in industrial and agricultural sectors.

2.3.4. EVs and EVSE

Kevala coordinated with the CPUC to identify three CARB and CEC light-duty vehicle (LDV),
medium-duty vehicle (MDV), and heavy-duty vehicle (HDV) ZEV adoption forecasts to serve as
input targets for the base case and four alternate Part 1 Study scenarios. Table 1 (presented in
Section 1.2.3) summarizes the CEC and CARB ZEV adoption forecasts and the associated vehicle
counts that were used in the study. Kevala selected the three CARB and CEC ZEV adoption
forecasts for this Part 1 Study because they represent a meaningful range of ZEV adoption levels
that align with California policy goals and market forecasts.

Across the LDV, MDV, and HDV duties, these ZEV adoption targets contained 27 duty, powertrain,
and vehicle type combinations, each of which had differing energy usage characteristics and
demands. Kevala used an array of premise, demographic, energy, and vehicle registration data to
allocate the adoptions down to individual, EV-eligible premises using the adoption methodologies
described in Section 3.4.6 and detailed in Appendix 9.

As the ZEV adoption forecast data in Table 1, the total number of 2035 LDVs adopted in the Base
Case are roughly one-third the level of the vehicle adoption counts in the High Transportation
Electrification and Accelerated High Transportation Electrification scenarios. However, the 2035
MDV and HDV ZEV adoption levels do not follow the same pattern of adoption across the
scenarios as the LDV adoption. For MDV and HDV ZEV adoptions, the High Transportation
Electrification scenario contains the lowest level of 2035 adoptions, with the level of adoptions
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between the Base Case and the Accelerated High Transportation Electrification cases being within
roughly 1% of each other.®?

Figure 33, Figure 34, and Figure 35 contain the 2025, 2030, and 2035 adoption counts for LDV and
MDV and HDV ZEVs for all three I0Us for the Base Case, High Transportation Electrification, and
Accelerated High Transportation Electrification scenarios, respectively.

In the Base Case scenario, the LDV ZEV adoption rate occurs at roughly the same level of
acceleration across the forecast horizon, while the LDV adoption rate in the High Transportation
Electrification scenario has the steepest rate of increase from 2025-2030 and again from 2030-
2035. The High Transportation Electrification scenario also reaches the highest level of total LDV
ZEV adoption by 2035. The LDV adoption path of the Accelerated High Transportation
Electrification scenario is distinguished from the other two scenarios in that it has the greatest
number of adoptions in 2025 and 2030, and then the adoption rate slows slightly compared to the
High Transportation Electrification scenario.

The 2035 MDV and HDV ZEV adoptions reach their highest level in the Accelerated High
Transportation Electrification scenario and are lowest in the Base Case scenario. Overall, the MDV
and HDV ZEV adoption range is between roughly 231,000 and 219,000, or within roughly 6%. The
most important differences between the three scenarios’ MDV and HDV adoptions are related to
the rate of adoption and the composition (i.e., vehicle class breakdowns) across the forecasts. The
Base Case and the Accelerated High Transportation Electrification scenarios follow a relatively
similar slope of adoption across the forecast horizon, whereas the High Transportation
Electrification scenario has a steeper rate of adoption between 2030 and 2035—although this
scenario still has the lowest level of overall MDV and HDV ZEV adoption.

82 The differences in LDV, MDV, and HDV adoption levels between the Part 1 scenarios reflect the different
inputs and modeling assumptions used by CARB and the CEC to generate their adoption scenarios and
forecasts.
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Figure 33: Base Case scenario LDV and MDV/HDV ZEV adoption counts for all IOUs, 2025, 2030, and 2035
(Sources: CEC, Kevala)
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Figure 34: High Transportation Electrification scenario LDV and MDV/HDV ZEV adoption counts for all IOUs,
2025, 2030, and 2035 (Sources: CARB, Kevala)
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Figure 35: Accelerated High Transportation Electrification scenario LDV and MDV/HDV ZEV adoption counts
for all IOUs, 2025, 2030, and 2035 (Sources: CEC, Kevala)
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Figure 36, Figure 37, and Figure 38 contain heat maps of geospatial LDV and MDV and HDV ZEV
adoptions for PG&E, SCE, and SDG&E. The heat maps represent adoption levels for the
Accelerated High Transportation Electrification scenario for 2025, 2030, and 2035, separated by
LDV and MDV and HDV ZEV adoptions. The overall trend for adoption is higher uptake in the
coastal regions of the three IOUs plus the population and transit-dense inner regions of the state,
particularly in the northern Central Valley, plus Fresno, Kern, San Bernardino, and Riverside
counties.
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Figure 36: PG&E Accelerated High Transportation Electrification scenario ZEV adoption counts, by year and ZEV duty (Sources: CEC, Kevala)
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Figure 37: SCE Accelerated High Transportation Electrification scenario ZEV adoption counts by year and ZEV duty (Sources: CEC, Kevala)
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Figure 38: SDG&E Accelerated High Transportation Electrification scenario ZEV adoption counts by year and ZEV duty (Source: CEC, Kevala)
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Figure 39, Figure 40, and Figure 41 contain the 2025, 2030, and 2035 EVSE port counts across all
charger use cases and demand levels for all three IOUs for the Base Case, High Transportation
Electrification, and Accelerated High Transportation Electrification scenarios, respectively.

EVSE ports are separated into three main categories:

e Primary or secondary charging use cases:

o Primary charging use cases are where ZEVs receive the majority of their energy.
These include charging at single-unit dwellings (SUDs) and multi-unit dwellings
(MUDs) for personal EVs and fleet for fleet EVs. SUD is further classified by TOU and
non-TOU, which refers to whether or not the SUD is enrolled on a TOU rate.

o Secondary charging use cases provide supplemental charging to meet a ZEV’s
remaining energy needs. These uses cases include public, workplace, and corridor
charging, where public and corridor have both LDV and MDV/HDV variations

e Use case types: There are six major use cases (SUD, MUD, fleet, public, workplace, and
corridor), with several sub-variations based on duty. Use cases are sited based on ZEV
adoption levels and premise type.

e Capacity level: Each use case has a specified peak demand capacity level (kW) associated
with it. For some use cases, this level increases across the forecast horizon. Kevala followed
the assumption made in the CEC’s AB 2127 Electric Vehicle Charging Infrastructure
Assessment - Analyzing Charging Needs to Support Zero-Emission Vehicles in 2030
(Commission Report)” (AB 2127 Report),® where L2 capacity remains constant at 6.6 kW,
but other use case capacity levels, such as LDV DC fast charging (DCFC) corridor charging,
reach 450 kW in 2035.

Kevala calculates the EVSE port counts using the targeted number of ZEV adoptions for each
scenario across each year and use case-specific EV-to-EVSE charger ratio contained in the CEC AB
2127 Report’s analysis. This approach is described in Section 3.4.6 and detailed in Appendix 9.

As Figure 39, Figure 40, and Figure 41 indicate, the total number of EVSE ports in the three
scenarios matches relatively closely to the level of ZEV adoptions across their respective scenarios.
Certain factors beyond just the raw number of LDV, MDV, and HDV ZEV counts, such as the
powertrain and vehicle class breakdowns, influence the number of ports in each scenario. For
instance, although the High Transportation Electrification scenario contains roughly 500,000 more
LDV ZEVs in 2035 compared to the Accelerated High Transportation Electrification scenario, the

8 California Energy Commission, Assembly Bill 2127 Electric Vehicle Charging Infrastructure Assessment:
Analyzing Charging Needs to Support Zero-Emission Vehicles in 2030, July 14, 2021,
https://efiling.energy.ca.gov/getdocument.aspx?tn=238853.
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share of plug-in hybrid electric vehicles (PHEVs) is much greater in the former compared to the
latter. Because PHEVs have lower charging needs, and thus require fewer chargers, the overall
port count in the Accelerated High Transportation Electrification scenario is slightly lower than one
might have expected without an understanding of these underlying dynamics. It is also
noteworthy that fleet chargers are the second most numerous charger use case after SUD-TOU.
This is due to the relatively large number of fleet LDV ZEVs that are contained in the CARB and CEC

forecasts.

Figure 39: Base Case scenario total EVSE port counts for all IOUs, 2025, 2030, and 2035, with data listed for

2035 values (Source: Kevala)
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Figure 40: High Transportation Electrification scenario total EVSE port counts for all IOUs, 2025, 2030, and

2035, with data listed for 2035 values (Source: Kevala)
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Figure 41: Accelerated High Transportation Electrification scenario total EVSE port counts for all IOUs, 2025,

2030, and 2035, with data listed for 2035 values (Source: Kevala)
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Figure 42, Figure 43, and Figure 44 contain the 2035 EVSE peak day loads across all three I0Us for
the Base Case, High Transportation Electrification and Accelerated High Transportation

Electrification scenarios, respectively.

Overall, each scenario’s all IOU 2035 peak day EVSE loads align with the magnitude of the ZEV

adoption forecasts and the accompanying EVSE forecasts that support their respective scenarios’
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energy requirements. As such, the total EVSE peak load for the Base Case scenario of roughly
10,500,000 kW (10.5 GW) is roughly a third of the peak for the High Transportation Electrification
and Accelerated High Transportation Electrification scenarios’ peaks, which are 23,800,000 kW
(23.8 GW) and 22,800,000 (22.8 GW), respectively.

Across all three scenarios, the timing of the peak hour is the same: 9 p.m. This is the hour when
the Part 1 Study assumes the IOUs’ TOU rates’ off-peak period begins, thus marking the time when
the majority of personal and fleet EVs are assumed to begin the bulk of their charging for the next
day. The Part 1 Study follows the TOU participation rates assumed in Appendix B of the CEC’s AB
2127 Report. The assumption that ZEVs would begin their evening charging at the start of the 9
p.m. off-peak period is a simplifying one that Kevala proposes addressing in the Part 2 analysis to
consider more sophisticated ZEV charging management strategies.

Figure 42: Base Case scenario all EVSE loads for all IOUs for 2035 peak day (Source: Kevala)
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Figure 43: High Transportation Electrification scenario all EVSE loads for all IOUs for 2035 peak day (Source:

Kevala)
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Figure 44: Accelerated High Transportation Electrification scenario all EVSE loads for all IOUs for 2035 peak
day (Source: Kevala)
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The overall composition of the EVSE loads for High Transportation Electrification and Accelerated
High Transportation Electrification scenarios’ peaks are roughly similar; however, as illustrated in
Figure 45, which contains a breakdown of the top three EVSE loads at the peak hour for the 2035
all 10U peak day, fleet EVSE loads for the High Transportation Electrification scenario are roughly
1,100,000 kW (1.1 GW) greater than the fleet EVSE loads for the Accelerated High Transportation
Electrification scenario. This is because, despite the High Transportation Electrification scenario
having slightly fewer MDV and HDV ZEVs compared to the Accelerated High Transportation
Electrification scenario, the vehicle class break of the High Transportation Electrification scenario
contains a significantly greater share of HDVs, including urban buses and class 7 and class 8
vehicles, which have greater charging requirements than MDVs. In addition to the proportionally
greater charging demands of its class 7 and class 7 HDV ZEVs, the High Transportation
Electrification scenario has roughly three times as many LDV PHEV fleet EVs compared to the
Accelerated High Transportation Electrification scenario.

Figure 45: All scenarios, three IOU peak day, 2035, peak hour, top 3 EVSE use cases (Source: Kevala)
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Kevala also examined the percent contribution of EVs to the net-load of the feeder. A box and
whiskers chart, Figure 46 shows the distribution of the ratio of EV peak load and the net-load in
the peak hours. This figure shows the values for 2025, 2030, and 2035. The values for 2025 show
the GNA distribution of EV peak contribution is lower, with a tight center distribution and long
tails. The long tails are also evident in the Part 1 Study distributions but vary from scenario to
scenario.
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The figure also shows the contribution of peak load by EVs is significantly growing over time with
an impact of around 5% in 2025 and increases to 30%-50% by 2035. Note that the contribution of
PVin 2025 was also about 5%, potentially offsetting the impact from EVs. This is an important
finding as the implications of EVs after 2025 are significant, and this figure demonstrates the need
to look beyond five years to capture the implications of high electrification in later years.
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Figure 46: Distribution of EV capacity contribution to peak load (Source: Kevala)
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Key takeaways from the EV and EVSE analysis include:

e While overall ZEV adoption forecast counts are the primary driver of forecasted EVSE
counts and projected charging loads, the underlying vehicle class breakdowns of ZEV
adoption have important impacts on the number and type of chargers required in the
future, and the load impacts and profiles of those chargers.

e The projected 2035 all IOU peak hour for EVSE loads is at 9 p.m., which is an assumption-
driven outcome based on the assumed start of the IOUs’ TOU rates’ off-peak period. This is
an important assumption that impacts EVSE-driven capacity needs, and therefore upgrade
costs, and it is an assumption that will be revisited and adjusted in future analyses.

e While personal EV home charging is an important part of the peak usage, personal EV
public charging and fleet charging play a more substantial role in driving the peak hour in
2035. This outcome has important implications for potential mitigations to model in future
analysis.

2.4. Equity and Electricity Burden Results

Kevala computed the average electricity burden for residential premises at the Census block level
for each of the DER scenarios considered in this study. Electricity burden is defined here as the
percent share of electricity bill costs with respect to household income. Figure 47 shows the
distribution of the percent electricity burden at the Census block level for the Base Case 2021 IEPR
scenario in 2035 (left) versus the High Transportation Electrification + Existing BTM Tariffs scenario
in 2035 (right); the figure illustrates how the curve is skewed toward the right for the High
Transportation Electrification scenario, which means there are higher electricity burden values,
resulting in a higher median value of 3.5% for the High Transportation Electrification scenarios
(versus 2.8% for the Base Case 2021 IEPR scenario).

Figure 47: Electricity burden distribution density plot for the Base Case 2021 IEPR and High Transportation

Electrification + Existing BTM Tariffs in 2035 (Source: Kevala)
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The percentage of Census blocks in the high (greater than 5% energy burden), medium (between
3% and 5% energy burden), and low (less than 3%) categories by scenario and IOU are included in
Table 8. For all three IOUs, electrification of transportation could result in higher electricity burden
under the current study assumptions.® As an example, the percent of Census blocks in 2035 with
an electricity burden greater than 5% in the Base Case 2021 IEPR scenario is 19.4%, 9.7%, and 2.9%
for PG&E, SCE, and SDG&E, respectively. In 2035, in the High Transportation Electrification +
Existing BTM Tariffs scenario, the percentage of Census blocks in the high electricity burden
category rises to 29.3%, 16.0%, and 5.0% for PG&E, SCE and SDG&E, respectively. Kevala proposes
using this information to further inform future High DER Proceeding activities such as staff
proposals on how electricity burden can be included in the DPP and DIDF process, as suggested its
Distribution Investment Deferral Framework: Evaluation and Recommendations report,®> as well as in
the Part 2 analysis to understand how upgrade costs and different mitigation strategies would
affect electricity burden for different electrification scenarios.

Table 8: Percentage of Census blocks by electricity burden category low (<3%), medium (between 3% and
5%), and high (>5%) by 10U for all scenarios and years (Source: Kevala)

Scenario Year Electricity Burden Category | PG&E | SCE | SDG&E
Low 48.9% 52.3% 78.5%
2025 Medium 28.9% 35.4% 17.6%
High 22.2% 9.3% 3.9%
Low 51.2% 56.0% 81.1%
T 2030 | Medium 28.7% 32.2% 15.7%
High 20.1% 8.7% 3.2%
Low 52.2% 51.6% 84.9%
2035 Medium 28.4% 35.6% 12.3%
High 19.4% 9.7% 2.9%

82021 Census block household income and rates are kept constant in the Part 1 Study, and potential
savings from fossil fuel use are not considered.

8 Kevala’s 2022 Distribution Investment Deferral Framework: Evaluation and Recommendations report includes
arecommendation (B.7) that proposes to report whether feeders or banks are in a disadvantaged
community and report on the percentage of customers with an energy burden greater than 5%; if utilities
do not have such data, Kevala recommends identifying feeders/banks serving a significant number of
customers on a California Alternate Rates for Energy (CARE) rate.
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Low 49.8% 53.0% 78.8%
2025 Medium 28.1% 34.8% 17.3%
High 22.1% 9.2% 3.9%
Low 45.6% 51.8% 79.3%
2030 Medium 32.3% 35.9% 17.3%
High 22.2% 9.3% 3.4%
Low 35.7% 35.2% 63.0%
2035 Medium 32.0% 45.8% 32.0%
High 29.3% 16.0% 5.0%
Low 46.1% 47.8% 72.9%
2025 Medium 29.7% 37.8% 22.5%
High 21.1% 11.3% 2.9%
2030 Low 40.7% 43.9% 70.3%
Medium 34.8% 41.6% 25.2%
High 21.4% 11.4% 2.8%
Low 31.6% 28.4% 51.0%
2035 Medium 33.0% 48.7% 42.0%
High 32.3% 19.9% 5.4%
Low 45.3% 49.9% 77.0%
2025 Medium 31.5% 37.5% 19.1%
High 23.2% 9.6% 4.0%
Low 40.0% 47.4% 73.4%
2030 Medium 33.6% 39.4% 22.8%
High 26.4% 10.1% 3.7%
Low 36.6% 37.4% 64.3%
2035 Medium 32.0% 44.7% 30.7%
High 28.4% 14.9% 5.0%
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Low 41.6% 44.0% 69.6%
2025 Medium 32.9% 41.3% 25.7%
High 22.4% 11.7% 3.1%
Low 35.9% 40.3% 63.6%
2030 | Medium 35.1% 43.9% 31.3%
High 25.8% 12.7% 3.5%
Low 32.6% 30.1% 52.3%
2035 Medium 33.0% 48.0% 40.8%
High 31.3% 18.8% 5.2%
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3.Approach

3.1. Overview

Kevala developed a premise-level (bottom-up) modeling approach to generate hourly (8760) load
profiles for 2025, 2030, and 2035 for each customer of three California IOUs. This section
describes the approach, including the benefits and limitations, of the steps required to generate
the forecast and conduct a cost impact analysis and equity assessment. Figure 48 illustrates this

stepwise process.

Figure 48: Premise-specific net-load forecasting, Part 1 Study (Source: Kevala)
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Step 1: Data Ingestion required collecting and mapping time series data, customer and grid

infrastructure, PV and BESS interconnection data, and other metadata into a data schema that
allowed for easy access to the collective premise-level dataset. These high-resolution datasets
included AMI and SCADA data. Section 3.2 describes this step; Appendix 2 and Appendix 3 provide
further detail.

Step 2: Net-Load Baseline Simulation involved determining hourly forecasts of net-load by
premise. In this step, Kevala used AMI data from each premise to develop a forecast of hourly
energy consumed or delivered by the customer to the IOU and included existing BTM technologies
at each premise. This step also included adjusting the net-load to estimate the customer’s energy
consumption without PV. In this case, Kevala created an hourly PV generation profile for each
premise and subtracted from the net-load to create a baseline estimate of the energy use at the
premise. Kevala calibrated the net-load baseline forecast to meet the different top-down targets
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for the scenarios included in this study. Section 3.3 provides the methodology applied in this step
and summarizes the results; Appendix 4 provides further detail.

Step 3: Hourly Demand-Side Modifiers forecasted the expected future adoption and related
behaviors of DERs. The DERs considered included the following:

e BTM PV systems

e BTM BESS
e BE
e EE

e EVsand EVSE

This Part 1 Study did not include a forecast of future demand response programs because
demand response programs are designed to address system peak issues when supply is limited;
thus, premise-specific demand response loads cannot be predicted without expected system peak
conditions driving the decision to execute the demand response for a specific day. Kevala can
revisit demand response in the Part 2 case studies as a mitigation to alleviate distribution system
constraints.

Kevala then calibrated the DER adoption and behavior models to meet the different top-down
targets for the scenarios included in this study and obtained the final net-load. Kevala then used
the final net-load results to calculate the impacts to the grid infrastructure at different aggregation
and to calculate other impacts such as energy burden on customers. Section 3.4 describes
methodologies for estimating each hourly demand-side modifier, the calibration approach, and
the net-load by feeder results.

Step 4: Net-Load Impact Analysis involved aggregating the net-load and demand-side modifier
forecasts to feeders to understand the change in loads and peak demand by grid asset over the
time horizon. Kevala then used these forecasts to identify grid infrastructure needs to meet these
changing load profiles and quantify the costs of these investments.

3.2. Data Ingestion

Central to this study was the collection, ingestion, mapping, and analysis of many data sources.
Kevala used a mix of its public records including but not limited to county records or parcel
definition and ownership, weather data, and Census data as well as confidential datasets from
three California IOUs. This data collection and integration effort was a first for the California IOUs,
and perhaps nationwide. While the California IOUs have been leveraging their AMI data for nearly
a decade for forecasting and planning, the Part 1 Study was designed to investigate ways of using
this hyper-granular data to provide needed and valuable insights to improve distribution planning.
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This analysis used several datasets:

e I0U data

Meter-specific AMI (2018-2021)

Grid SCADA measurements

Monthly billing information

Past DER adoption (type, location, and size) for PV and battery only
Customers identified with an EV or EVSE, not including type or size (incomplete
dataset)

Geospatial information for meters, DERs, and grid infrastructure
Electrical infrastructure asset characteristics

Rate schedule code by meter ID

EE program tracking with meter ID

o O O O O

O O O O

e Regulatory data
o CEC load and DER forecasts (2021 IEPR) by scenario, forecast zone, and planning
area
o Agency forecasts of EV infrastructure and LDV, MDV, and HDV adoption
Historical to 2021 PV interconnections
DDOR and GNA studies

e Publicly available data captured by Kevala
o Census
o Traffic
o Weather
o Existing public EVSE infrastructure

e Purchased data
o Experian Vehicles In Operation (VIO)
o Regrid (parcel data)

To gather much of this data, Kevala submitted several extensive data requests to the IOUs and
pursued collecting data from the CPUC and CEC. Through these efforts, Kevala received sufficient
data to complete the study. Appendix 2 provides a complete list of all data received, ingested, and
processed for the Part 1 Study. Because Kevala needed to finalize all datasets to be used for Part 1
by July 2022, some of the requested data was available but not received in time to process for this
publishing. Additionally, some data has not yet been received. Kevala will continue to work with
stakeholders to gather additional data for Part 2 and will use data received but not yet applied in
that effort as well. Some of this data may include:
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e Gas billing and consumption data

e Additional AMI data for before and after the Part 1 Study period

e Additional SCADA data to include system data that enables better matching of AMI and
network elements

e Customer program data to include incentives for BE

e Incremental PV and BESS interconnection data for installations after the Part 1 Study
period

e Distributed generation and other historical DER program performance data

e |OU location-specific cost data

e Vehicle registrations and driving patterns

e More granular customer billing data (e.g., designation of whether a customer is on an all-
electric rate)

Additional data may be required for Part 2; the above list is not meant to be exhaustive of all data
needs for that study.

Kevala ingested, mapped, and analyzed the data received and designed and implemented an
overall data structure that allows for premise-level analytics that can be aggregated to feeders,
substations, and the IOU service territory. Table 9 provides a snapshot of the number of key

collection points of distribution AMI data by IOU, which totaled more than 60 terabytes (TB).%

Table 9: Data volume statistics (Source: Kevala analysis of ingested 10U data)

ou T No. of AMI Meters* No. of AMI Data Ho-of Distribcion
(Millions) Records (Millions) (Thousands)

PG&E 31 6.1 318,347 916

SCE 25 5.3 251,145 753

SDG&E 7 1.5 75,949 171

Total 62 12.9 645,441 1,840

*Combination of 15-minute and hourly meters

The data collected had to be mapped together to enable proper aggregation of premise-specific
data to grid infrastructure and linking known DERs to the grid. The geographic information system

% To minimize carbon emissions due to storing and processing large amounts of data, Kevala made an
effort to optimize cloud computing at low-to-no carbon intensity servers.
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(GIS) geospatial and connectivity information was critical to providing the association between the
consumption of a meter to the electrical infrastructure via a one-to-one match to a service point
that is connected to a service transformer, then a feeder, and ultimately to a substation
transformer bank and a substation.

Other critical datasets for load and DER adoption included the association of a meter to a rate
structure and to a parcel and its features such as sector type. Figure 49 outlines the aggregation
hierarchy of the different physical layers of the grid considered in the bottom-up analysis.

Figure 49: Grid aggregation hierarchy of the physical layers (Source: Kevala)
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As Figure 49 indicates, all the grid layers are connected by mapping data among the layers. The
premise is associated with an account ID, rate schedule, and service point with GIS mapping to a
parcel. The parcel is connected to a service transformer that is connected to a feeder. The feeder
connects to a substation bank located in a substation. The individual premise load rolled up to
each distribution grid component provides the information needed to assess load and DER growth
impacts on different parts of the distribution grid.

To ensure proper data quality, Kevala followed the following process:

e Submitted formal regulatory data requests to the IOUs for specific data, with
corresponding receipt of data following regulatory filing discovery processes.
e Inventoried data received with corresponding data dictionary.
e Uploaded data from sources, including:
o Files attached to emails
o Data transferred via FTP from the CPUC or each 10U
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o Hard discs received from I0Us (primarily for large datasets such as AMI and SCADA
data)
e Framed data to allow for analysis and use by Kevala’s proprietary models
e Captured intermediate study results, identified data issues, and tested end-to-end
processing.
e C(leaned the data to eliminate outliers and forced parcel mapping.

Kevala’s analysis pipeline carried the premise-level analysis up through the distribution grid from
service transformer to feeder to substation bank transformer. If there were any broken links in
the connection, then the full AMI load did not contribute to quantifying feeder or bank
overloading.®” Table 10 summarizes the findings by IOU as there were a few feeder instances
where the premise-to-feeder linkages were not identified in the utility-provided data.

Table 10: Total AMI load compared to load linked with feeders (in AMI net GWh), 2020 (Source: Kevala

analysis)

Row Category PG&E SCE SDG&E
1 Total Load Received 72,079 67,123 16,153
2 Load Analyzed* 72,079 60,848 15,073
3 Percentage of Total Load 100% 91% 93%

*Load analyzed is the total load joined from the meter or service point to the linked feeder.

Linking parcels to service transformers to feeders and then to substation transformer banks is
critical to the analysis of distribution grid costs due to the adoption of DERs over time.
Understanding the grid asset’s capacity rating is also necessary and allows for calculating new or
upgraded grid needs. Table 11 summarizes the data from the number of feeders where data was
received and the number of feeders that could be mapped to a service point and substation bank.

Kevala received critical connectivity data such as feeder linkage to transformer banks very late in
the study for SCE and SDG&E;®® this data has remaining data gaps for PG&E, SDG&E, and SCE.
Specifically, from the data provided for the Part 1 Study:

e PG&E is missing connectivity to transformer banks for 13% of the feeders provided in GIS.

8 The scale of the data and the number of data sources created numerous challenges, especially in
matching data across datasets. Appendix 3 lists specific examples of challenges addressed to align datasets
and confirm complete datasets.

8 Feeder connectivity to transformer bank information along with transformer bank sizes were received on
September 26, 2022 for SCE and SDG&E.
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e SDG&E is missing connectivity to transformer banks for 17% of the feeders provided in GIS.
e SCE is missing connectivity to transformer banks for 14% of the feeders provided in GIS
and missing the asset rating for 25% of transformer banks.

Understanding the assigned rating of a feeder is also critical to analyzing distribution grid costs.
GNA tables were used to determine the feeder ratings. Because many feeders were not included
in the GNA tables, Kevala used default values for ratings when the actual ratings were not
available. Utility data completeness and quality issues are described in Appendix 3.

Table 11: Summary of number of substations, transformers, feeders, and related data, missing data
highlighted orange (Source: Kevala)

PG&E SCE SDG&E

Unique Service 838,170 562,534 159,686
Transformers
Se_rw_ce Transf_ormers 38,506 168 1,594
Missing a Rating
Service Transformers

L 0 0 0
Missing a Parent Feeder
Service Transformers

0 3,274 0

Missing a Parent Substation
Unique Feeders 3,131 4,140 995
Feeders Missing a Rating 460 104 216
Feeders_Mlssmg a Parent 402 580 169
Substation Transformer
Feeders_ Missing a Parent 0 75 0
Substation
Unique Substation 1.035 843 176
Transformers
Su_bs_tatlon Tra_nsformers 6 208 0
Missing a Rating
Substation Transformers 0 15 0
Missing a Parent Substation
Unique Substations 747 714 282

Note: notable data issues related to grid connectivity and ratings are denoted with bold text.

3.3. Baseline Net-Load Methodology

The second step of the process involved developing a forecast of premise-level hourly net-loads
before introducing further demand-side modifiers. It is important to distinguish between the net-
load baseline forecast and the forecasts of net-load that include the various scenarios of demand-
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side modifiers summarized later in this report. For clarity, in this report, the forecast of premise-
level loads prior to demand-side modifiers are referred to as baseline net-load while the

forecasts of net-load with demand-side modifiers are referred to as net-load forecasts.
Figure 50 outlines the three states of the baseline net-load methodology.

Figure 50: Baseline net-load methodology (Source: Kevala)
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3.3.1. Baseline Net-Load Forecast

The baseline net-load represents the expected address-level energy use served by the IOU.
Historical AMI data provided by the IOUs was considered net-load and included customer-adopted
technologies in place during the historical period. For each premise, Kevala used AMI and weather
data to train a forecast model for each address. Kevala then used these models to forecast load at
the same address over the study period and incorporated any weather changes over that same
period. The aggregation of these address forecasts provided the base of the load forecasts for the
IOU’s service territory.

Grounding forward-looking savings on historical data limits the “what-if” in calculating potential.
Forecasting is the inherently uncertain process of estimating outcomes by modeling historical and
current observations. The historical data provides data points to calibrate modeling efforts and an
alignment point to provide some level of confidence to the simulated results. The inherent
shortcomings of modeling based on historical observation include the lack of insight into changing
market dynamics, which can vary from shifting sentiments to adoption and changes in technology.
Changing market behavior, such as corporate sustainability goals, includes shifts in attitudes
regarding climate change.

To develop the baseline net-load estimates, Kevala used AMI data from each premise for 201 8-
2021. The following are the key assumptions associated with baseline net-load modeling:

e Baseline net-load for each premise represents load as measured at the meter and does not
include any T&D losses or attributions of unaccounted load.
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e Baseline net-load aggregated to the feeder level incorporates estimates of T&D losses
based on historical seasonal deviations between SCADA and AMI on that same circuit.
Kevala assumes those losses are constant over the forecast horizon.

e Any changes in baseline net-load for an existing premise for which there is AMI data to
generate a future net-load estimate will be due to influences from predicted future
weather patterns, assuming the Representative Concentration Pathway 8.5 (RCP 8.5)
climate change scenario.®

Figure 51: Baseline net-load and baseline load estimation process (Source: Kevala)
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Kevala tested various modeling approaches and algorithms to identify the method that optimized
evaluation criteria at the feeder level. The final methodology applied a combination of two
machine learning algorithms: decision tree and extremely randomized forest.

e The decision tree approach predicts the dependent variable by learning rules that split the
training data into successively smaller and more homogenous groups. The decision tree

¥ Hausfather, Zeke, “Explainer: The high-emissions ‘RCP8.5’ global warming scenario,” Carbon Brief, August
21,2019, https://www.carbonbrief.org/explainer-the-high-emissions-rcp8-5-global-warming-scenario/.

Part |: Bottom-Up Load Forecasting and System-Level Electrification Impacts Cost Estimates, Kevala, Inc. 85


https://www.carbonbrief.org/explainer-the-high-emissions-rcp8-5-global-warming-scenario/

kevalal R.21-06-017 ALJ/ML2/KHY/fzs

approach tends to overfit® and performs best in predicting the peak but underperforms
on estimating energy levels (e.g., area under the load duration curve).

e The extremely randomized forest technique is an extension of the random forest
algorithm, which basically generates many decision trees based on different inputs and
starting points for the trees. Extremely randomized forest simply applies the same
methodology, but cut points or split points (the points at which the decision tree branch
splits to other options) are chosen randomly rather than through optimization in a
conventional random tree technique. As with the random forest technique, the average
outcome of the many trees is used as an estimate. Though the extremely random forest
approach generalizes well for out-of-sample forecasts of total energy, it tends to underfit”
the idiosyncratic observations in the training data and thus is a poor predictor of peaks.

Kevala combined these two techniques to develop two estimates that are averaged to develop
one estimate. That is, the strengths of one method offset the weaknesses of the other to provide a
reasonable estimate of both peak and total energy. The tree and forest ensemble method stood
out above competing approaches on the four evaluation metrics (discussed in Appendix 4), and
additional model development efforts focused on optimizing this approach for the net-load
prediction task. Specifically, this combined approach proved the most useful for predicting the
peak, total energy, and shape of energy consumption across the year (load duration curve) for
premises and the aggregated loads at the feeder level.

The benefits of this approach include the following:

e All AMI data for each premise for all three 10Us was used in this analysis to generate
premise-specific estimates of baseline net-load profiles. This differs from the traditional
approach of generating typical load profiles that are then applied based on generic
characteristics. That is, the traditional approach assumes that similar customers have

* Model overfit implies the model is highly tailored to the input data and does a good job predicting the
training data but is less reliable for unseen instances. Overfitting is usually caused by a sample that is too
small or does not contain enough data samples that represent the population of outcomes. Overfitting is a
problem if the model is designed to predict a wide range of outcomes that are not represented in the
sample. For purposes of this study, the overfitting is acceptable, and even desirable, for forecasting peaks
but is recognized as underforming for forecasting all hourly loads and thus energy.

" Underfitting occurs when a predictive model is unable to fully capture the relationship between the input
and output variables, which results in a higher error rate. There are many causes of underfitting, but for
purposes of this study, the bias introduced by the extreme random forest functions as a form of
regularization. That is, it limits the influence of individual input features, and the corresponding random
noise associated with measurement and human behavior, on predictions of energy use, resulting in more
accurate generalization for unseen data such as future time points.
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identical load profiles. While this approach has proven suitable in the past as generic
shapes could be derived from load research exercises that use samples of customers to
generate these load forecasts, the use of all AMI data for the three IOUs marks a turning
point in the capabilities of load forecasting and demonstrates the value of collecting,
processing, and storing hourly data for all customers. Additionally, this approach goes a
step further than some advanced data science techniques that train models on a sample of
customers. This technique applies the trained model to premise-level inputs to generate
premise-level estimates. While these traditional approaches can provide useful
information, they fall short of really leveraging all AMI data and developing standalone
premise forecasts based on premise models trained with data for that premise.

The approach offers premise-level counterfactuals?2 and hypotheticals. For example,
one challenge in DER forecasting is estimating what the customer’s load would have been
had the DER not been installed, often referred to as counterfactual. This is a common
analytical question to evaluate the impact of DERs, particularly the cost-effectiveness of EE
and BE programs, the cost and load implication of PV and BESS, and the performance of
demand response programs. Offering a premise-level counterfactual based on the
customer’s actual historical behaviors allows for scenario comparison and an
understanding of the implications of DER policy on customer behavior, both before and
after DER adoption. This approach also eliminates the need to find a sample of non-
participating customers that are representative of the premise’s customer to estimate the
implications of what the customer would have done had they not adopted a DER. This
approach has significant implications for improving the evaluation and measurement of
DER and other customer programs and can improve confidence in determining the impacts
from these programs.

The approach is transparent and easy to verify. Because Kevala used the premise data
to estimate future net-load, a simple visual comparison of the trend of a premise can be
analyzed and verified as reasonable for that customer. As part of Kevala’s review, the load
duration curves of a premise using actual and predicted hourly net-load estimates can
show how well the model is estimating the customer’s load.

The approach allows for estimating the peak load duration curve and total energy
consumption without compromising one forecast point over the other. Most data science
techniques focus on getting a current value (e.g., the peak). Being able to forecast a peak
accurately, which is technically an outlier or tail event in a customer’s energy use
distribution, and estimate the area under the distribution curve is a challenging

%2 A counterfactual is an estimate of what would have happened if an action or event had not occurred. In
the energy industry it is typically referred to as what the customer’s energy use would have been if an action
or event had not occurred, such as adoption of an EE technology.
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mathematical problem. The ensemble method Kevala developed has overcome this
challenge as the results in Appendix 4 demonstrate.

3.3.2. Baseline Load Forecast

The baseline load forecast represents the hypothetical demand after removing load impacts due
to DERs. To go from baseline net-load estimates to baseline load estimates, the load profile of any
adopted DER(s) at a premise needs to be estimated and removed. With the exceptions of PV and
BESS interconnection data, there is a lack of information available to identify the actual installation
of any BTM DER. As a result, Kevala removed only estimated PV generation (from the System
Advisor Model’s PVWatts simulator) from hourly net-load forecasts to create baseline load
forecasts. Kevala’s approach to measuring EE involved training an adoption model based on house
characteristics, which included energy consumption at the premise. This approach demonstrated
that EE adoption is highly influenced by the level of energy use at the premise. Premises that have
implemented EE would have lower premise-level energy use. The EE adoption methodology
generally takes into account BTM EE in place, and no further adjustments are planned for EE. The
current GNA approach does not allocate BE to the feeder level, and the level of BE has been
historically low relative to other DERs; thus, the Part 1 Study indicates no further adjustments are
required for BE. Kevala intends to update (i.e., retrain) the baseline models with additional AMI
data as part of the Part 2 Study.

To estimate the load impacts due to PV, Kevala used the System Advisor Model’s PVWatts
simulator® and Actual Meteorological Year weather by zip code from 2018 to 2020 to generate an
hourly historical PV load profile for premises with known PV systems (see Section 3.4.2). Kevala
then estimated baseline load by subtracting the forecasted PV load profile for a premise from the
premise-modeled load. Baseline load estimates for each premise represent load as measured at
the meter and do not include any T&D losses or attributions of unaccounted load.

The following time series feature inputs were required by the net-load forecast model:

e Hourly net-load (kWh)

e Historical actual hourly air temperature (Celsius) for training models

e Forecasted hourly air temperature (Celsius) for prediction

e Date-time features that can be derived from the timestamp (e.g., hour number, whether
the date is an observed U.S. holiday)

The following are the key assumptions associated with baseline load forecast modeling:

% NREL, “PySAM,” Version 5, https://sam.nrel.gov/software-development-kit-sdk/pysam.html.
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e Baseline load used simulated historical load curves for DER behavior to net out generation
attributable to solar panels (PV). The current version does not attempt to disaggregate load
due to ZEVs, public EVSE, BESS, EE, BE, or demand response programs.

e Baseline load growth is accounted for using known load growth projections from the
utilities and new demand from predicted additions to the stock of residential premises.

Table 12 shows the number of premises by IOU that Kevala needed to adjust due to PV
installations.

Table 12: Premises Kevala adjusted due to PV installation by IOU (Source: Kevala)

[[e]V) Number of Premises with PV Interconnection Records
PG&E 522,091
SCE 377,066
SDG&E 190,941

Kevala’s final step involved calibrating the baseline load forecast to the 2021 IEPR mid-mid case for
system-level loads by planning area. Specifically, the calibration target was the coincident peak
forecast for 2022 for each of the three IOUs based on the 2021 IEPR mid-mid case transmission
access charge (TAC) area.* Kevala calculated this target by subtracting system peak loads of
neighboring LSEs included in the TAC area for each IOU. The premise-level hourly baseline load
estimates for 2022 were summed up for each IOU to generate an hourly system-level forecast for
each I0U. Kevala then identified the peak load for 2022 from this hourly profile for each IOU and
compared the result to the 2021 IERP coincident peak calibration target. Kevala then computed
the ratio of 2021 peak to the baseline load peak and applied it to every hour of load for each
premise to generate a calibrated hourly baseline load.

Known and unknown load growth® was then added to this calibrated forecast to generate the
baseline load forecast for the study period by premise. While Kevala did not calibrate the
unknown load growth (IOUs provided known load growth, so it was already calibrated) in the Part
1 analysis, this growth in load was minimal relative to anticipated load changes from a high DER
future and thus unlikely to drive the results of the Part 1 Study. Kevala proposes revisiting the

* The TAC level corresponds to the California Independent System Operator (CAISO) transmission
aggregate load node; for PG&E and SCE, it also contains load from other municipal and power non-IOUs.

% Known load growth refers to load growth that utility planners are aware of from interconnection requests
and other coordination with generally large commercial and industrial customers. Unknown load growth
cannot be attributed to specific current customers.
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overall calibration method by calibrating to the total of baseline load plus load growth in the Part 2
Study.

3.3.3. Load Growth Forecast

This Part 1 Study required the computation of a net-load forecast, which incorporates the
baseline net-load forecast and a separate process that estimates the expected growth driven by
increased loads at existing addresses; these increased loads are driven by economic cycles and
new load at new addresses as the number of customers grows, particularly residential customers.
This load growth can be categorized as either known load growth or unknown load growth.

For the core problem of forecasting hourly net-load, Kevala designed a modeling approach that
could:

e Forecast even with sparse inputs (e.g., missing values for hourly net-load).
e Address complex seasonality, including hourly, weekly, and yearly effects.
e Incorporate extra regressors such as outdoor air temperature.

Though not part of the core forecasting model, Kevala leveraged additional data sources to
produce the final results for each I0U:

e For future known load growth: GNA provided by each IOU.
e To estimate unknown load growth: County-level socioeconomic forecasts produced by
Caltrans®*®

The following are the key assumptions associated with load growth forecast modeling:

e Caltrans forecast of customer growth provides a reasonable estimate of regional (county-
specific) housing starts and other growth metrics to be used to forecast regional unknown
load growth estimates.

e Load patterns by current customers are representative of the load profiles for known and
unknown load growth.

3.4. Hourly Demand-Side Modifiers

Kevala identified premises where economic and demographic characteristics correlated with DER
adoption and then the likelihood of adoption based on other factors (e.g., rent versus own, multi-
unit dwelling versus single occupant) as well as technology cost curves, program and incentive

% Caltrans, “Long-Term Socio-Economic Forecasts by County, 2020 Data”
https://dot.ca.gov/programs/transportation-planning/division-of-transportation-planning/data-analytics-
services/transportation-economics/long-term-socio-economic-forecasts-by-county.
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features, etc.; Kevala then applied a probability distribution for each technology type’s adoption.
Kevala also simulated the behavior of the demand-side modifiers, resulting in a forecasted net-
load that reflects the behavior of EE programs and DERs.

Kevala used a standardized approach to the non-transportation DER adoption and behavior
estimation for the following DERs:

e BTMPV

e BTM BESS
e EE

e BE

3.4.1. Overall Approach to Demand-Side Modifier Estimation

Kevala’s approach for estimating each of the five modifiers targeted for this study (BTM PV, BESS,
BE, EE, and EVs and EVSE) ultimately required estimating the load size (e.g., peak demand),
behavior of the modifier (e.g., energy use), and adoption of the modifier (did a premise experience
the demand modifier size and behavior implications?). The approach for each demand modifier
was slightly modified depending on the calibration target. Specifically:

e The calibration targets for PV, EE, BE, and BESS were a capacity target (MW).
e The calibration target for EVs and EVSE was the number of units (i.e., ZEV counts).

The calibration target drove the methodology, with PV, BESS, EE, and BE starting with sizing, then
estimating behavior, and then developing adoption propensity. This approach is discussed in
more detail as follows.

Sizing

The DER sizing method outputs the appropriate capacity or nameplate rating of the DER for a
given premise were it to adopt that DER. A size is typically calculated to equal a certain target,
defined from some characteristic of the premise’s baseline load. For example, residential PV is
sized to achieve annual net-zero energy, while BE is sized based on an estimation of the address’s
load that can be transitioned to electricity (e.g., gas heating to electric heat).

Behavior

The DER’s behavior method uses that size or rating to output the hourly resolution (8760 profile)
behavior of the DER over the course of a year. Unlike the adoption method described below,
which shares a common framework among the DERs, the behavior methods are unique to each
DER. For some DERs, including PV and BE, Kevala leveraged existing industry-standard behavior
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models (ResStock,’” ComStock,®® National Solar Radiation Database (NSRDB),*® PVWatts'®) as
much as possible. In comparison, BESS uses control algorithms to emulate peak shaving, while EE
calculates a percent reduction in the baseline load.

Adoption

The adoption method determines the likelihood that a premise will adopt that DER and outputs an
adoption propensity score between 0 (definite non-adoption) and 1 (definite adoption). Kevala
used a custom machine learning approach to develop its DER adoption propensity models. With
this approach, a statistical model uses certain attributes about a premise, called features, to
predict a decision about whether or not to adopt a given DER. Kevala built and validated this
model using historical adoption data to classify whether or not a premise is likely to adopt a DER,
making it a supervised binary classification method. Based on whether the desired features are all
numerical or a mix of numerical and categorical (i.e., Yes/No) features, either a Bayesian logistic
regression or Bayesian multilevel logistic regression (MLR) model was selected to model the
relationships between the features and the likelihood of adoption.

Developing the adoption model for each DER type typically involved the following five stages:

1. Preliminary data analysis: Select the most predictive features to include as inputs and to
define the final structure of the machine learning model around those features. For each
DER, these input features are selected through correlation analysis, reference to existing
research,'®'°? and tailored data science methods.

2. Model training: Develop model parameters using a portion of the randomly selected
premises from the historical dataset.

3. Model validation: Run the unused data from the historical dataset through the trained
model and then compare it to the actual historical data to validate the model quality. This
validation verifies that the model is accurately predicting for the range of actual outcomes
(i.e., was not overfit or too tightly tailored to the in-sample data).

% NREL, “ResStock,” https://resstock.nrel.gov/.

% NREL, “ComStock,” https://comstock.nrel.gov/.

% NREL, “NSRDB: National Solar Radiation Database,” https://nsrdb.nrel.gov/.

% NREL, “PySAM,” Version 5, https://sam.nrel.gov/software-development-kit-sdk/pysam.html.

19" Jiafan Yu et al., “DeepSolar: A Machine Learning Framework to Efficiently Construct a Solar Deployment
Database in the United States,” Joule 2, no. 12 (December 19, 2018): 2605-2617,
https://doi.org/10.1016/j.joule.2018.11.021. _

192 ]caro Silvestre Freitas Gomes et al., “Coupling small batteries and PV generation: A review,” Renewable
and Sustainable Energy Reviews 126 (July 2020), https://doi.org/10.1016/j.rser.2020.109835.
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4. Model predictions: Apply the trained model to future input estimates to provide a forecast
of the DER adoption propensity.

5. Calibration: Rank each premise in order of their adoption propensity scores; based on that

ranking, select the premises to adopt up until the top-down calibration target for that DER
is met.

As noted previously, the transportation demand-side modifiers (EV and EVSE) were calibrated
against a number of units (i.e., ZEV counts) within a forecast rather than an energy value. Because
the transportation demand-side modifiers were calibrated to the number of ZEVs contained in the
Part 1 Study’s selected adoption forecasts, they required a slightly different approach to the sizing,
behavior, and adoption stages.

The EV pipeline was executed first, and the outputs from the EV steps then served as inputs to the
EVSE pipeline. The EV and EVSE pipeline executed specific calculations for personal (i.e., privately
owned) and fleet (i.e., owned by a fleet operator) vehicles and for these vehicles’ associated EVSE.

The EV and EVSE modeling pipelines began by identifying the calibration target as the number of
total assets (i.e., vehicle counts or charging port counts) to be allocated or sited for a given year.
Following this step, the EV and EVSE models conducted the sizing step, which determined the type
of vehicles or charging ports available (i.e., personal, light duty (LD), battery electric vehicle (BEV),
small car, or fleet, depot, DCFC 50 kW) and the total potential count of vehicles or charging ports
for a given premise. Importantly, the sizing step only determined what type of asset and how
many of those assets could be adopted in the event that premise was selected in the adoption
step (actual adoption occurs in the adoption step).

Next, the models ran an adoption propensity analysis that calculated the actual type and count of

the vehicle(s) or charging port(s) adopted at a given premise for a given year (i.e., one personal,
LD, BEV, small car at a residential premise or 10 fleet, depot, DCFC 50 kW at a commercial
premise). The adoption step was the last step for the EV model.

For the EVSE pipeline, the behavior step was the final step. It involved determining the annual

hourly charging profile for a given parcel for a given year based on the energy requirements of the
vehicle(s) projected to charge at the given parcel.

Appendix 9 describes additional details regarding the EV and EVSE modeling methodologies.

3.42. BTM PV

As a relatively mature and well-studied DER, modeling BTM PV can utilize well-established datasets
and tools available from the U.S. Department of Energy’s (DOE’s) national laboratories to conduct
detailed, site-specific modeling of BTM PV systems. Kevala built its modeling pipeline (see Figure
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52) using information about historical BTM PV installations from the IOUs’ interconnection data
and Lawrence Berkeley National Laboratory’s Tracking the Sun dataset,'® hourly resolution
weather data from the NSRDB,'* and the System Advisor Model’s PVWatts'® simulator. Appendix
5 provides full details of this process.

Figure 52: Flow diagram of BTM PV adoption propensity, sizing, and behavior modeling (Source: Kevala)

Typical PV System Premise Baseline
Specifications Load

Customer Class

Calculate Customer's

PV Demand Modifier Premise Adoption
Profile Propensity Score

Premise Demand
Modifier

Legend
The modeling process began by sizing a premise’s theoretical BTM PV system to offset some
portion of its annual gross load. For each Census tract, Kevala calculated the annual energy
production of a 1 kW DC, south-facing BTM system by simulating Typical Meteorological Year
weather data from the NSRDB through PVWatts. For each premise in that Census tract, Kevala

calculated the desired PV system size by linearly scaling the 1 kW DC standard system to meet a
defined percentage of the premise’s gross annual energy demand. Kevala sized residential

'% Lawrence Berkeley National Laboratory, Tracking the Sun, 2021 edition, https://emp.lbl.gov/tracking-the-
sun.

1% NREL, “NSRDB: National Solar Radiation Database,” 2018-2020 Actual Meteorological Year data, accessed
July 2022, https://nsrdb.nrel.gov/.

1% NREL, “PySAM,” Version 5, https://sam.nrel.gov/software-development-kit-sdk/pysam.html.
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systems to achieve 100% net-zero energy and non-residential systems based on an empirical
evaluation of the ratio of installed PV-to-annual energy usage while also considering rooftop area
limits.

To model the hourly behavior of BTM PV, Kevala used residential and non-residential'®
representative profiles for the PV systems in each Census tract.

e First, Kevala derived typical specifications of PV systems historically installed in California
from the Tracking the Sun dataset, including average tilt, average inverter loading ratio (or
direct current-to-alternating current (DC-to-AC) ratio), and the frequency of the two most
common azimuths (south-facing and west-facing) by customer class.

e Next, Kevala used PVWatts to model the hourly resolution behavior of a 1 kW DC system
using each Census tract’s Actual Meteorological Year weather data from 2020'” and these
typical specifications by customer class. Both south-facing and west-facing systems were
modeled, and the final representative curve was a weighted blend of both profiles.

e Finally, Kevala scaled the appropriate representative curve by a given system’s installed DC
rating to provide its hourly power output.

Kevala developed an adoption model for each of the three IOUs using customer class, peak load,
six demographic features, and the estimated payback period on the PV system as predictors.
Kevala trained the model against historical PV interconnection records, which is assumed to be
the best representation of what PV adoption choices have been for customers in the past. Kevala
calculated payback period, which is the estimated period of time it takes for a customer’s
cumulative savings to equal their upfront costs of adopting PV, from the premise’s monthly bills
using the baseline load forecast, the PV behavior profile, and NEM rates. As with other DERs,
Kevala ranked these adoption propensity scores and compared them to the 2021 IEPR mid-mid
case calibration target to select premises to adopt. See Section 3.4.7 for more details on the
development of these calibration targets.

The following are the key assumptions associated with PV adoption and behavior modeling:

e Kevala used common industry default specifications, except where noted. These
default specifications included PVWatts’ default assumptions about soiling, shading, and
wiring losses (applied equally at every hour in the year), inverter efficiency, and module
type (standard crystalline silicon). Additionally, Kevala assumed all rooftops to be south-
and west-facing at a given tilt by customer class, because these two orientations are the

1% Kevala used the Commercial class in the Tracking the Sun dataset for all non-residential systems.
197 Kevala used 2020 Actual Meteorological Year data to model all years in the 2022-2035 modeling horizon.
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most common in the Tracking the Sun dataset.

e |Installed PV DC capacity is constrained by the parcel footprint, so parcel footprint was
assumed to be a reasonable estimate of the available space for PV system
installations.

e Historical PV adoptions as represented by PV interconnections are a reasonably
accurate representation of historical adoption characteristics.

e Kevala determined PV sizes based on the 2022 baseline load forecast. A single premise
does not typically have significant year-over-year gross load increases, so these changes
should be negligible. This approach does not include the impact of the adoption of other
demand-side modifiers.

e Bills and PV system costs used to calculate payback period reflect 2022 values.

e PV degradation effects and end-of-life system removal/replacement were ignored.
Kevala ignored year-over-year decreases in PV efficiency due to aging, which resulted in an
overestimation of production from older systems as the forecast horizon increases.
Similarly, the model did not consider removal or replacement of aging PV systems because
the vast majority of systems will still be within their operational lifespan at the end of the
forecast horizon.

e Increases in the annual temperature profile due to climate change were ignored.
While Kevala included climate change-induced temperature increases in the baseline load
forecast module, the 2020 air temperature profile was used unchanged as an input to the
PV behavior module.

e The relationship between customer bills and solar costs remained constant. While
Kevala expected rates to increase at the IEPR mid-level escalation rate, the payback period
estimates remained constant over time. This is because the estimated cost of PV systems is
difficult to predict due to many offsetting factors such as supply chain constraints,
government subsidy continuations, and the implications of inflation on PV systems that has
not been seen historically.

Kevala believes the results of the BTM PV analytics completed for this Part 1 Study provide
accurate and sufficient estimates of the impacts of BTM PV adoption on distribution planning.

3.4.3. BTM BESS

BTM BESS are a rapidly growing DER, though still in the early stages of market adoption.
Commonly installed in tandem with a BTM PV system, a BESS is extremely flexible and can be
operated to achieve a variety of goals:

e Provide energy backup during emergency conditions
e Reduce peak demand charges for non-residential customers
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e Improve utilization of the premise’s PV generation to reduce its electricity bills or carbon
footprint

While the market penetration of BESS is still very low and the control strategies that will prove to
be the most popular and prevalent are still unclear, Kevala has taken the approach of modeling
two financially motivated control strategies based on customer class: Kevala’s models assume
residential customers will try to optimize PV self-consumption while minimizing TOU charges,
while non-residential customers will try to use BESS for peak shaving to reduce their demand
charges. Figure 53 summarizes the complete BESS modeling process.

Figure 53: Flow diagram of BTM BESS adoption propensity, sizing, and behavior modeling (Source: Kevala)
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Kevala based its BESS sizing model on the continued adoption of the lithium-ion BESS options
commercially available today. For residential premises, Kevala modeled the new BESS as one or
more Tesla Powerwalls, where the number of Powerwalls is chosen to provide backup for at least
8% of the premise’s gross energy demand on its highest usage day throughout the year. This
equates to approximately two hours of backup energy at the BESS peak power output. For
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commercial premises, Kevala selected one of a range of commercially available BESS options to
offer approximately three hours of self-sufficiency per day, up to the ratings offered by the largest
BESS available, the Tesla Powerpack. Kevala determined the thresholds for selecting these
configurations by analyzing the premises in the historical BESS interconnection data.

The BESS behavior and adoption models depend on the outputs of the PV module based on the
understanding that most future BESS will be adopted and operated in conjunction with BTM PV
(see Section 3.4.2). Once a BESS model was sized for a premise, Kevala modeled its behavior
based on the premise’s customer class. Kevala assumed residential premises would charge when
PV exceeds gross demand and discharge when gross demand exceeds PV, constrained by its
state-of-charge limits. A residential BESS generally charges during the day and discharges in the
early evening, which also approximates the desired behavior to minimize TOU charges, which are
highest in late afternoon and early evening. In contrast, non-residential customers charge during
the lowest net-load hours and discharge during the highest net-load hours in each 24-hour period
to emulate demand charge reduction.

Kevala assigned each premise an adoption propensity score using an IOU-specific machine
learning adoption model trained on the historical interconnection data. The most important
predictor was whether or not the premise had PV. Non-residential premises with PV adopted BESS
at much higher rates than non-residential premises without PV, while the adoption model simply
did not allow residential premises without PV to adopt BESS due to the assumptions of the
behavior algorithm. In addition to PV, the other predictors in the adoption model were customer
class, peak load, and three demographic features. Kevala ranked and compared the adoption
propensity scores to the 2021 IEPR mid-mid case calibration target to select premises that
ultimately adopt BESS. Appendix 6 provides full details of the BESS sizing, behavior, and adoption
model development and validation. See Section 3.4.7 for more details on the development of
these calibration targets.

The following are the key assumptions associated with Kevala’s BESS adoption and behavior
modeling:

¢ Residential customers must adopt PV in the same year or earlier. The BESS behavior
model for residential customers assumed they are maximizing PV self-consumption;
therefore, only residential customers with PV were allowed to adopt BESS. A small number
of residential premises in the historical interconnection data had BESS but not PV, but
these were ignored.

e BESS payback period was not used as a predictor in the adoption model because
current payback periods are very long and may not be indicative of the future prices of
BESS as the BTM BESS market matures.
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e BESS configurations were based on currently commercially available lithium-ion
battery packs and did not account for projected changes in storage technology or
common commercial options.

e The residential BESS behavior model assumed TOU peak periods would continue to
be in the late afternoon and early evening over the modeling horizon.

e The non-residential BESS behavior model assumed a perfect forecast of each 24-hour
period to identify the lowest load periods for charging and the highest load periods for
discharging.

e BESS degradation and end-of-life removal/replacement were ignored. This did result in
an overestimation of performance over time. The financial impacts of BESS replacement on
a given homeowner were not considered given that the initial payback period was also not
included in the adoption model.

Kevala believes the results of the BESS analytics completed for this Part 1 Study provide sufficient
and reasonable estimates of the impacts of BESS adoption on distribution planning given the
nascent nature of the technology in California.

3.44. EE

Kevala’s method for modeling EE savings profiles required developing an analytical-based
approach for defining the energy savings and adoption probability at the premise level. Typically,
EE modeling uses the population level from sampled survey data and the Bass diffusion'® curve
for modeling technology adoption. Using this method, the pattern of savings can be predicted
using engineering modeling to estimate the level of savings from a measure and then applying
adoption levels that apply to a geographic area, such as service territory or even census tract or
zip code.'

While estimating energy savings from EE at the premise level could follow the same engineering
approach described previously, that would be complicated by the lack of information regarding
the premise-specific inventory of electricity and gas end uses behind-the-meter, the overall

1% The Bass diffusion curve is usually based on a simple differential equation that describes the process of
how new products get adopted in a population and provides a perspective on how current adopters and
potential adopters of a new product interact. Key inputs are typically related to proximity of potential to
current adopters and advertising that promotes awareness of the new product.

1% Once measures are installed, the savings are verified by quantifying a counterfactual, which basically
requires estimating what customers would have consumed had they not implemented the EE measures and
comparing that estimate to their actual use. One shortcoming of this approach is that it is difficult to
determine the level of savings from individual measures if more than one measure is installed at the same
time or the level of savings from the measure is not systematically greater than the random variation in the
customer’s load.
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condition of the facilities or buildings on the premise, and the level of EE technologies already

installed at the premise. Ideally this information would be available for not only a sample of

customers used to train premise-level models, but also for all premises in the IOUs’ service

territories. For the Part 1 Study, this level of data was unavailable.

Kevala’s approach seeks to estimate the percent of energy savings potential per premise and the
propensity for adopting measures to achieve this level of savings without predicting which and if a

particular EE measure is installed at a premise. The underlying assumption for this approach is

that the impact of EE adoption is driven less by a specific technology because the level of savings

depends highly on diverse premise characteristics and a methodology focused on the level of
savings relative to load would be the best predictor of the impact of EE on the grid.

Figure 54 shows the process flow of the EE evaluation method to develop the premise-level EE
forecasts. This method is based on an analysis of the California Energy Data and Reporting System
(CEDARS),""® which is a dataset collected by the CPUC of every record of EE program participation

from the IOUs. CEDARS tracks the individual premises participating in EE, as well as a measure of
cost, incentive, and the total first year energy savings in kilowatt-hours (kWh). A detailed

explanation of Kevala’s approach and results are shown in Appendix 7.

Figure 54: Flow diagram of EE adoption propensity and demand-side modifier modeling (Source: Kevala)
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""" CPUC, “CEDARS: California Energy Data and Reporting System,” https://cedars.sound-data.com/. Kevala

received 2018-2020 program participation data.
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Starting by combining the CEDARS premise participation data with premises’ historical hourly load,
Kevala identified the potential level of savings by premise.'"' Kevala then ran multiple
experiments to identify characteristics that correlate well with the adoption of EE measures based
on CEDARS participants to generate adoption propensity scoring for the population.

As a result of the analysis to find commonality of historical participation, the adopted premises
leverage three main traits (Appendix 7 provides a more detailed description):

e Average daily delivered energy magnitude
e Ratio of max to mean daily delivered energy, relative to the size of the premise
e Residential versus non-residential

The EE-participating premises were matched directly to the hourly baseline load estimate by
customer meter to calculate a percentage of energy savings from EE adoption. That is, these
savings calculations were based on the baseline load at the premise, not the baseline net-load
estimate, because all premise loads, even those that are offset by PV and storage, may be
affected.? The algorithm assigned potential energy savings percentages in grouped premises
based on the energy savings percent distribution for the EE-participating premises. In simulation,
Kevala combined the adoption propensity scores and potential energy savings percentage to
select premises that adopt EE until the 2021 IEPR mid-mid case calibration target was reached. See
Section 3.4.7 for more details on the development of these calibration targets.

The following are the key assumptions associated with EE adoption and behavior modeling:

e Premise-level savings percentage was based on EE portfolio program participation.

There are other sources of EE savings such as codes and standards, behavior change from
programs and other interventions, energy savings assistance (low-income program
participants), and market-driven impacts whose records were not available at the premise
level. Leveraging other EE savings tracking efforts (such as the CEC SB 350 analysis or
disaggregating group-level data to premise)''* may lead to more accurate EE savings
accruals; however, these were not quantified on a premise-level basis (but were deemed
values). For the Kevala model, using the EE program participant-level data was sufficient
because Kevala was not forecasting future EE adoption and instead was calculating to the
2021 IEPR mid scenario target for AAEE.

11 Kevala can examine further leveraging the CEDARS database for EE estimations in Part 2.
"2 Kevala assumed EE and BE to be embedded in the baseline load estimate.

' This group-level data includes energy savings assistance programs (low income), home energy reports,
upstream or midstream programs, and codes and standards.
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e Savings were assumed to be applied equally on a percentage basis to every hour.
Defining the end-use scale and shape change must be known to a granular level to truly
indicate hourly load impacts with EE. The granularity defines the end use and technology
type (efficiency, operation, or controls). Each of these dependencies will impact the hourly
load.

e Savings were adopted once in the forecast period, whereas EE adoption is a continuum
and is not a one-and-done activity. Ideally, savings can be accrued in more than one
adoption year. There will be cases where the implemented savings percentage value is too
high or artificially holding back some premises’ potential.

Kevala believes the results of the EE analytics completed for this Part 1 Study provide accurate and
sufficient estimates of the impacts of EE adoption on distribution planning.

3.4.5. BE

BE (or fuel substitution) is a relatively new category of DER analysis for the utility industry and is
becoming increasingly important in the study of the magnitude and location of future grid needs.
This is particularly true in California as policymakers look to reduce carbon by encouraging the
replacement of carbon-emitting end uses (such as gas heating) with electric end uses. This
increase in BE (as well as transportation electrification, which is discussed later in this report) may
result in higher electricity use during peak hours, creating significant strain on the existing
distribution infrastructure. However, it also provides opportunities for demand response to offset
that increased load during critical peak periods or use of load management to encourage peak
shifting to less capacity constrained periods.

Kevala recognizes that the ideal approach to modeling BE is to define the existing loads that may
be electrified and the timing of that transition. Unfortunately, Kevala did not have a full set of gas
consumption data as of Q1 2022. Therefore, the BE analysis was limited to available data on
electricity at the premise level. Figure 55 shows the key steps for the BE analysis, assuming gas
loads are unknown. A detailed explanation of Kevala’s approach and results are shown in
Appendix 8.
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Figure 55: Flow diagram of BE adoption propensity and demand-side modifier modeling (Source: Kevala)
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Kevala’s approach leveraged secondary research, publicly available data, and engineering analysis
to estimate BE size and behavior. BE size was driven by the customer class (residential versus
commercial) and climate zone. Behavior was based on load profiles from established NREL
databases. Because appropriate datasets were not yet available to model BE adoption propensity,
Kevala used EE adoption propensity values as a proxy. Kevala then ranked the adoption
propensity scores from highest to lowest and selected the premises in rank order until the BE
calibration target was met.

This analysis defined the available electrification (increase in load) potential on a premise basis.
Kevala did review potential adoption analytic sources such as California’s 2021 energy efficiency
potential study'* and deemed the method not applicable. See Section 3.4.7 for more details on
the development of the calibration targets.

The following are the key assumptions associated with BE adoption and behavior modeling:

""" Guidehouse, 2021 Energy Efficiency Potential and Goals Study, prepared for California Public Utilities
Commission, August 20, 2021.
https://pda.energydataweb.com/api/view/2531/2021%20PG%20Study%20DRAFT%20Report%202021_Final.p
df
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Level of BE adoption was set based on customer class, and existing premise-level gas
consumption was unknown. The approach described here assumed an unknown level of
gas consumption or even the existence of gas loads. Kevala did not conduct hourly
analytics to identify via electric loads if gas loads existed for certain end uses.

The existing state of specific end-use electrified load was unknown. Not knowing if the
new consumption was for space heating, water heating, clothes drying, or other, the
approach was to apply the new electricity load to a whole building load profile derived from
known all-electric building data or models for residential and commercial sectors. Kevala
used the NREL ResStock''* and ComStock''® libraries for the all-electric default load shapes
to apply to the newly electrified loads.

There was limited electrification opportunity for certain non-residential premises.
Especially for industrial facilities, there are multiple uses for natural gas. They include high
temperature process heating, feedstock input, and all other uses. The first two are
considered not feasible for electrification. As a result, a percentage of industrial natural gas
will not be electrified.

Future, not yet drafted, codes and standards were not included in the baseline load
forecast. The baseline forecast did include application of adopted and pending codes and
standards. However, Kevala did not include the application of future codes and standards
for existing or new construction in the baseline forecast. Any future BE due to codes and
standards was part of the forecast analysis.

Kevala proposes the following for the Part 2 Study:

Kevala has received and processed the natural gas data from PG&E, SDG&E, and Southern
California Gas. The first planned modification is to include gas use or other related metrics
in testing a new BE adoption model.

Kevala plans to request additional data from the IOUs regarding granting incentives to their
customers for adopting BE technologies, such as electric water heaters and electric heat
pumps.

Kevala will research other jurisdictions to see if there are any studies that may provide
useful in further refining the adoption model and results.

"> ResStock is an NREL load profile library using a combination of building models and metered data.
Kevala filtered the data to California with the space and water heating fuel set to electricity only.

"® ComStock is an NREL load profile library. Kevala filtered the data to California with the space and water
heating fuel set to electricity only.
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3.4.6. EVs and EVSE

EVs, and the EVSE required to charge them, are a rapidly growing and evolving set of DERs. As the
number of ZEVs in California increases from roughly 1.3 million EVs as of October 2022 toward
statewide ZEV adoption 2035 levels of roughly 13 million LD EVs and 290,000 MD and HD EVs, this
new load will be significant.'” While California has already achieved a meaningful level of ZEV
adoption, the underlying consumer behavior and relevant grid constraints are not yet well-
understood given today’s level of penetration, particularly for MDVs and HDVs.

Kevala’s approach for modeling the energy impact associated with varying levels of ZEV adoption
involves seven stages. The first three stages, known as the EV pipeline, involve determining
premise-level ZEV adoption by ownership type, duty, powertrain, and vehicle class. The next four
stages, known as the EVSE pipeline, calculate premise-level EVSE adoption and hourly energy
usage behavior by EVSE type and capacity level. Figure 56 summarizes the complete EV and EVSE
modeling process.

"7 California Energy Commission, “New ZEV Sales in California,” https://www.energy.ca.gov/data-
reports/energy-almanac/zero-emission-vehicle-and-infrastructure-statistics/new-zev-sales.

Part |: Bottom-Up Load Forecasting and System-Level Electrification Impacts Cost Estimates, Kevala, Inc. 105


https://www.energy.ca.gov/data-reports/energy-almanac/zero-emission-vehicle-and-infrastructure-statistics/new-zev-sales
https://www.energy.ca.gov/data-reports/energy-almanac/zero-emission-vehicle-and-infrastructure-statistics/new-zev-sales

kevala

R.21-06-017 ALJ/ML2/KHY/fzs

Figure 56: Flow diagram of EV and EVSE calibration target, propensity, sizing, and behavior modeling (Source:

Kevala)
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Kevala’s allocation of forecasted vehicle adoption and charging equipment establishes their

existing penetration and location. Allocating new adoptions from one of the three CARB or CEC
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ZEV adoption forecasts serve as inputs to the Part 1 Study scenarios. Table 13 summarizes the
CARB and CEC LDV, MDV, and HDV ZEV adoption forecasts and the associated vehicle counts that
Kevala used in the Part 1 Study.

Table 13: Summary of CEC and CARB LDV, MDV, and HDV ZEV adoption forecasts used for Part 1 Study
scenarios (Sources: CARB, CEC, Kevala)

CARB 2021 ACC Il CEC 2021 IEPR bookend scenario

CEC 2021 IEPR
mid scenario

CARB 2020 SSS CEC 2021 IEPR high scenario
3,172,598 10,013,953 9,530,034
227,140 218,710 230,876

*The values in this table represent the forecasted ZEV adoption counts from 2022 to 2035 that the model
allocated based on the CARB and CEC ZEV adoption forecasts. These values exclude all ZEV counts prior to
2022, thus they do not represent the total cumulative ZEV counts for all three IOUs.

**The two High Transportation Electrification scenarios incorporate transportation electrification
assumptions similar to those applied to the 2022 IEPR demand forecast mid-mid case (i.e., the 2022 IEPR
Planning Forecast). At the time the Part 1 Study was developed, the 2022 IEPR had not yet been adopted, so
the 2021 IEPR mid-mid case was used for the Part 1 Base Case.

Kevala selected the three CARB and CEC ZEV adoption forecasts for the Part 1 Study because they
represent a meaningful range of ZEV adoption levels that align with California policy goals and
market forecasts. Kevala identified and selected the Base Case and Accelerated High
Transportation Electrification scenarios’ ZEV adoption forecasts prior to the High Transportation
Electrification scenario’s ZEV adoption forecast.''® At the time Kevala selected these inputs, it was
not known that the High Transportation Electrification scenario’s LDV ZEV adoption forecast would

""® The LDV, MDV, and HDV ZEV adoption forecasts were determined by the JASC High Electrification
Interagency Working Group and selected in March 2022, after the ZEV adoption forecasts for the Base Case
and Accelerated High Transportation Electrification scenarios had been selected. For more information
about the Interagency Working Group’s high electrification scenario, refer to the May 24, 2022, CEC
Resolution (No. 22-0524-5) that adopted it for use in transmission planning and as part of the 2021 IEPR
“single forecast set,” at https://www.energy.ca.gov/filebrowser/download/4171.
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have a greater number of 2035 adoption compared to the Accelerated High Transportation
Electrification scenario.

Forecasting the new load associated with these vehicles and chargers is a complex task, given that
vehicle charge profiles depend on many variables such as miles traveled, vehicle type (which
include 24 duty, powertrain, and vehicle class combinations), charger type (which include 10 use
case and capacity combinations), and other variables. As a result, a multifaceted analysis that
synthesized multiple datasets was required. The key data sources for the ZEV modeling
framework included:

e Forecasted vehicle and charger attributes such as range and battery capacity from the
CEC’s AB 2127 Report'?®

e Vehicle miles traveled (VMT) by county and vehicle type from the Local Area Transportation
Characteristics for Households Data (LATCH) survey'?® and derived from the U.S. Bureau of
Transportation Statistics’ Vehicles in Use Survey (VIUS), as summarized by M.J. Bradley &
Associates'

e Vehicle operating schedules from the NREL Fleet DNA dataset'?

e Existing internal combustion engine (ICE) and ZEVs by census block group from Experian’s
VIO data'®

Appendix 9 contains additional details about the modeling steps and datasets used for the EV and
EVSE.

Kevala’s first step was to harmonize the 2022-2035 ZEV adoption forecasts received from CARB
and the CEC. Because the forecasts use different vehicle classification systems and were provided
at varying levels of geography, Kevala converted all LDV, MDV, and HDV classes to a standard set

"9 California Energy Commission, Assembly Bill 2127 Electric Vehicle Charging Infrastructure Assessment:
Analyzing Charging Needs to Support Zero-Emission Vehicles in 2030, July 14, 2021,
https://efiling.energy.ca.gov/getdocument.aspx?tn=238853.

120 Bureau of Transportation Statistics, “Local Area Transportation Characteristics for Households (LATCH
Survey), February 2021, https://www.bts.gov/latch.

21 'M.J. Bradley & Associates, Medium- & Heavy-Duty Vehicles: Market structure, Environmental Impact, and EV
Readiness, July 2021,
https://www.edf.org/sites/default/files/documents/EDFMHDVEVFeasibilityReport22jul21.pdf.

122 National Renewable Energy Laboratory, “Fleet DNA: Commercial Fleet Vehicle Operating Data,”
https://www.nrel.gov/transportation/fleettest-fleet-dna.html.

12 Experian, “Vehicles in Operation (VIO),” https://www.experian.com/automotive/vehicles-in-operation-vio-
data.
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of vehicle classes and disaggregated statewide forecasts into county and IOU-level targets areas to
enable comparison.

Kevala also separated the CARB and CEC ZEV adoptions by their ownership type, which are
categorizations that are contained in the agencies’ forecasts. Kevala refers to ZEVs that are
personally owned by an individual and used for personal, non-businesses purposes as personal
EVs. For the purposes of the Part 1 Study, personal EVs are exclusively LDVs. Personal EVs can be
either BEVs or PHEVs and can be one of seven vehicle classes. The second category of vehicle
ownership type is fleet EVs. Fleet EVs are vehicles owned by or registered to an entity (not an
individual) and are used for business-related purposes. Fleet EVs can be LDVs, MDVs, or HDVs.
Fleet EVs only have BEV powertrains and can be one of 10 vehicle classes.

The next step was to set the potential number of vehicles and type of vehicle at each premise
eligible for vehicle adoption. Kevala modeled residential premises to be sized with one or two
personal LD BEVs or PHEVs, with the probability of adopting two vehicles increasing with time.
Kevala assigned the vehicle class of these vehicles using probabilities derived from projected
vehicle class market share from the AB 2127 Report, which references CARB’s 2020 Mobile Source
Strategy (MSS) LDV ZEV adoption forecast.'® Non-residential premises were sized with up to 180
LD, MD, or HD fleet BEVs or PHEVs of a specific vehicle class based on the following:

e The existing number of ICE vehicles of the relevant vehicle class in the premise’s Census
tract.

e The annual electrification rate of existing ICE vehicles derived from the EV adoption targets
for each vehicle class.

e The estimated area of the premise, with larger premises receiving more vehicles.

Kevala developed separate models for personal and fleet EV adoption. The personal EV adoption
model used the density of existing EVs in the Census block, the urban/suburban/rural
classification of the premise’s Census tract, whether the premise was a likely MUD, peak load, and
eight additional demographic features. Kevala trained a Bayesian MLR model against historical EV
adopters identified by PG&E in its territory. Because there was not sufficient data within SCE and
SDG&E’s service areas to conduct the training analysis, Kevala also used the model trained using
PG&E data to predict EV adoptions in SCE and SDG&E.

The fleet EV adoption model used customer class, estimated premise area, and estimated premise
building footprint to produce an adoption score for eligible premises. Address-level historical fleet

124 CARB, 2020 Mobile Source Strategy, September 2021, https://ww?2.arb.ca.gov/sites/default/files/2021-
09/Proposed_2020_Mobile_Source_Strategy.pdf
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EV adopters were not available, so Kevala selected model features and weighted them for
importance based on available data and subject matter expertise. For personal and fleet EV
adoption models, Kevala ranked the resulting adoption propensity scores by either vehicle class or
powertrain (BEV or PHEV) and selected the highest-scoring premises to adopt until meeting the
vehicle count targets of the different EV scenarios.

After predicting EV adoptions, Kevala estimated EVSE adoption. EVSE port count targets for each
charger use case (e.g., workplace, public, corridor) were first developed for each county in the IOU
service territories.'” Kevala set these targets using EVSE ports-to-EV count ratios derived from the
CARB 2020 MSS forecast values contained in the AB 2127 Report from 2022 to 2035. Kevala
applied these ratios to the annual, county-level EV adoption results in the Part 1 Study scenarios to
set county-level EVSE port count targets.

After setting EVSE port count targets, Kevala sized premises eligible to adopt EVSE with a
theoretical charger use case, level—L1, L2, or DCFC—and port count. Kevala sized EVSE at
premises as follows:

e Premises that were flagged as likely SUDs received one L1 or L2 charger per vehicle. Kevala
assigned SUDs TOU or non-TOU rates to influence EV charging schedules based on
projected annual shares of customers on TOU rates by IOU from the AB 2127 Report.'?*

e Premises flagged as likely MUDs received zero or one L1 or L2 charger per vehicle.

e Premises adopting fleets were assigned approximately one L2 or DCFC charger for every
two vehicles based on EVSE-to-EV ratios derived from the AB 2127 HEVI-LOAD model
results.

e Premises flagged as non-residential and where no EVs were adopted were eligible for
public, workplace, and corridor chargers.'” Where theoretical EVSE was assigned, Kevala
based charging use cases and charger levels on probabilities derived from forecasted
market shares of charging technology from the AB 2127 Report.

e Premises located in travel corridors were eligible for DCFC corridor chargers serving either
LDVs or MDVs and HDVs, and premises located outside travel corridors were eligible for
workplace L2 chargers, public L2 chargers serving LDVs, public DCFC chargers serving LDVs,
and public DCFC chargers serving MDVs and HDVs. Kevala assigned the EVSE port count at
each premise based on probabilities derived from historical port counts per charging
station and projected trends in increased port density at charging stations.

15 Port counts refer to the unit of charging infrastructure that is able to charge one ZEV at one time.
126 See Appendix B, Table B-9 in the AB 2127 Report for TOU participation rates by utility territory.
127 A corridor charger is a charger located in major travel corridors, primarily serving long distance travel.
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Kevala developed an EVSE adoption model for public, workplace, and corridor chargers that uses
customer class, Caltrans traffic and truck volumes, estimated premise area, and the percentage of
commercial premises in a premise’s Census tract as its core features. Due to the nascent state of
public and shared private EVSE networks and incomplete data on existing EVSE in IOU territories,
Kevala chose not to train a model based on historical data and instead developed a set of features
and corresponding weights in the adoption algorithm based on projected future trends and
subject matter expertise. Kevala then ranked the resulting adoption propensity scores and,
starting with the highest-scoring premises, selected to adopt until the EVSE port count target for
each scenario, use case, and level was met. In the final stage, Kevala produced hourly EVSE
charging demand curves for every premise adopting EVSE. The EVSE behavior model simulated
the charging patterns of a typical set of vehicles using the charger(s) at the premise over the
course of a year as follows:

e For public, workplace, and corridor chargers, this typical set of vehicles was derived from
the annual market share and count of EVs in the county the vehicle is based.

e For home and fleet chargers, the EVs adopted at the premise made up the vehicles using
the charger(s).

e Beyond information about the charger(s) and vehicle stock, the model used operational
inputs such as the VMT required to be met for each vehicle by the chargers, hourly and
weekly vehicle operating schedules, and the battery state-of-charge threshold at which to
seek charge.

The following are the key assumptions associated with EV and EVSE adoption and behavior
modeling:

e Kevala based future vehicle and EVSE attributes on AB 2127 modeling assumptions.
Due to the inherent uncertainties in future vehicle, battery, and charger technology trends,
Kevala chose to use the AB 2127 Report modeling assumptions for these technologies
wherever possible.

e EVs and EVSE were adopted once over the forecast period. Personal and fleet EVs are
often adopted over time as conventional vehicles come to the end of their useful life and
are replaced with EVs. This may understate the fleet size and future fleet depot load at
individual premises. In Part 2, Kevala can revisit the ability of a premise to add additional
vehicles in later years of the forecast period.

e There were no limitations on density of public, workplace, and corridor EVSE in an
area. While Kevala calibrated its models to forecast geographically dispersed public,
workplace, and corridor chargers, premises with similar characteristics and in the same
area may adopt chargers, potentially overstating the EVSE demand in specific areas from
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these charger types. Future models could consider existing EVSE density when placing
chargers.

e Temperature impacts on charging curves were ignored. High and low temperatures can
have meaningful impacts on charging demand, driven primarily by impacts on cooling and
heating loads in the vehicle cabin. Thus, charging loads are likely to be different in summer
and winter months in certain geographies of the state.

3.4.7. Calibration to Top-Down Forecasts

As defined in the Research Plan and discussed in each of the preceding sections, Kevala calibrated
its Base Case to the 2021 IEPR. The CEC scenarios and files used to calibrate the different
scenarios are listed here:

e CEC hourly demand forecast files:

o CED 2021 Hourly Forecast - PGE - Mid Baseline - AAEE Scenario 3 - AAFS Scenario 3
(PG&E mid case)

o CED 2021 Hourly Forecast - SDGE - Mid Baseline - AAEE Scenario 3 - AAFS Scenario
3 (SDG&E mid case)

o CED 2021 Hourly Forecast - SCE - Mid Baseline - AAEE Scenario 3 - AAFS Scenario 3
(SCE mid case)

o CED 2021 Load Modifiers - 02.22.2022 (Load modifiers mid case)

e CEC load-serving entity (LSE) and balancing authority (BA) file:

o CED 2021 Managed Forecast LSE and BA Tables- Mid Demand- AAEE Scenario 3 -
AAFS Scenario 3 (LSE mid case)

As noted in Section 3.3.2, Kevala calibrated the baseline load forecast for 2022 with no DERs to the
“Unadjusted Consumption” or native load peak provided in the CEC 2021 IEPR mid-mid case at the
TAC (or aggregate transmission load node) level by I0U. For SCE and PG&E, the resulting
maximum baseline load was adjusted by the IOU service territory to TAC-level peak load ratio
derived from the CEC 2021 IEPR LSE and BA files.'?® SDG&E was the sole LSE in its TAC area, so ho
such adjustments were necessary.

For the demand-side modifiers, Kevala used the maximum combined power output of the DER
non-coincident with respect to the TAC-level peak load (i.e., the maximum coincident output of
each of the DERs forecasted), provided in the 2021 IEPR mid scenario hourly DER forecast at the
TAC level. As with the native load, Kevala adjusted this value with the same ratio of the IOU service
territory to TAC-level peak load ratio derived from the 2021 IEPR LSE and BA files as a good proxy

" Form 1.5¢ “1-in-5 Net Electricity Peak Demand by Agency and Balancing Authority (MW),” using the LSE
mid-case.
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of service territory to TAC ratio for DERs’” maximum output. Kevala adjusted the combined output
for PV and BESS with the combined DER output to maximum installed capacity ratios derived from
Kevala’s behavior modeling result curves.

Lastly, Kevala used the adoption counts for LDVs and MDVs/HDVs from the 2021 IEPR mid

scenario provided by the CEC as targets of the adoption stage for EVs. Each of these base case
assumptions is listed in Table 14, Table 15, and Table 16.

Table 14: Base Case 2022 baseline load calibration targets by IOU (Source: CEC)

Baseline load

20,410

22,146

4,749

Table 15: Base Case 2021 IEPR forecasted EV targets for 2025, 2030, and 2035 (Source: CEC)

LDVs BEV 613 1,050 1,562 408 693 1,021 128 217 319
PHEV 252 365 452 258 367 450 59 88 104

MDVs

and BEV129 11 54 109 11 47 94 2 8 16

HDVs

Table 16: Base Case 2021 IEPR EE, BE, PV, BESS calibration combined DER output targets for 2025, 2030, and

2035 (Sources: Kevala, CEC)

EE -426 -889 -1309 -465 -999 -1477 -103 -210 -307
BE 222 522 855 154 346 562 22 46 73
PV -7,094 -9,653 -12,090 | -4,023 -5,488 -7,197 -1,908 -2,525 -3,139

129 |EPR mid targets for MDVs/HDVs were provided as combined counts of total BEVs and PHEVs. Given the
uncertainty in the share of BEVs and PHEVs, Kevala modeled all MDVs/HDVs as BEVs.
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Residential 121 274 436 45 105 175 39 81 121
Storage

Non-

Residential 45 97 144 36 76 112 1 23 34
Storage

3.5. Estimation of Electrification Grid Upgrade Costs

The approach to streamlining the capacity-driven upgrade requirements can be summarized in
three steps:

1. Determining the peak load at different key infrastructure points of the grid to estimate if
there is an overload.
Determining new infrastructure assets required to mitigate the overload.
Using the unit cost for installed new assets provided by the IOUs to determine the costs.

Creating premise-level hourly disaggregated net-load profiles enables Kevala to calculate the
coincident peak load at different aggregation levels. For this study, Kevala calculated the distinct
coincident peak load for all service transformers, feeders, and substation transformer banks to
determine long-term thermal capacity upgrades for the different scenarios and time horizons. A
simplified grid diagram depicting the grid infrastructure assets and their connectivity is provided
in Figure 57. From left to right, a transmission line feeds a distribution substation that typically has
anywhere between two and four transformer banks; each transformer bank serves a number of
feeders to distribute power to the neighborhoods. The feeders serve thousands of customers via
primary lines or line segments that distribute the power to service transformers on poles or
underground pad-mounted transformers. Service transformers step down the voltage for a few
customers (up to a dozen) to the customer utilization voltage, and the power is finally delivered to
the customer meter via secondary service lines.
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Figure 57: Grid infrastructure connectivity diagram of substations, transformer banks, feeders, and service
transformers that distribute electric power to customers via the distribution grid (Source: Kevala)
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Scope of the Part 1 Study*

*The scope of the Part 1 Study does not include the transmission (and/or sub-transmission) system feeding
the distribution substation or the primary line segments from the feeder head to the service transformers.

For a better sense of the number of assets at which Kevala performed a capacity grid needs
assessment, Figure 58 shows the number of service transformers to substations that Kevala
analyzed. The unit cost of replacing each of the different assets increases from the bottom of the
pyramid to the top—e.g., a new substation has higher unit costs (multiple tens of millions of
dollars), and a new service transformer has lower unit-cost (multiple tens of thousands of dollars).
The detailed unit-cost assumptions by assets type are presented in the Section 3.5.1.

Figure 58: Number of substations, transformer banks, feeders, and service transformers analyzed by Kevala
in the Part 1 Study for the three IOUs (Source: Kevala)

ﬁ Transformer Banks

~ 2,000 Banks

i Feeders

~ 8,000 Feeders

ﬁ Service Transformer
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~ 1,500,000 Service Transformers

Motes: The numbers in the pyramid are the number grid assets by category for the three |OUs.
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Kevala calculated the upgrade costs based on the unit costs of grid assets and distribution design
principles provided by the each of the I0Us, including:

e Typical number of feeders by substation transformer bank size
e Typical number of transformer banks in a substation
e Overloading criteria for service transformer, feeder, and substation transformer bank

The detailed design assumptions are included in Appendix 10, Appendix 11, and Appendix 12.

3.5.1. Distribution Grid Asset Unit Costs

Table 17 summarizes the unit costs (including overhead and installation costs) provided by the
IOUs. New substation costs used in this study and provided by the IOUs do not include
transmission line extensions or distribution feeder lines outside the substation.

The differences in the substation unit costs between the IOUs are summarized as follows:

e PG&E substation unit costs are based on Table 17-27 of the 2023 General Rate Case and
include land, regulatory, material, and construction costs for assets within the substation
fence.

e SDG&E substation unit costs are based on the installation of four 69/12 kV transformers
(each rated at 28 MVA) and four quarter section switchgear; they do not include cost
estimates for other requirements and factors such as land acquisition, site development,
environmental permits, transmission and distribution infrastructure, control shelter,
protection equipment, and relays.

e SCE substation unit costs are based on the average cost of five historical substation
projects and include distribution substation installed equipment costs and land.

Regarding transformer bank unit costs, the IOUs provided installed transformer costs. PG&E uses
45 MVA for new installs while SCE and SDG&E typically use the 28 MVA size. Feeder costs for PG&E
and SDG&E include the costs of a 2-mile primary run. PG&E included the fixed feeder breaker
costs of $1.4 million and the primary conductor cost for which Kevala used the average of
overhead and underground runs, resulting in $470/foot. SDG&E included the per distance cost of
primary trench and conduit and primary cable adding up to $601 /foot. SCE provided a typical cost
for primary feeder by voltage class, and Kevala used the average cost, resulting in $5,473,094 per
feeder, and it includes all equipment and labor to construct the entire circuit, including the
primary distribution line.
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Table 17: New substation, transformer bank, and feeder unit costs (Source: Kevala)

PG&E $27,000,000 $11,800,000 (45 MVA) $6,363,200
SCE $39,663,589 $2,019,011 (28 MVA) $5,473,094
SDG&E $20,912,000 $4,685,000 (28 MVA) $6,689,760

Table 18 includes the service transformer costs by type and size, including equipment
(transformer and secondary cable) and installation costs for PG&E, SCE and SDG&E respectively.

Table 18: New service transformer and secondary cable equipment and labor costs by IOU (Source: Kevala)

<150 $22,000 $19,000 (Residential) $22,000
150 $39,000 Not standard size $59,700
300 $47,000 $39,140 (C&I) $61,600
500 Not standard size $50,470 (C&l) $67,500
750 $58,000 $58,710 (C&I) $74,000
1,000 $72,000 $74,160 (C&I) $126,100
1,500 $98,000 $101,970 (C&l) $133,400
2,500 Not standard size $193,640 (C&l) $152,100
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3.5.2. Approach to Grid Upgrade Requirements
Figure 59 outlines the grid upgrade costs method.

Figure 59: Thermal capacity upgrade cost calculation method at different grid asset levels (Source: Kevala)

¥
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The approach is summarized in the following steps:

e Step 1: Kevala calculated the coincident peak at the 2,054 transformer banks for the three
IOUs. Kevala assumed that load can be transferred between transformer banks at the
substation level. As such, the overload was calculated at the substation level by adding
ratings of the transformer banks to determine an overload. The sum of the peak load at
the transformer banks within a substation was compared to the sum of the transformer
bank ratings to determine the overload. If an overload was determined based on the
overloading criteria at the transformer bank level provided by the IOUs and the substation
has space based on the typical number of transformer banks in a substation, then one or
more transformer banks were added and the corresponding costs calculated. However, if
there was no more space at the substation to accommodate the required number of new
transformer bank(s) to solve the overload, then a new substation was added and upgrade
costs calculated.

e Step 2: Kevala calculated the coincident peak at each of the 8,256 feeders and compared it
to the feeder rating to determine the overload. If an overload occurred based on the
overlaying criteria provided by the I0Us for feeders, and there were one or more spare
breakers on the transformer bank based on the typical number of feeders by transformer
bank size, then one or more feeders to mitigate the overload were built and the
corresponding costs calculated. However, if there was no more space on the transformer
bank to add the number of feeders required to mitigate the overload, then, if there was a
new transformer bank or substation that was built in the previous Step 1, then one or more
feeders to mitigate the overload were built and the corresponding costs calculated. If there
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was no more space on the transformer bank and no new transformer banks or substations
were built in Step 1, then a new transformer bank or substation upgrade was triggered.

e Step 3: Kevala calculated the coincident peak at each of the 1,560,390 service transformers
for the three IOUs and compared the result to the service transformer rating to determine
the overload. For customers connected to service transformers with a rated capacity less
than or equal to 100 KVA, based on the magnitude of the overload, Kevala added the
required number of 50 KVA service transformers and calculated the corresponding costs to
solve the overload. For C&I customers connected to service transformers with rated
capacity greater or equal to 150 KVA, a new next size-up service transformer that would
mitigate the overload was chosen from the service transformer size tables provided by the
IOUs.

Kevala did not include other grid deficiency needs such as thermal line section, voltage, and
resilience in the Part 1 Study, but they may be revisited as appropriate in the case studies in Part
2.
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4. Recommendations for Improvements on DPP and
Part 2 Planning

This Part 1 Study demonstrates that it is possible to connect premise-specific characteristics to
develop long-term location-based scenarios. Scenario planning that reflects localized and
dynamic conditions and behaviors is a critical risk identification and mitigation method for
distribution planners and policymakers. Distribution planners, for example, need additional
tools to anticipate diversified and location-specific grid requirements; policymakers need
additional tools to develop and evaluate the cost-effectiveness and metrics of utility investments,
customer programs, and rate designs going forward. In short, missing the where and when of
necessary grid investments risks making stranded investments or missing opportunities to
electrify altogether. Because the grid is changing at the premise level, utility and policy decisions
should be informed by a premise-level understanding of where and when electricity grid
enhancements will be needed to meet California’s ambitious energy policy goals.

This section outlines recommendations for improvements to the DPPs. This section also
summarizes Kevala’s approach for evolving the premise-based analysis begun in this Part 1 Study
into the Part 2 Study. Kevala’s proposed Part 2 approach is designed to support the Phase 2, Track
1 questions identified in the High DER Rulemaking Scoping Memo by building on the data
collected and analyzed to date in Part 1.

4.1. Recommendations for DPP Improvements

The results of this Part 1 Study suggest that understanding where and when electricity grid
enhancements are needed will require changes on multiple distribution planning fronts. Based on
these results, Kevala recommends these specific changes relating to the utilities’ distribution
planning approaches, infrastructure included in the distribution planning processes, and data
used in utility distribution planning.

First, using the approach detailed in Section 3 of this of this Part 1 Study report, Kevala has
demonstrated that it is possible to disaggregate load and DER growth and predict distribution
impacts at a premise-level:

e Over a 15-year time horizon, which is a longer forecast time horizon (to 2035) than is
currently performed for regulatory filings.

e Incorporating multiple scenarios for each of the three IOU service territories in less than
one year (the timeframe to conduct the study).

e |dentifying significant potential capacity costs previously not identified in current utility
distribution planning filings.
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These results suggest there is a disconnect between the current distribution and DER planning
processes that are near-term focused and locational grid requirements that are likely to
materialize under different DER adoption scenarios over the longer term. These processes result
in minimal-to-no deferral opportunities being implemented.* Further, these results suggest that
studying how DER and other load management techniques can avoid or mitigate the significant
capital costs identified in this study will be a critical component of achieving California’s
electrification goals.

Recommendation 1: PG&E, SCE, and SDG&E should increase the planning horizon for
their distribution planning filings. The expected adoption rate of technologies at the grid
edge (i.e., at the premise level) in the long term to meet federal and state decarbonization and
electrification policies may require the distribution planning horizon to be increased to align
with the CEC’s IEPR planning horizon (15 years)'' and the California Independent System
Operator’s (CAISQ’s) transmission planning horizons (10 years for annual planning and 20
years for transmission outlook). Increasing the planning horizon for distribution planning
filings should help to prepare more efficiently for a distribution grid that can maximize the
cost-effectiveness of incorporating DERs and load management technologies to increase
system capacity and reliability.

130 See Kevala's Distribution Investment Deferral Framework: Evaluation and Recommendations report:
https://uploads-
ssl.webflow.com/62a236e9692¢48e1d16898b3/63729a90e35f9cb53c617a14_DIDF%20Evaluation%20and%?2
ORecommendations_Kevala_11.14.22.pdf.

131 A stated in the 2021 IEPR at p. 2, “For the 2021 forecast, these energy demand forecasts are extended
out beyond 10 years to 2035 to provide planners with a longer forecasting horizon and support planning for
transportation electrification goals.” The 2021 and 2022 IEPRs went beyond 10 years to 2035 (15 years), and
the 2021 IEPR also included long-term energy demand scenarios to 2050 (30 years) because of increasing
policy and planning focus on climate change. See also Public Utilities Code Section 454.57(e)(1), which as of
2022, requires “at least 15 years” to ensure adequate lead time for permitting and construction of approved
transmission facilities.
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Recommendation 2: PG&E, SCE, and SDG&E should incorporate additional policy-based
demand scenarios into their DPPs and annual GNA/DDOR filings. For example, scenarios
can consider managed charging assumptions or different rates of EV and BE adoption to better
understand the impact of higher or lower electrification loads on planned investments for grid
infrastructure. As this Part 1 Study shows, an uncertain load and DER future requires scenario
planning that would result in multiple load and DER scenarios being disaggregated in the DPP
to better inform the overbuilding and underbuilding risks involved in planning for grid
infrastructure needs.

This Part 1 Study, by leveraging AMI consumption data and performing a premise-level modeling
of load and DER potential futures, was able to estimate grid upgrades for the scenarios considered
at the service transformer level, across the PG&E, SCE, and SDG&E territories. Kevala recommends
the distribution planning process should consider secondary distribution infrastructure grid
needs,'* as described in Recommendation 3, so that such grid upgrades do not become a
bottleneck for electrification and are proactively planned for in a cost-effective way.

Recommendation 3: PG&E, SCE, and SDG&E should provide an estimate of secondary
distribution infrastructure grid needs to support future state electrification goals in the

GNA/DDOR filings, so that secondary infrastructure can be accounted for and proactively
planned in a high DER future.

The scope of this Part 1 Study, in terms of understanding the impact on the unmitigated load and
DER growth in the scenario considered, stopped at the distribution substation level. However, it is
becoming increasingly important to also understand the impacts on the sub-transmission and
transmission infrastructure. There is currently a lack of understanding on the coordination of
identified grid constraints and mitigation strategies that may affect all levels of the grid (i.e.,
transmission, sub-transmission, and distribution). Kevala has already provided specific
recommendations in the evaluation of the IOUs’ 2022 GNAs and DDORs'* related to coordination

132 The secondary grid is the part of the electric distribution system between the primary feeder and the
customer. The secondary distribution system includes distribution service transformers and secondary main
and service conductors to the customer meter. The primary distribution grid is the feeder lines between the
substation and the distribution service transformer.

'3 See Recommendation 1 on p. 54 in Kevala’s Distribution Investment Deferral Framework: Evaluation and
Recommendations report, provided to the R.21-06-017 service list on November 14, 2022. The link can be
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on capacity planning activities between the DIDF and CAISO’s transmission planning process. In
addition to these recommendations to the DIDF, Kevala recommends that the distribution
planning process should be able to map the transmission and distribution nodes that are at risk of
large capacity grid infrastructure needs, as identified in this Part 1 Study, to enable a coordinated
and integrated planning of grid infrastructure and mitigation strategies between the distribution
and transmission planning processes (see Recommendation 4).

Recommendation 4: PG&E, SCE, and SDG&E should provide information in the GNA
regarding distribution planning areas located in transmission- and sub-transmission-
constrained nodes,'** and DDOR planned investment cost estimates should consider
associated higher voltage upgrade costs that may be triggered by the distribution investment.

Finally, electric distribution grid requirements and their associated costs increase significantly
beyond the traditional distribution grid planning cycle and risk being missed if key datasets
continue to be applied in data silos (i.e., if datasets are not connected and analyzed holistically). A
holistic view of the entire interconnected state electrical grid is needed to ensure sufficient system
planning. Existing data is extensive and shows significant potential when linked to better capture
local adoption and include equity considerations. Continued data consolidation and review can
enable identification of primary and secondary grid requirements and provide transparency and
enumerable opportunities for scenario analyses.

Recommendation 5: PG&E, SCE and SDG&E should update the mapping of the
connectivity of their respective distribution grid assets and ratings in the 2023 GNA
report. Further, the I0Us should update any changes in network connectivity data in
subsequent annual filings. As demonstrated in this Part 1 Study, mapping between feeders
and transformer banks is critical information that enables identification of opportunities to
transfer load as well as points of potential distribution grid overload. In the datasets received
for this study, feeder-to-bank connectivity was incomplete for PG&E, SDG&E, and SCE, and the
transformer bank ratings were incomplete for SCE (see Section 3.2). This improved and
ongoing network data hygiene is critical to accurate and dynamic scenario planning.

found here: https://uploads-
ssl.webflow.com/62a236e9692¢48e1d16898b3/63729a90e35f9cb53c617a14_DIDF%20Evaluation%20and%?2
ORecommendations_Kevala_11.14.22.pdf

134 A transmission node refers to the interface between the distribution and the transmission electric power
systems. At transmission nodes, the distribution system is typically represented as an aggregate lumped
load in transmission models.
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An important input to performing granular load and DER disaggregation is the customer sector
designation. In this Part 1 Study, the customer sector was defined first by rate class, then by North
American Industry Classification System (NAICS) code (from rates data), and finally by parcel
customer class from publicly available census data. Kevala found misaligned NAICS codes,
particularly when the rate code was not provided. For example, some premises classified as
residential were confirmed by Kevala to be large non-residential. The customer sector designation
is a critical consideration in distribution planning. Kevala proposes further investigating the extent
of the misclassification errors to inform the IOUs to use for their load and DER disaggregation
methods in the DIDF process and to refine the input data for Part 2.

Recommendation 6: Develop a standard for each 10U to provide a consistent customer

sector designation, which is a key driver to determining accurate locational load and DER
forecasts, in particular expected growth from transportation electrification.

Kevala offers these recommendations for CPUC and stakeholder consideration in the High DER
Proceeding. The above recommendations are the most notable reflections on the Part 1 Study
process and are not an exhaustive list of potential distribution planning process changes for the
CPUC to consider. Additional observations and perspectives will likely be offered in the course of
the proceeding and be considered as part of staff proposals anticipated in Tracks 1 and 2 of the
proceeding.

4.2. Long-Term Implications

This section offers a longer-term view of the implications of the Part 1 Study to achieve California’s
electrification goals. The premise-based scenario planning approach applied in Part 1 indicates
that traditional distribution planning tools and assumptions and program assumptions may need
to be reconsidered. Distribution grid planning that incorporates DERs throughout the
process instead of at the end may help to identify and mitigate planning risks. Essentially,
incorporating distributed resources in the distribution planning process may enable California to
capture the uncertainty of both supply and demand in order to plan the grid infrastructure and
DERs to meet distribution capacity expansion, reliability, and equity needs. Specifically:

e Probabilistic-based methods and metrics similar to those used in CAISO’s transmission
planning (loss of load probability, loss of load expectation, effective load carrying
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capability,' etc.) can be developed for distribution planning in an iterative process to
better inform the uncertainty and risks of different planning scenarios. '°

o Transmission planning and resource adequacy processes already take into account
uncertainties like unexpected generator outages, variable load and generation, and
changes in the weather, which are becoming increasingly important. Evaluating
these uncertainties statistically, bulk system grid planners project resource needs to
reach an acceptably low level of risk of capacity shortages.

o The underlying concept is to use randomness'*” to solve problems that might be
deterministic in principle, such as determining capacity requirements to improve
decision-making and risk management.

o EV forecasting methods should evolve to include long-term LDV, MDV, and
HDV and proactively determine future capacity expansion grid needs and deferral
opportunities.

e Thereis a lack of understanding of how mitigation strategies can be stacked to solve
capacity expansion constraints. Kevala recommends that mitigation strategies such as
utility customer programs, rates, and third party-provided solutions along with
utility-owned solutions all be considered in the distribution infrastructure planning
process to meet long-term grid and equity needs. For example, based on the scope of
this Part 1 Study:

o Rates alone are no longer the silver bullet for where and when generation capacity
needs diverge from the where and when of distribution capacity needs.

o The DIDF planning process does not take into account customer programs and rates
and considers short-term deferral values only.

o Electricity burden should be incorporated as an input to the DIDF.

135 | oss of load probability is the probability that load will exceed generation in a given hour.

Loss of load expectation is total number of hours wherein load exceeds generation. This is calculated as the
sum of all hourly loss of load probability values during a given time period (e.g., a calendar year).
Effective load carrying capability is the additional load met by an incremental generator while maintaining
the same level of system reliability.

These metrics are defined in “Stochastic Modeling Status Report California ISO Workshop,”
https://www.caiso.com/Documents/Presentation_E3_LOLP_Model_Feb10_2012.pdf.

136 Jeremy Keen, Julieta Giraldez, et al., Distribution Capacity Expansion Planning: Current Practice,
Opportunities, and Decision Support, November 2022, https://www.nrel.gov/docs/fy230sti/83892.pdf.

137 Random variables such as load and DER adoption location and sizes, converge to the deterministic
distribution of the random states so that the statistical interaction between the variables vanishes.
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e Planning processes should better reflect the local technology adoption roadmaps and
trends to proactively plan supply and infrastructure needs and avoid the grid becoming
a barrier to electrification and DER adoption plans.
o Siloed planning processes risk missing the convergence of generation, transmission,
and distribution capacity needs.
o Actual premise-level behaviors cannot be represented with generic load shapes that
can miss the local impacts of load and DER growth, in particular of EVSE
infrastructure.

Data collection and integration across California LSEs beyond the three IOUs studied in this
Electrification Impacts Study could enable much more complete forecasting for DER technologies
like EVs that transcend traditional utility boundaries. Specific technology, program, and regulatory
process changes that could enable enhanced scenario planning may be effective tools to increase
transparency and help manage grid integration.

e Limited historical data for newer DER technologies requires continued augmentation.

e Utility service territory boundaries do not reflect socioeconomic, carbon emissions, or
technological boundaries, and some additional datasets that will be necessary or beneficial
to the Part 2 analysis may not originate from PG&E, SCE, or SDG&E. Vehicle registrations
and driving pattern-related data, sub-transmission data for PG&E and SDG&E, or publicly
owned utility data for areas adjacent to the I0Us in this study, for example, may be sourced
through collaboration with other state agencies and publicly owned utilities. Kevala
recommends coordination across those public organizations to the extent possible to
enable as robust a Part 2 analysis as possible.

o Kevala suggests the CPUC continue to pursue data sharing agreements with the
CEC, CARB, and DMV and leverage existing data sharing agreements across IOUs
and CCA:s.

o Kevala suggests the CPUC and CEC pursue data sharing agreements with municipal
utilities to ensure complete datasets across the entire geographic forecast area of
California.

4.3. Part 2 Study Options and Considerations for Methods, Scenarios,
Case Studies, and Updated Data

The Part 1 Study focused on illustrating how it is possible to better prepare for a future with high
electrification by disaggregating multiple long-term policy-driven scenarios to the premise level to
identify where and when grid infrastructure bottlenecks will occur. The proposed approach for
the Part 2 Study focuses on running additional statewide electrification scenarios with
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baseline load and transportation electrification methodologies and scenarios that will be
updated with additional data. Kevala also proposes adding BE scenarios aligned to state
policy targets. These proposed scenarios are designed to identify the range of electrification
impacts on the distribution grid and to identify potential mitigation measures such as DERs,
innovative rate structures, and load management techniques that could help manage those
impacts.

Some of the key questions proposed to be explored in Part 2 are:

e How can a long-term view of 15 or 20 years, in alignment with CEC and transmission
planning horizons, into where and when grid infrastructure bottlenecks or underutilized
assets might occur be used to inform the distribution planning process and prioritize and
plan for longer-lead grid investments and mitigation strategies?

e What are the elements of the DPP that need to change to better capture additional value
from DERs to mitigate the risk of grid constraints due to a high electrification future?

e Can defining and quantifying granular community- and customer-level equity metrics
be incorporated in the decision-making of optimal solutions to prepare and mitigate the
risks of grid constraints due to a high electrification future?

e How can the distribution planning process incorporate scenario planning and sensitivity
analysis around TOU rate structures, carbon impact, and affordability as well as future
utility advanced management and control capabilities of DERs?

Throughout this Part 1 report, Kevala identified considerations for additional analytics and
applications of this Part 1 Study for the Part 2 Study. There are innumerable combinations of
methodological refinements, calibration and mitigation scenarios, and additional data to collect
and analyze that could be considered in Part 2. Kevala’s proposed scope for the Part 2 Study that
is likely to provide the most significant insights and address the scoping questions raised in the
High DER Proceeding is summarized in the following sections.

4.3.1. Distribution Planning Process and Mitigation Strategies

In the Part 2 Study, Kevala proposes exploring elements of an improved DPP that integrates DERs
based on a weighted decision-making approach that can quantify risks and evaluate traditional

wired and non-wires solutions to enable policy-driven future scenarios. The framework is based
on:

e Longer-term planning horizon(s)

e Multiple scenario planning for load and DER growth and mitigation strategies
e Premise-level analysis of DER adoption, behavior, and sizing

e Additional planning objectives definitions and quantifications
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e Increased access to data
e Specific stakeholder engagement and feedback received to date in the proceeding

The process will explore defining and quantifying new planning objectives for multi-objective
distribution planning. The current GNA evaluation framework looks at capacity, reliability, voltage,
and resiliency grid needs. In Part 2, Kevala proposes updating the definitions and quantifications
of these four grid limitations and exploring additional objectives that can be quantified and
prioritized for multi-objective distribution planning, such as:

e Local carbon emissions

e Energy burden

e DER hosting capacity

e Sub-transmission and transmission congestion relief

In Part 2, Kevala proposes to explore incorporating these additional metrics into a weighted
decision analysis process to evaluate the potential fan of grid investments and mitigation
strategies that can be implemented at the community level and better inform decision-making
when planning grid investments.

4.3.2. Methodological Refinements

With additional and updated data (see Section 4.3.5), Kevala anticipates updating key elements of
the underlying net-load methodologies. There are likely myriad improvement opportunities to be
made in Part 2. Kevala has identified several possible methodological refinements below, focusing
on the ability to improve understanding and visualization of electrification impacts on
disadvantaged communities and refinements to the baseline load forecast methodology, BE
methodologies, and EV methodologies.

e Incorporate disadvantaged community grid impact visualization capabilities into Part 2
results, consistent with CalEnviroScreen definitions.

e Update, or retrain, the baseline models with additional and improved AMI data and revisit
the overall calibration method for load by calibrating to the total of the baseline load plus
load growth in the Part 2 Study in order to continue to distinguish between baseline load
profile versus electrification profile for appropriate DER behaviors.

e Refine the BE sizing, behavior, and adoption methodologies to explore different sizing
models for residential versus non-residential premises, reflect specific technologies, and
update for relevant metrics.

e Refine various aspects of the personal EV and fleet EV adoption methodologies using
additional data sources to support more granular adoption choices and EV sizing and
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vehicle type assumptions; revisit the EV adoption and TOU rate enrollment and behavior
assumptions.

e Incorporate the load shapes and TOU differentials implicit in rate design alternatives as
directed by the CPUC to update or test DER adoption scenarios.

Kevala believes these DER methodological refinements are most likely to have a disproportionate
electrification impact on the distribution grid and are most likely to benefit from enhanced or
updated datasets. Additional methodological refinements may be required for Part 2; the above
list is not meant to be exhaustive. Kevala welcomes stakeholder input into specific additional
methodological refinements that may be required to support Part 2 analysis.

4.3.3. Calibration Scenarios

As described in Section 1, Kevala focused its calibration scenarios on a base case scenario
consistent with the 2021 IEPR and four alternate scenarios comprising alternate policy-based
assumptions for Transportation Electrification and PV adoption resulting from BTM tariffs. This
approach was designed in the Research Plan for this Electrification Impacts Study to isolate the
impact of initial key factors likely to impact the distribution grid and to maintain consistency with
the 2021 IEPR base case to the greatest extent possible.

These alternate scenarios have highlighted the benefits of testing the impact of different policy
outcomes on the distribution grid. Kevala suggests identifying additional planning scenarios that
could be studied in Part 2. Numerous scenarios may be possible and should be narrowed to focus
on scenarios that are most likely to inform recommendations for the High DER Proceeding. As
such, Kevala proposes developing scenarios in Part 2 that are:

e Likely to reflect the range of potential impacts on the distribution grid.
e Reflect DER programs or technologies that are more nascent or have relatively less
available actual program data.

Potential scenarios to be included in Part 2 include the following:

e Scenario(s) that incorporate IEPR 2022 planning scenario design and possibly IEPR 2023
(depending on availability of IEPR 2023 scenario timing with the High DER Proceeding
needs).

e Additional appropriate DER policy-based scenarios as developed and requested by
California energy planning and regulatory agencies, with a focus on transportation
electrification forecasts.
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e BTM tariffs that reflect the Net Billing Tariff adopted by D.22-12-056 in December 2022 and
the potential restructuring of rates in the Demand Flexibility R.22-07-005 (i.e., fixed
charges).'®

e Scenario(s) for accelerated BE adoption that are consistent with SB 1477 and AB 3232.

e As appropriate, Kevala also recommends extending the planning horizon up to 2050 as
appropriate for each scenario, consistent with select other studies and Kevala’s own
recommendations to lengthen the distribution grid planning horizon (see below).

While the number of scenarios should be limited for Part 2, each scenario can include probabilistic
simulations to accommodate for random variables in load and DER allocation results and provide
metrics around uncertainty to inform deterministic outcomes to plan the distribution grid.

4.3.4. Mitigations through Case Studies on a Specific Region’s Assets

To further provide value to the High DER Proceeding using a premise-level distribution planning
model, the Part 2 Study proposes illustrating the DPP provided in Section 4.3.1 via case studies
that will focus on a specific region’s assets in the PG&E, SCE, and SDG&E service territories. These
case studies will focus the analytical aperture on a specific region’s assets (e.g., substation(s),
feeder banks, feeder segments, and service transformers) and investigate the short-, medium-,
and long-term capacity requirements that the region may face under varying levels of load and
DER growth.

One of the primary goals of these case studies is to better understand the uncertainty inherent in
distribution planning and proactively mitigate impacts and implement risk management strategies
that maximize the value of DERs and load and DER management strategies in distribution
planning.

Kevala has identified the following list of potential screening criteria and scenario variables that it
could use to generate a robust range of insights from these case studies:

e Geographic screening

o Urban, suburban, rural

o Coastal, inland
e Climate/weather

o Typical meteorological weather year

o Severe weather years (i.e., 1-10, 1-100, 1-500 weather years)
e Demographic screening

o Various income deciles/quartiles

138 Decision 22-12-056, Decision Revising Net Energy Metering Tariff and Subtariffs, issued on December 19,
2022, https://docs.cpuc.ca.gov/PublishedDocs/Published/G000/M500/K043/500043682.PDF.
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o Electricity burden deciles/quartiles
o Various disadvantaged community statuses
o Electricity burden deciles/quartiles
o DER adoption scenarios
o Low, medium, high BE adoption
o Low, medium, high LDV ZEV adoption
o Low, medium, high MDV/HDV ZEV adoption
o Low, medium, high PV + BESS adoption
e Rate and technology scenarios
o Green TOU rates (focused on shifting usage toward the middle of the day when
solar generation is highest)
o Real-time hourly rates
o Advanced, high-penetration demand response (>75% penetration of air conditioning
load control, heat pumps, heat pump water heaters)
o Vehicle-to-grid adoption for MDV/HDV ZEVs
o Distribution asset composition
o Number of substations
o Miles of feeder lines
o Number of service transformers

Over the course of the Part 2 Study, Kevala will narrow down the number of screening criteria and
scenario variables it proposes executing to identify the specific geographic regions to investigate
and publish. Kevala invites stakeholder comments and recommendations for specific geographic
or network areas to be included in the Part 2 case studies.

As part of the mitigation strategies and risk management approach, Kevala proposes focusing on
the following aspects in the case studies:

e Exploring and testing NWAs, TOU and dynamic rates assumptions, demand response, and
advanced DER management and control techniques as a mitigation to alleviate distribution
system constraints.

e |dentifying disadvantaged community areas with the most urgent need of load mitigations
and proposing potential least-cost, best-fit solutions to understand how upgrade costs and
different mitigation strategies would affect electricity burden and other energy justice
metrics for different electrification scenarios.

e Understanding the interplay between personal EV home charging contribution to peak load
and personal EV public charging and fleet charging that could play a more substantial role
in driving the peak hour in 2035 and beyond.
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e |dentifying other grid needs as applicable to the case study area such as voltage and
resiliency.
e Exploring statistical variation and probabilistic simulation to better inform uncertainty via:
o Single scenario, random draw scenario modeling
o Monte Carlo-based probabilistic scenario modeling

Energy Division is currently exploring options to enable Part 2 to report case study results through
non-confidential visualizations that depict specific geographic areas.

4.3.5. Data

As noted in Section 3.2, Kevala did not receive all datasets in time to be used in the Part 1 analysis
or the datasets were incomplete. Similar to the Part 1 approach, Kevala proposes developing a
comprehensive data request to support the Part 2 analytic scope. That data request will be
informed by stakeholder comments and reactions to this Part 1 analysis and by input on other
outstanding data needs. Kevala’s initial recommendations for additional or more complete
datasets required for Part 2 include the following:

e Latest adopted IEPR demand forecast and scenarios (i.e., 2022 IEPR)

e Gas billing and consumption data to match AMI data time periods received

e Additional AMI data for before and after the Part 1 Study period (e.g., complete 2022
dataset); post-2022 AMI data is not anticipated to be necessary for Part 2 but would add
accuracy to the results if it can be collected in time for study inclusion)'®

e Additional SCADA data to include system data that enables better matching of AMI and
network elements, including additional data after the Part 1 Study period

e Updated distribution power flow models

e More complete grid infrastructure mapping data'®

e Customer program data to include incentives for BE

e Incremental PV and BESS interconnection data for installations after the Part 1 Study
period

e Distributed generation and other historical DER program performance data

e |OU location-specific cost data

e Additional data sources to support EV sizing and vehicle type assumptions

e Vehicle registration data from the California Department of Motor Vehicles

3% For Part 1, PG&E AMI data covered the period 2018 Q1 to 2021 Q3; SCE 2018 Q1 to 2021 Q1; and SDG&E
2018 Q1 to 2021 Ql. For Part 2, the deficiencies in historical PG&E and SDG&E AMI data need to be
remedied to meet the Energy Division data request requirements in Data Request 4.0 issued on August 30,
2022; additional years of AMI data will be requested by Energy Division.

' For Part 2, PG&E, SCE, and SDG&E feeder to transformer bank mapping data as required by Energy
Division Data Request 1.0 issued on December 3, 2021.
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e More granular customer billing data (e.g., designation of whether a customer is on an all-
electric rate)

Additional data may be required for Part 2; the above list is not meant to be exhaustive of all data
needs for that study, and it may not be possible to gather all of the data listed in the timeframe
required for the High DER Proceeding. Kevala welcomes stakeholder input into specific additional
datasets that may be required to support Part 2 analysis.

Finally, Kevala recommends that a more regular data sharing process be established for certain
datasets only (e.g., AMI data, SCADA data, customer interconnection data). Because Part 1’s goal
was to provide a high-level cost estimate of the infrastructure requirements for different
electrification scenarios, the scale of the data gaps experienced in Part 1 did not significantly affect
the results. As the CPUC plans for the Part 2 analysis, however, data gaps must be identified and
resolved on a much more timely basis. Establishing a regular cadence for receiving updated data
(for example, quarterly) will enable faster turnaround times for identifying data gaps, more
updated scenario analysis that reflects most recent grid behaviors, and an exploration of location-
specific mitigation measures to distribution capacity planning constraints.
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Appendix |. Literature Review on Load and DER Forecasting

Table A1-1: Summary of literature review (Source: Kevala analysis)

Can Distribution Grid
Infrastructure Accommodate
Residential Electrification and
Electric Vehicle Adoption in
Northern California?

Elmallah, Brockway, Callaway
Energy Institute at Haas

2022

Focuses on the PG&E service
area in Northern California,
which serves 4.8 million
electricity customers and is
subject to aggressive targets
for both EV adoption and
electrification of residential
space and water heating.
Creates spatio-temporally
detailed electricity demand
forecasts and compares that
demand to distribution
infrastructure limits across a
range of technology adoption
scenarios.

PG&E service
areain
Northern CA
5.7 million
customers

2020-2050

Consistent with California’s EV targets, the
scenarios assume that PG&E territory reaches 3.1
million EVs by 2030 and 12.5 million by 2050.

The following scenarios are studied for 2030,
2040, and 2050 with upgrade needs and costs
being assessed for substations and circuits
separately:

Vehicle Electrification

Standard: 67% of plug-in EVs have home
charging

More commercial: 50% of vehicles have access
to overnight charging, more commercial daytime
charging

More residential: 95% have access to overnight
charging

Demand Response: Smoothing residential
nighttime charging from 10 pmto 5 am

Residential Electrification

Reference/” s +17.5% in #
homes electrified b/w 2021-2050

Medium: +33.2%

High: +43.5%

Combined Scenario

Scenario A: Lower demand on residential circuits
(medium RE scenario + more commercial EV)
Scenario B: Higher demand on residential
circuits (high RE scenario + more residential EV)
Scenario C: Higher demand w/ demand response
(high RE scenario + DR EV)

Distribution: In PG&E, between 95 and 260
feeder upgrades per year between now and
2030, roughly 3x the pace of projects that
PG&E has planned for through 2025. Upgrade
requirements in PG&E territory will add up to
approximately $1B between 2021 and 2030
(closer to $5B by 2050).

Existing excess capacity on commercial circuits
means that commercial charging locations will
not increase distribution costs.

Electrification of residential space and water
heating will lead to fewer impacts on
distribution feeder capacity than EV charging,
but that both transitions will require an
acceleration of the current pace of upgrades.

Timing and location have a strong influence on
total capacity additions in important ways (ex.
Scenarios that favor daytime EV charging have
similar impacts to those with managed
nighttime residential charging, but
uncontrolled nighttime residential charging
could have significantly larger impacts)

Projects that these upgrades will add at least
$1 billion and potentially over $10 billion to
PG&E’s rate base.

Assumes that the total charging demand in
PG&E’s territory will be 39% of the statewide
total.

Combined Scenarios Loads & Costs
Upgrade Needs: Substation +
Circuits (GW)

Total GW
Scenario A

2030 0.92
2040 3.07
2050 7.99
Scenario B

2030 1.4
2040 4.77
2050 3.18
Scenario C

2030 0.81
2040 3.18
2050 7.05
Total Costs ($B) - Median Load
Scenario A

2030 $1.45
2040 $3.45
2050 $6.13
Scenario B

2030 $1.96
2040 $4.29
2050 $7.30
Scenario C

2030 $1.33
2040 $7.06
2050 $10.09
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Electric Vehicle Charging
Infrastructure Assessment
Analyzing Charging Needs to
Support

Zero-Emission Vehicles in 2030

CEC Staff
CEC

2021

A California statewide
assessment of the charging
infrastructure needed to
achieve the goal of 5 million
ZEVs on the road by 2030 and
reduce emissions of
greenhouse gases to 40
percent below 1990 levels by
2030. Executive Order N-79-20
directed the CEC to expand
this assessment to support the
levels of electric vehicle
adoption required by
Executive Order N-79-20 (8
million ZEVs by 2030)

California

2020-2030

Vehicle Electrification
AB 2127: 5 million ZEVs by 2030
Executive Order N-79-20: 8 million ZEVs by 2030

Electric Vehicles: California will need more
than 700,000 shared private and public
chargers in 2030 to support 5 million ZEVs
as called for in AB 2127 and nearly 1.2 million
chargers to support 8 million ZEVs to
achieve the goals of the Executive Order N-
79-20. Counts for chargers at workplaces,
public destinations, and multi-unit dwellings
generally indicate the number of Level 2
chargers needed. In some cases, Level 1
chargers may be sufficient at select multi-unit
dwellings. These values do not include
chargers at single-family homes.

CEC models project that electricity
consumption in 2030 from light-duty
vehicle charging will result in:

- 5,500 megawatts (MW) around
midnight

- 4,600 MW around 10 a.m.on a
typical weekday

- +25% and +20% electricity demand
at those times, respectively

LA100: The Los Angeles 100%
Renewable Energy Study

NREL

2021

True bottoms-up study to
determine the impact of
powering Los Angeles with
100% renewable power. NREL
ran building simulations,
customer adoption models,
assessed the cost-benefits of
different supply resources,
and analyzed the potential for
overload on the transmission
and distribution network.

City of Los
Angeles

1.4 million
customers

2020-2030
2030-2045

3 scenarios:

Moderate: Moderate demand growth and
improvements to energy efficiency. Least change
beyond Business as Usual (BAU) case.

High: Assumes 100% building electrification, 80%
passenger PEV adoption by 2045, and 12%
shiftable demand.

Stress: Full electrification of the High scenario,
but lower EE/DR rates.

Transmission and distribution: 90% of
customer-adopted renewables connected to
the 4.8-kV distribution network; up to 1,000
MW utility-scale solar and 700 MW battery
storage connected to 34.5-kV transmission
grid.

Upgrades required on 90% of feeders/circuits
to address overloads.

Environmental justice: Customer rooftop solar
in disadvantaged communities increases from
35% of total in 2020 to 37-41% of total in
2045. Study includes pathways to ESJ inclusion,
e.g., targeted distribution upgrades to account
for electricity use in low-income areas.

Compound year-over-year demand
growth:

Moderate: 1.6% (38,900 GWh by
2045)

High: 2.2% (46,200 GWh by 2045)

Peak demand:
Moderate: 7810 MW (1% growth)
High: 8660 MW (1.5% growth)

Distribution Upgrade Costs:

Assessment of Electrification
Impacts on the Pepco DC
System

Brattle Group; Pepco

2021

Simulate load growth to meet
DC’s climate goals through
electrification and explore the
role of load flexibility and
energy efficiency to manage
growth.

Washington,
D.C.

2021-2050

Baseline forecast: Based on PJM’s projection for
Pepco system

Brattle high alternative baseline: 0.4% peak
growth in summer and winter

Load flexibility and energy efficiency: Reduce
total 2050 peak demand by 14%, eliminating
roughly 40% of the load growth that
otherwise would occur between 2021 and
2050

Estimated average annual peak
demand growth rate of 1.4% to 1.7%
between 2021 and 2050.
Electrification shifts D.C. from a
summer-peaking system to a winter
morning peak
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Distribution grid impacts of
electric vehicles: A California
case study

Jenn, Highleyman

Institute of Transportation
Studies, University of
California Davis; Cadmus

Group

2021

Employs real-world feeder
circuit level data in California
from PG&E to measure the
capacity of local feeders.
Models the adoption of electric
vehicles down to the census
block and take advantage of
real-world vehicle charging
data to simulate the future
loading on circuits throughout
Northern California.

California

2020-2035

6 scenarios, each one with 75% BEVs and 25%
PHEVs with 84% of BEVs and 58% of PHEVs being
long-range, respectively:

1M LD EVs

2M LD EVs

3M LD EVs

4M LD EVs

5M LD EVs

6M LD EVs

Electric Vehicles: Comparing the shape of the
charging demand load to baseload electricity
demand, the peaks are not coincident.
However, peak baseload often occurs in the
early evening which coincides with the time
that charging load demand begins to increase
for the day.

Charging demand is lowest during the day,
which is nearly the opposite profile of
renewable solar generation, residential
rooftop and local solar generation can have a
mitigating effect on transformers and feeder
lines if utilized correctly. This points to
opportunities for managed charging, even with
smart charging (as opposed to V2G), by load
shifting many of the peak events can be
reduced or eliminated—thus reducing the
need for transformer and other distribution
infrastructure upgrades.

Distribution: In the 6 million vehicle scenario,
there are a total of 443 feeders (~20% of all
feeders) ding their
threshold, yet only 88 of these feeders will
have upgrades that will allow them to
feasibly operate in the long-term.

If California were to meet its decarbonization
goals by 2045, this would probably require
upgrades across the entire distribution
network.

Reaching the 2030 goal of 5 million
electric vehicles could add on the
order of 20 TWh annual electricity
demand, an increase of about 10%
of total electricity load in California.

NREL Electrification Futures
Study

NREL

2018-2021

Potential for electrification and
impact to the demand side of
all major sectors of U.S. energy
system; intended to provide
foundational data to assess
isolated impacts of
electrification - not intended
to be predictive. “High”
electrification scenario
explores ‘what-if’ scenarios,
including disruptive
technologies.

Across the
United States

2016-2050

3 scenarios:

Reference: Baseline case, least electrification
Medium: Widespread electrification among “low-
hanging fruit” (EVs, heat pumps, some industrial)
High: Transformational change with technology
advancements and policy support

Building electrification: Residential heat
pumps are cost-competitive with gas furnaces
in the 2030s and by 2050 in cold climates
under Medium scenario.

Electric vehicles: 84% EV stock penetration by
2050 under High Electrification. LDV, HDV, and
electric transit accounts for up to 76% of
vehicle miles traveled in 2050.

Total demand (national) increases by
80 TWh/year on average in High
Electrification scenario, and 1.5-
1.8%lyear depending on technology
advancement scenario.
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The Coming Electrification of
the North American Economy

Brattle Group; WIRES

2019

Provide insights into whether
the electric grid will be able to
support electrification needed
for a low-carbon economy,
and the extent of future
necessary infrastructure
development.

Across the
United States

2020-2050

2 scenarios:

Base Electrification Case: Potential for
electrification based on current technology and
policy drivers.

High Electrification Case: Assumes 100%
transportation, space and water heating
electrification by 2050 to significantly reduce
nationwide greenhouse gas emissions.

Building electrification: Doubles to 10% in
2030 and fully electrify in 2050 under High
Electrification scenario.

Electric vehicles: At least 8,400 DCFC stations
needed in cities and towns to complement
home and workplace charging. 3.4 DCFC plugs
needed for every 1,000 battery electric
vehicles (BEVs).

By 2030, electrification could
increase nationwide annual energy
demand by 5% to 15% (200 to 600
TWh) and by 25% to 85% (1,100 to
3,700 TWh) by 2050

DCFC complexes will likely comprise
5-10 MW of peak demand.

Net-Zero America:
Potential Pathways,
Infrastructure, and Impacts

Princeton University; Evolved
Energy Research

2021

Identify pathways to achieving
net-zero carbon in the U.S. by
2050. The study looks at
supply side fuels such as oil,
coal, nuclear, CO2 storage,
solar, wind etc. and how their
usage will vary across the
different scenarios of
electrification, renewable
energy capacity etc. It factors
in energy demand across all
major sectors like buildings,
industrial use, transportation
etc.

Across the

United States;
state-specific
data available

2020-2050

5 scenarios:

E+: Aggressive Electrification

E-: Less aggressive Electrification

E- B+: Less aggressive Electrification; High
biomass

E+ RE-: Aggressive Electrification; Constrained
Renewable

E+ RE+: Aggressive Electrification; 100%
renewable by 2050

Decarbonization: Scenarios range from $4-6T
to decarbonize in 2018 USD.

Electric vehicles: In E+ scenario, light-duty
vehicle stock grows from 2% (5.2M) in 2020 to
17% by 2030 (49M) and 96% (328M) by 2050.

Building electrification: Residential heat
pumps grow from 10% of stock in 2020 to

80% (119M).

Transmission and distribution: E+RE+ scenario
requires $25.8B in cumulative capital
investments for electricity distribution in
California by 2050.

Total demand (national) increases by
145% in E+ scenario, 300% in E+RE+
scenario.

Rewving Up the Grid for Electric
Vehicles

Boston Consulting Group

2019

Examine the EV-related
generation, transmission, and
distribution costs for a
“representative” utility, based
on assumptions about EV
growth through 2030.

Across the
United States

2019-2030

9 scenarios:

Levels of EV adoption for light-duty fleet within
utility territory: 10%, 15%, 20%

Charging patterns:

Optimized: 50% of charging occurs in off-peak
hours

Moderately optimized: 33% of charging off-
peak; 33% in shoulder, mid-, or partial-peak; 33%
during on-peak hours

Non-optimized: 25% off-peak charging; 25%
shoulder, mid-, or partial-peak charging; 25% 50%
during on-peak hours

Electric vehicles:

For 1.1M EVs in service by 2030, $2.8 billion
through 2030 in cumulative T&D investments
are necessary, for an estimated grid capacity
upgrade cost of $2,600 per EV.

Temporally and locationally optimized
charging would reduce T&D costs by 70%
through 2030: $5,800 in the non-optimized
charging scenario to $1,700 in the optimized
scenario

Average EV energy consumption of
2,960 kWh per year from 2019 to
2030 (for representative utility).
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Appendix 2. Data Received, Ingested, and Processed

The Part 1 analysis is based on numerous datasets; this includes data provided by California
regulatory agencies and the investor-owned utilities (I0Us), as well as other significant datasets
that are publicly or commercially available that were important in developing the baseline load
forecasts and distributed energy resource (DER) load modifier forecasts. Kevala collected and
ingested over 100 terabytes of data to complete the Part 1 analysis. The specific datasets
leveraged by Kevala are identified in the following sections.

A2.l. |IOU Data

e Meter-specific advanced metering infrastructure (AMI), 2018-2020:141 Most of the data
is in hourly increments. Some meters are in 15-minute data. A small handful of meters are
in 5-minute increments. The data streams include meter ID, timestamp, kWh net, kWh
delivered, and kWh returned.

e Grid supervisory control and data acquisition (SCADA): Measurements at available
locations of the electrical infrastructure. Hourly or sub-hourly instantaneous grid asset
readings including:

o Amps by phase
o Power factor

o MVA
o MW
o Volts

e Past DER adoption (type, location and size) for PV and battery only.

e Geospatial information for meters, DERs, and grid infrastructure: Coordinates and
downstream/upstream relationships between grid assets.

e Electrical infrastructure asset characteristics: Data includes ratings of grid assets such
as voltage or capacity rating.

¢ Rate schedule code by meter ID and monthly billing information: Monthly
consumption, monthly bill, rate code, North American Industry Classification System
(NAICS) or customer code, alternative provider, etc.

A2.2. Regulatory Data

e California Energy Commission (CEC) load and DER forecasts (Integrated Energy Policy
Report (IEPR)) by scenario, forecast zone, and planning area

e Agency forecasts of electric vehicle (EV) infrastructure and light-duty vehicle (LDV), medium-
duty vehicle (MDV), and heavy-duty vehicle (HDV) adoption

'“ Some utilities provided months into 2021. All IOUs provided data through March 2021.
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e Historical to 2021 photovoltaic (PV) interconnections

e Distribution Deferral Opportunities Report (DDOR) and Grid Needs Assessment (GNA)
studies for grid asset ratings (when not provided in IOU datasets)

e Energy efficiency (EE) program tracking with meter ID: CEDARS (EE 2018-2020) program
data at a meter level, if applicable

A2.3. Publicly Available Data
e U.S. Census Bureau's American Community Survey (ACS): 5-year 2016, 2017, 2018, 2019,
and 2010-2019 Census block group geometries for demographic indicators and forecasts

e (altrans long-term socio-economic forecasts: Demographic forecasts by county

e Transportation:
o California road network and expected traffic type:
= Traffic Volumes Annual Average Daily Traffic (AADT) (Caltrans GIS Data)
= Truck Volumes AADT (Caltrans GIS Data)
o Charging station locations: U.S. Department of Energy’s (DOE’s) Alternative Fuels
Data Center: Alternative Fueling Station Locator
o California LDV/MDV/HDV registration data: California Air Resources Board (CARB)
EMFAC Fleet Database
o Vehicle miles traveled (VMT), urban/rural/suburban label by Census tract: U.S.
Department of Transportation, Bureau of Transportation Statistics, Local Area
Transportation Characteristics for Households (LATCH) (see Data link)
o California projections of zero-emission vehicle (ZEV) range and battery technology
and EV service equipment (EVSE) power ratings: Assembly Bill (AB) 2127 Commission
Report
e C(Climate and weather data:'*
o Statistically down-scaled climate projections, RCP8.5 (Cal-Adapt)
o National Renewable Energy Laboratory’s (NREL’s) National Solar Radiation Database

(NSRDB)

1“2 Kevala sourced historical weather data for each Census tract from the NSRDB for 2018-2020. Data for
calendar year 2021 was not published at the time this study was completed. Kevala sourced projections of
future climate out until 2035 from the Cal-Adapt LOCA Downscaled CMIP5 climate model data, using the
Representative Concentration Pathway 8.5 (RCP 8.5) emissions scenario from the HadGEM2-ES model.
Kevala created a dataset that combines historical local weather patterns with the long-term projection of
future climate by rescaling measurements of actual 2020 temperatures to the localized projections provided
by the climate model. Specifically, Kevala rescaled each month of hourly temperature readings so the
monthly minimum and maximum matched those provided by the statistically downscaled long-term climate
model outputs.
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e NREL’s End-Use Load Profiles for the U.S. Building Stock: For defining default load profile
for newly electrified loads in residential and commercial buildings

e CEC’s Residential Appliance Saturation Study (RASS) survey statistics: Used the public
version of the data from the report to analyze BE residential, either for known gas loads or

unknown gas loads.

e Lawrence Berkeley National Laboratory’s Tracking the Sun dataset: For determining typical
technical specifications for behind-the-meter (BTM) PV in California.

e Microsoft Building Footprints dataset: For creating DER model features per premise related
to building footprints of associated parcels.

A2.4. Purchased Data

e Experian Vehicles in Operation (VIO) data: For Census block group-level internal
combustion engine and ZEV registrations.

e Regrid: For creating DER model features per premise related to parcel acreage and land
use.
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Appendix 3. Data Challenges and Solutions

Kevala must ensure that the datasets are complete and good enough for analysis. Good enough
may mean that data gaps exist, but there are assumptions and workarounds implemented that
are sufficient for the study’s objectives. Table 10 and Table 11 highlight some of the gaps in
analyzing the full investor-owned utility (IOU) load.

A3.l. Mapping Geospatial Grid Infrastructure, AMI, and Rates

Conducting a bottom-up analysis of distribution grid planning requires the ability to rollup load
from each individual service point to the various interconnected grid components. Kevala
aggregated each of the service points up to the service transformers, from the service
transformers to the feeders, and from the feeders to the substation transformer bank at the
substations. In Section 3.2, Kevala describes the hierarchical aspects of the distribution grid used
in the analysis.

There are many touchpoints where the connections can break down. Each IOU provided multiple
datasets with varying degrees of detail. In all cases, Kevala needed a separate table, the ID
relations table, to join meters to service points to premises and to service account IDs. This table
includes relationship start and end dates. These dates indicate if the account is still active ata
specific service point. The service account IDs connect to the rates. Multiple accounts can exist at a
service point but not necessarily at overlapping times. The distinct time periods impact the rate
code ID. Some challenges occurred in the joining (or linking) of distributed energy resource (DER)
interconnection data, service points, premises, and meters; examples include:

e Single meter identifier being mapped to multiple premises. Kevala found these meters
by the relation start and end dates and by reusing meter and service point IDs.

e Bad dates for meter IDs where the dates were flipped or mismatched dates to join
meter IDs in the ID Relations table. Kevala dropped these meters from the analysis.

¢ DER interconnection data cannot he matched to premises or mapped to multiple
premises: In some instances, photovoltaic (PV) and battery energy storage system (BESS)
interconnections could not be mapped to a premise based on the data received. These
DERs were not included in the analysis. As part of Kevala’s efforts to update
interconnection data in Part 2, Kevala proposes working with the I0Us to ensure all
interconnected DERs can be included.

Kevala needed the service points to connect them to the upstream distribution grid components.
Some meters or service points did not have corresponding distribution (downstream feeders or
substations) data. To remedy this, Kevala conducted geospatial matching of premises and feeders
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to increase the percentage of premises joined (see Table 10). Furthermore, for the three IOUs, on
average, 15% of feeders were missing a join to a substation bank (see Table 11).

The end goal of the analysis was to check load growth and DER impacts on the different
distribution grid components: the service transformer, feeder, and substation bank transformer.
Kevala had to join the geographic information system (GIS) data to equipment rating data, which
did not always exist in the GIS data, using the Grid Needs Assessment (GNA) feeder and bank
listing to support dataset completion. If the GNA was not enough (did not include each
distribution grid asset ratings), Kevala used default capacity rating values.

Because the goal of the Part 1 Study was to provide a high-level cost-estimate of the infrastructure
requirements for different electrification scenarios, the scale of the data gaps does not
significantly affect the results. However, it will be important to remedy the data incompleteness
issues described for the Part 2 Study in order to explore local mitigation measures to distribution
capacity planning constraints.

A3.2. Data Quality and Completeness

A3.2.1. AMI Data

Forecasting premise-specific load from advanced metering infrastructure (AMI) data opens up new
possibilities for capacity analysis but also presents unique challenges. AMI data provides a
detailed picture of energy demand over time for a location, but data collection procedures and the
resulting data are not rigorously standardized. Various types of devices, collection parameters,
and data cleaning procedures are employed within and across utilities, which adds to the variety
of resulting data quality issues to be surmounted.'*

The first data quality hurdle is invalid meter readings, such as invalid timestamps or inaccurate
metadata used to link identifiers. The resulting load observations from these issues cannot be
associated with a place and time, so they cannot be used for analysis.

After ingesting all valid AMI data, Kevala’s analysis of the aggregated data revealed two types of
systematic data quality concerns: measurement anomalies and collection gaps. An example of a
systematic measurement anomaly is the physically impossible level of load recorded across most
meters in Pacific Gas and Electric’s (PG&E’s) data on April 7, 2018. Kevala observed a notable

collection gap in March 2020 in the AMI data received from Southern California Edison (SCE), with

> A general background on AMI data quality considerations can be found in Blakely, Logan, Matthew J.
Reno, and Kavya Ashok. “AMI Data Quality and Collection Method Considerations for Improving the
Accuracy of Distribution Models.” In 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC), 2045-52.
https://doi.org/10.1109/PVSC40753.2019.8981211.
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over 1 million meters missing observations in this timeframe. San Diego Gas & Electric’s (SDG&E’s)
AMI data exhibited a similar gap in readings across most meters for late April 2020.

Individual meters can also contain outliers and missing data that need to be addressed. Kevala
attempted to identify and remove unrealistic outliers from individual load time series and imputed
net-load for any missing timestamps based on hourly temperature and other measurements from
the same meter. All load forecasts were evaluated against heuristics to detect any anomalous
forecasted load values that would result from outliers in the input data.

Additional sources of measurement error are embedded in the AMI data that cannot be readily
detected or corrected, including biased or noisy measurements, time synchronization issues, and
meters that may be completely missing from the data Kevala received.

While AMI data quality issues and data gaps exist, they did not significantly impact results for the
Part 1 Study because system-level energy and capacity annual values were validated with
California Energy Commission (CEC)-reported consumption values. Kevala proposes incorporating
data validation into the Part 2 Study to ensure any issues do not impact the quality of the Part 2
results.

A3.2.2. Rates and Billing Data

Kevala ingested IOU and community choice aggregator (CCA) rates schedules. Rates applied to the
Part 1 Study were those in effect as of April 2022, and do not reflect any rate changes adopted
after that time. The data for rate schedules was limited and did not include the following:

e The year a premise joined a CCA limited the ability to identify which power charge
indifference adjustment (PCIA) rate should apply (PCIA rates are vintaged and vary
according to the year joining a CCA)

e Designation of residential baseline by climate zone

e Designation of unique medical and all-electric baselines

e Exempted rates with different time blocks (some customers are able to keep an expired
rate after a tariffed rate has been retired)

e Connected load versus peak load rates

e For some IOUs, service level (e.g., primary versus secondary)

Aside from these rate data gaps, an additional challenge was the inability to identify whether a
customer moved from one rate schedule to another for the historical data sample studied (i.e.,
customers shifting from tiered rates to default time-of-use).

Kevala used the customer sector designation for DER adoption model training. The designation
was defined first by rate class, then by North American Industry Classification System (NAICS) code
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(from rates data), and finally by parcel customer class. Kevala found misaligned NAICS codes,
particularly when rate code was not provided. For example, some premises classified as
residential were confirmed by Kevala to be large non-residential. The customer sector is a critical
consideration in distribution planning. Kevala proposes further investigating the extent of the
misclassification errors to inform the IOUs to use for their load and DER disaggregation methods
in the Distribution Investment Deferral Framework (DIDF) process and to refine the input data for
Part 2.

A3.2.3. Interconnection Data
Kevala ingested DER interconnection datasets from each of the IOUs to serve two modeling
purposes:

e Model the existing PV and BESS systems
e Train the machine-learning DER adoption models to forecast future adoptions

This data has a few known data quality issues that impact one or both of these uses. Kevala
received the interconnection datasets as of April 2021 (data does not contain the DER adoptions
from the remainder of 2021 and 2022). This impacts the modeling of existing systems but is not
expected to significantly impact the adoption model training for future adoptions. This data issue
can be resolved in Part 2 by requesting and receiving updated interconnection datasets from the
IOUs.

As noted in the Mapping Geospatial Grid Infrastructure, AMI, and Rates section, joining this

interconnection data to the premise-level data also required additional data manipulations,
including combining multiple DERs mapped to a single premise or excluding DERs that Kevala
could not match.

In particular, the interconnection data for BESS had significant data quality issues. Two rating
requirements fully define a BESS:

e Power rating (kW), which is the maximum output of the system.
e Energy rating (kWh), which indicates how long the BESS can sustain its maximum output.

In the interconnection dataset, about 80% of the records were missing the energy rating.
Commercially available lithium-ion batteries can typically sustain their maximum output for 2-4
hours, meaning their energy-to-power ratio is 2:1 to 4:1. Kevala resolved this issue by assuming a
ratio of 2:1 for BESS in the interconnection data that does not have an energy rating. In Part 2,
Kevala proposes requesting additional BESS interconnection data and anticipates this data quality
issue will remain unresolved unless the IOUs have supplemental data to address the gaps.
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Additionally, there was some clearly erroneous energy rating data, leading to unrealistically high
energy ratings. For example, some installers appeared to use constant 4- or 5-digit codes in the
energy rating column, implying MWh-scale batteries on residential premises. For Part 1, all non-
zero BESS energy ratings from the interconnection data were retained if they could be matched to
a premise. The unrealistically large energy ratings do not significantly impact the results for Part 1
because all batteries were assumed to begin each year with 0 kWh of stored energy. Therefore,
the available energy in these residential batteries would be dictated by the excess produced by
the premises’ corresponding PV systems on any given day, which is expected to be much lower
than these unrealistic capacities.
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Appendix 4. Baseline Net-Load and Baseline Load
Modeling Methodology

As outlined in Section 3.3, baseline net-load represents the customer’s load at the meter, or what
is actually delivered to or received from the customer. Baseline load represents the hypothetical
demand of a customer after removing the load impacts of any adopted distributed energy
resources (DERs) from net-load. The core components of the baseline load forecast are an initial
hourly net-load forecast and estimates for hourly DER impacts for premises where a known DER
installation exists. The baseline net-load estimate discussed in this appendix refers to the initial
baseline net-load estimates used for predicting baseline load.

A4.1. Model Requirements

To ensure accuracy, robustness, and repeatability, the baseline net-load model had to meet the
following task-specific requirements.

¢ Inclusive. Use as much of the advanced metering infrastructure (AMI) data provided by the
utilities as possible.

e Flexible. Address potential sparsity in the net-load input data, as AMI data sources can
contain missing values.

e Holistic. Incorporate complex interactions between seasonal components that drive load
demand, such as hourly, weekly, and yearly effects.

e Transparent. The forecast model should not be a black box—model output should be
interpretable with respect to its inputs.

To meet these requirements, Kevala:

e Avoided compressing the data into aggregates or buckets such as daily total load or 576
load profiles before forecasting.

e Incorporated algorithms to adjust for missing or anomalous data.

e Included the influence of extra regressors such as outdoor air temperature.

e Generated hourly forecasts that can be examined and scrutinized.

A4.2. Input Data Preparation

The metered load data Kevala received from the three IOUs was predominantly recorded at an
hourly resolution, although some meters had 15-minute or 30-minute interval AMI reads. Though
Kevala’s load forecasting approach can be applied to more granular data, sub-hourly
measurements were summed to full hours for consistent processing across meters. Each AMI
record contained a timestamp, meter identifier, and two fields measuring the net kilowatt-hours
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returned (“kWhReturned”) and delivered (“kWhDelivered”) to the meter. Removing kWhReturned
from kWhDelivered yielded a combined hourly metered net-load (“kWhNet”) that Kevala used as
the target for prediction.

The baseline net-load estimates aligned with DER adoption and behavior models in taking an
individual customer address or premise as the unit of analysis. For each premise, Kevala summed
net-load for all associated meters to create a historical dataset of premise-specific hourly net
demand. For each resulting premise time-series, any missing timestamps or missing values for
net-load were imputed with an ensemble similar to the final forecast models discussed below,
using hourly historical temperature and any valid load measurements as inputs. Appendix 2
identifies the historical and future hourly air temperature datasets that comprised the
foundational load measurement assumptions; additional date-time features were appended to
the input dataset including hour number, day of month, day of week, month number, and a flag
representing whether the date was a holiday.

A4.3. Accuracy Metrics and Success Criteria
Predicting premise-level load has three complex and, from an analytical perspective, competing
optimization objectives. Specifically, baseline net-load predictions must be accurate in terms of:

1. Total annual load

2. Load duration shape of the annual load (e.g., the shape of hourly loads ranked from
highest to lowest)

3. Peak load

Because common machine learning loss functions assess performance, on average, across all
samples and penalize big misses, predicting the timing and magnitude of peak load can be a
particular challenge for models optimized for forecast error alone. To ensure its load forecasts
were optimized for the three metrics, Kevala measured forecast accuracy using multiple metrics
that are meaningful indicators of model performance relative to these optimization goals.

Additionally, because the goal of forecasting premise-level load is to identify constraints in the
larger distribution system, model performance could not be assessed solely at the level of
individual premises. Bottom-up load forecasts must be accurate (in total and peak) when
aggregated to the level of a distribution asset such as the service transformer or feeder. Kevala
conducted model selection against aggregate metrics to ensure the forecasts were accurate for
feeder-level aggregates and not merely for individual premises. This is an example of how the
SCADA data for utility infrastructure loads were used in the analysis (i.e., as a check of the
aggregated premise-level load totals).
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During model selection, Kevala assessed competing models using the following aggregate metrics,
which are ordered by their relative importance with (1) being the highest priority. Each metric
yielded a distribution of errors, from which the median error was taken as the decision criterion.

1. Median monthly feeder peak net-load absolute deviation: The absolute difference
between peak of the baseline net-load estimate aggregated to the feeder level and feeder
peak net-load, by month. Metric units are in kilowatts (kW).

2. Median monthly feeder peak hour absolute deviation: The absolute difference (in
number of hours) between the aggregated baseline net-load monthly feeder peak hour
and the actual feeder net-load peak hour. Metric units are in hours.

3. Median monthly feeder total energy absolute deviation: The difference between the
aggregated feeder-level monthly baseline net-load estimate and the actual feeder-level
total energy by month. Metric units are in kilowatt-hours (kWh).

4. Median hourly absolute deviation by premise: The differences between premise hourly
baseline net-load estimates and actual hourly net-load. Metric units are in kW.

A4.4. Selection of the Ensemble Model

Kevala conducted initial model selection using PG&E data spanning January 1, 2018 to September
30, 2021. Once the best modeling approach was refined, Kevala generated forecasts and
evaluated them for all three I0Us. PG&E data was used for model selection because Kevala was
able to collect, ingest, and process this data relatively quickly given the timeliness and quality of
the data provided. This allowed Kevala the necessary time to explore model structures and
develop a robust experimentation process to ensure the appropriate selection of a model.

A4.4.1. Experimental Setup

The COVID-19 pandemic affected load demand in complex and far-reaching ways, as commuting,
occupancy, and consumption patterns were disrupted and reorganized over time. To guard
against net-load forecasts being biased by either this disruptive period or the relatively stable
period before, Kevala assessed each model tested using a combination of a one-year backcast
(March 1, 2019-February 29, 2020) and a one-year hold-out set spanning the last year of available
AMI data (October 1, 2020-September 30, 2021). Kevala trained all models using the same date
range for input data: January 1, 2018-September 30, 2020. Notably, during model selection none
of the models were provided inputs from the one-year hold-out set, allowing for a fully out-of-
sample forecast evaluation that most closely mirrored how forecasts are actually used.

To test and optimize a variety of potential models effectively, Kevala used a stratified sample of
5,000 premises per customer sector to train each competing model, resulting in a total training
population of 47,158 premises. Prediction and evaluation used data for a sample of 52 feeders to
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assess model performance on a subset of complete feeders, which resulted in a total test
population of 98,777 premises.

A4.4.2. Results

Kevala tested a variety of relevant modeling approaches including, but not limited to, linear
regression,'* auto-regressive models,'* and ensemble methods that use bagging'*¢ or
boosting.'"’

The tree and forest ensemble method stood out above competing approaches on all four
evaluation metrics, and additional model development efforts focused on optimizing this
approach for the net-load prediction task.

Table A4-1: Evaluation metrics for best net-load forecasting method (Source: Kevala)

Evaluation Metric Method: Tree and Forest Ensemble

1. Median monthly feeder peak load deviation, kW 456.17

2. Median monthly feeder peak timing deviation, hours 1

3. Median monthly feeder total energy deviation, MWh 200.22

4. Median hourly premise error, kW 0.17

The ensemble method is an equally weighted combination of a traditional decision tree and a set
of extremely randomized trees. The decision tree component splits the input data at the points
that minimize squared error, which can overfit the training data. The extremely randomized forest
component splits the data at random points, which can result in underfit. By combining these two
related methods, Kevala’s predictions overcame the limitations of each while training the complex
nonlinear interactions between seasonality, temperature, and net-load.

“* Linear relationships among variables are used to formulate a predictive model. Key examples used in the
utility industry are regression models that predict energy use based on a handful of prescribed exogenous
variables such as temperature, size of premise or type of customer.

15 Autoregressive techniques involve a sequential regression of temporal data and other related inputs
such as temperature variability to estimate a forward trend to predict future outcomes.

1“6 Bagging, or bootstrap aggregating, methods combine the predictions of many weak models, each trained
on fixed-size samples of the training data (with replacement).

'“7 Boosting methods train basic models sequentially so that the prediction errors at each iteration are used
to improve the predictions of the next round.
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A4.5. Baseline Load

For each premise with a known PV installation, Kevala removed estimated PV generation from
hourly net-load forecasts to create baseline load forecasts, which represent total hourly demand
at the premise. Kevala created estimates of hourly PV production using the same method
described in Appendix 5.
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Appendix 5. Behind-the-Meter PV Modeling
Methodology

This appendix contains detailed information about the behind-the-meter (BTM) photovoltaic (PV)
sizing, behavior, and adoption algorithms, including evaluation results used to validate each
model on historical data. Kevala believes the results of the BTM PV analytics completed for this
Part 1 Study provide accurate and sufficient estimates of the impacts of BTM PV adoption on
distribution planning. Figure 52 (see Section 3.4.2) shows Kevala’s modeling pipeline, which uses
information about historical BTM PV installations from the investor-owned utilities’ (IOUs’)
interconnection data and Lawrence Berkeley National Laboratory’s Tracking the Sun dataset,
hourly resolution weather data from the National Solar Radiation Database (NSRDB), and the
System Advisor Model’s PVWatts simulator.

A5.1. BTM PV Sizing

For each premise, Kevala sized a theoretical BTM PV system to offset some portion of the
premise’s annual gross load. For each Census tract, Kevala calculated the annual energy
production (Epy) of a 1 kW direct current (DC), south-facing BTM system by simulating Typical
Meteorological Year weather data from the National Renewable Energy Laboratory’s (NREL’s)
NSRDB'* through PVWatts'* using the specifications listed in Table A5-1. Kevala calculated the tilt
and DC-to-alternating current (AC) ratio values as the average values reported in Lawrence
Berkeley National Laboratory’s 2021 Tracking the Sun dataset.

Next, for each premise in that Census tract, Kevala linearly scaled the DC rating from 1 kW DC to
the level required to meet a defined percentage of total annual premise load; this percentage is
called the load offset ratio (LOR). Using this linear scaling resulted in a DC system size of Pp:

Ppc (kW DC) =E;V"EV—k§V§L) X Ejpqa (KWh) X LOR

Kevala assumed that residential PV systems are sized to achieve net-zero energy on an annual
basis, corresponding to a LOR of 100%. For non-residential parcels, the LOR is 84% based on an
internal evaluation of the commercial premises in 10 feeders in PG&E territory.

The possible system size was further constrained by the building footprint of the premise’s parcel,
where available.’ This constraint assumed 100 square feet of rooftop area are required to install

8 The key weather variables from the NSRDB are direct normal irradiance, diffuse horizontal irradiance, air
temperature, and wind speed.

9 NREL, “PySAM,” Version 5, https://sam.nrel.gov/software-development-kit-sdk/pysam.html.

1*% Microsoft Building Footprints, https://www.microsoft.com/en-us/maps/building-footprints.
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each 1 kW DC of PV capacity.”™' Kevala derated the building footprint by a factor of 75% to account
for unusable rooftop area (i.e., 25% of the area is unusable).

Table A5-1: Specifications and assumptions for PV sizing method (Source: Kevala analysis of Tracking the Sun

and historical advanced metering infrastructure (AMI) data)

Customer Class Tilt DC-to-AC Ratio Load Offset Ratio
Residential 19° 1.13 100%
Non-Residential 12° 1.13 84%

Kevala then evaluated this model by comparing actual versus estimated DC capacity for a subset
of existing PV systems in each IOU, where actual installed capacity was obtained from the
historical interconnection data. For this historical evaluation, a premise’s annual gross demand
E\oea Was back-calculated from the premise’s 2018-2020 historical AMI (net-load) by adding a
historical PV production estimate. Kevala estimated the historical PV production using the PV
behavior method (described below) using the NSRDB’s Actual Meteorological Year weather data
for 2018-2020 and the actual DC capacity from the interconnection data as inputs. This historical
gross load estimate then provided the necessary input to the sizing algorithm.

Kevala validated the model on a subset of premises from each IOU:

e 3,358 premises in Pacific Gas and Electric (PG&E) (from a subset of 10 feeders)
e 2,314 premises in Southern California Edison (SCE) (from a subset of 14 feeders)
e 4,615 premises in San Diego Gas & Electric (SDG&E) (from a subset of 11 feeders)

Only the premises on each feeder that installed a PV system as of the April 2021 interconnection
dataset were included. Figure A5-1 shows the distributions of the actual versus estimated systems
sizes, which are also summarized in Table A5-2.

The estimated system sizes were strongly correlated with the system sizes from the
interconnection records (with a Pearson correlation coefficient of 0.78 for PG&E) and followed a
similar distribution as the interconnection records, although with a higher standard deviation.
There is some bias toward overestimating the actual system size by an average of 0.5 kW DC-1 kW
DC.

*1'U.S. Department of Energy, SunShot Initiative, 2018, p. 2, http://bcapcodes.org/wp-
content/uploads/2017/03/MODULE-3-Part-2-slides-37-60-Architectural-Integration-into-Building-Design-3-
22-2018-w-notes.pdf.
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Figure A5-1: Histograms of estimated versus actual PV system size (kW DC) (Source: Kevala)
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Table A5-2: Descriptive statistics of the distributions of actual versus estimated PV system size (DC) by IOU

(Source: Kevala)

PG&E Actual 6.3 3.6 26.3
Estimated 8.1 4.0 63.8
SCE Actual 7.9 6.0 25.9
Estimated 8.4 6.0 40.9
SDG&E Actual 8.7 5.9 50.7
Estimated 8.6 5.9 35.1

Table A5-3 reports point-wise error metrics, including mean and median absolute error and
absolute percentage error. The mean error metrics are higher than the median error metrics,
indicating some outliers with very high error. Percentage errors are also higher for non-residential
premises, but these constitute a very small fraction of the total number of premises with installed
PV.
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Table A5-3: Point-wise error metrics of actual versus estimated PV system size (DC) by IOU (Source: Kevala)

Customer Class Count A:s:::te Abs::::aEr:-ror M:::CI::::;Zte rei:i::t;\gbeszlrl:;
Error Error

PG&E Residential 3,285 1.6 kw 1.0 kw 39% 27%
Non-Residential 73 93.9 kW 15.9 kW 83% 34%

SCE Residential 2,282 3.2 kW 2.3 kW 54% 39%
Non-Residential 32 75.1 kw 8.6 kW 200% 60%

SDG&E Residential 4,462 2.1 kW 1.2 kW 29.5% 20.3%
Non-Residential 153 34.2 kW 4.8 kW 74.0% 32.9%

A5.2. BTM PV Behavior

Kevala simulated hourly resolution (8760) PV production curves using PVWatts, with weather

inputs from the NSRDB. To reduce computation, Kevala generated typical production curves of a 1
kW DC system by Census tract and customer class and then scaled these curves by the kW DC
rating determined by the PV sizing algorithm to derive the production of a given premise. The

inputs to PVWatts for the normalized production curves for each Census tract were as follows:

e Weather: NSRDB Actual Meteorological Year 2020.

e Location: Latitude and longitude of centroid of Census tract.

e Tilt and AC-to-DC ratio: Derived by customer class from the Tracking the Sun dataset and

reported in Table A5-1. Kevala used the Commercial customer class in the Tracking the Sun
dataset for all non-residential systems.

e PVWatt’s default values were used for all other specifications, except azimuth.

Kevala selected the two most common azimuths from the Tracking the Sun dataset—south-facing

(180°) and west-facing (270°)—and ran PVWatts twice, once with each azimuth. Kevala then used

the distributions of the azimuth by customer class in the Tracking the Sun dataset to produce

weights for blending these two curves into one standard curve by customer class and by census

tract. Table A5-4 reports the weights.
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Table A5-4: Weighting factor for each azimuth by customer class (Source: Kevala)

180" (South) 0.754 0.876

270" (West) 0.246 0.124

As an example, Figure A5-2 illustrates this blended curve for one Census tract, showing the
weighted south-facing, weighted west-facing, and the combined generation time-series for 201 8-
2020. Note that daily energy output is illustrated here, although the underlying behavior curve is
still in units of average power at an hourly resolution. 2018-2020 Actual Meteorological Year
weather data was used to model 2018-2020; Typical Meteorological Year weather data was used
to model 2021 (due to a delay in the availability of recent weather data in the NSRDB), and Actual
Meteorological Year 2020 was used for the forecasts for 2022 onward.

Figure A5-2: Relative contributions of south- and west-facing components to the daily energy production of a

1 kW DC system for a selected Census tract in PG&E (Source: Kevala)
6001407600 Residential

2018 2019 2020 2021 2022 2023

A5.3. BTM PV Adoption

Kevala selected and trained a multilevel logistic regression (MLR) model to model PV adoption
propensity using the features reported in Table A5-5. The features selected for this model
included customer class, payback period, peak load, and demographic features from the U.S.
Census Bureau’s American Community Survey (ACS). Kevala calculated the payback period based
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on the sizing estimates. To train and validate the PV adoption model, Kevala calculated bills with
Net Energy Metering (NEM) 2.0 rates'*? and adjusted the bill and system cost to 2016 values.'s

The MLR model first grouped premises by the categorical variable (customer class) and then
trained a regression model on the remaining numerical features. The overall regression model
was the same for the two customer classes, but because the customer classes had unique training
data, the regression resulted in unique parameters for each group. Each numerical feature was
represented by a normal distribution in the MLR model; to better fit a normal distribution, some
features with long tails were log-transformed.'*

Table A5-5: Categorical and numerical features used to train the PV adoption model (Source: Kevala)

Categorlcal of Feature Granularity Data Source Log-Transformed?
Numerical
Categorical Customer class: Premise level Rates N/A
residential or non-
residential
Numerical Payback period Premise level Rates and PV sizing No
outputs
Percentage of owner- Census block group Census-ACS No
occupied premises
Maximum daytime Premise level Baseline (gross) Yes
baseline load load'>>
Percentage of college or | Census block group Census-ACS No
higher education degree
holders

132 Kevala made a simplifying assumption during the PV adoption model training that all historical PV
adopters were on NEM 2.0 rates rather than a mix of NEM 1.0 and NEM 2.0 rates. During the bill calculations
for future years, Kevala assigned historical adopters either the NEM 1.0 or NEM 2.0 rate they were assigned
upon installation.

'*3 During the prediction stage when determining future PV adopters, Kevala assigned future adopters NEM
2.0 in the Existing BTM Tariffs Scenario or the December 2021 Proposed Decision for proceeding R.20.08-
020-inspired rate in the Modified Tariffs scenario. The bill and PV system cost reflected 2022 values.

>* For datasets with far outliers, also referred to as distributions with long tails, a logarithmic
transformation can pull the outliers closer in so that a normal distribution better represents the underlying
data.

> During model training, Kevala calculated the baseline load input from customer AMI data plus a PV
production estimate using PVWatts for those customers with known PV systems from historical
interconnection data. During model forecasting, the baseline load input was the output from the baseline
load forecast model (see Section 3.3.2).
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Median household Census block group Census-ACS No
income

Median age Census block group Census-ACS No
Census block group land Census block group Census-ACS Yes
area

Population density Census block group Census-ACS No

For each IOU, Kevala selected a subset of feeders to train and validate an IOU-specific PV adoption
model. Table A5-6 summarizes this data. Kevala randomly split the premises in each I0U’s subset
into a training (in-sample) set (67%) and a validation (out-of-sample) set (33%). The MLR model was
trained on the 67% of in-sample data and then the training and validation data were run through
the trained model to generate adoption propensity scores for all premises. Kevala calculated the
evaluation metrics precision'® and recall*” using an adoption threshold (see Table A5-6), which
was based on the historical adoption rate in each IOU’s training and validation dataset. Kevala
used the interconnection data to identify the historical adoptions.

Table A5-6: Summary of the subset of IOU data used to train and validate each IOU-specific adoption model;
each 10U’s subset was further split into training (67%) and validation (33%) datasets (Source: Kevala)

PG&E 10 11% Prob >=0.775
SCE 14 15% Prob >= 0.66
SDG&E 11 27% Prob >=0.637

136 Precision is an evaluation metric that measures the adoption model’s ability to identify relevant data
points, such as if a customer adopted. It is calculated by taking the number of true positives (number of
times an actual adoption was predicted) divided by the number of true positives plus the number of false
positives (the number of times an adoption was predicted that was not seen in the base data). Kevala
calculated this metric at the IOU-specific adoption threshold reported in Table A5-6.

157 Recall is an evaluation metric that measures the adoption model’s ability to identify all relevant cases
within a dataset. It is calculated by taking the number of true positives divided by the number of true
positives plus the number of false negatives. Kevala calculated this metric at the I0U-specific adoption
threshold reported in Table A5-6.
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Table A5-7 reports the evaluation results for each I0U’s adoption model using three different
metrics that describe the adoption model’s quality from different perspectives. Precision is the
frequency at which a predicted PV adoption actually happened in the interconnection data. Recall
is the percentage of all actual adoptions that were predicted by the model. Either of these metrics
can be manipulated by selecting either a very high or very low adoption propensity score as the
threshold of adoption; therefore, machine learning models of this type are often evaluated under
all possible thresholds using area under the curve metrics. For highly unbalanced datasets, such
as PV adoption where the likelihood of adoption is relatively low, the preferred metric is the
precision recall area under the curve (PR AUC).'*8

A few results attest to the quality of the models:

e First, there is consistency in the evaluation metrics between the training and validation
dataset, which indicates the model is not overfit and did a good job of generalizing to the
out-of-sample data.

e Second, the precision and recall values being greater than the historical adoption rate in
this unbalanced dataset indicates a better-than-random adoption selection (e.g., values of
~0.5 for PG&E are greater than the adoption rate of ~0.1).

Across I0Us, the models for PG&E and SDG&E perform more strongly than the model for SCE. One
possibility for this discrepancy is that historical adoptions in SCE territory have been correlated
with different demographic features than those in the other two IOUs.

Table A5-7: Adoption evaluation metrics for each I0U’s adoption model (Source: Kevala)

Data Subset Precision Recall PR AUC
PG&E Training 0.48 0.51 0.46
Validation 0.49 0.49 0.47

8 PR AUC is the area under the precision recall curve; it is used to assess the performance over all the
adoption thresholds as represented by the precision and recall metrics. There are a few areas under the
curve metrics, and PR AUC is the most appropriate AUC metric for PV adoption, where the incidence of
historical adoption is relatively low. This is referred to as a highly unbalanced dataset. For more information,
see: Daniel Rosenberg, “Unbalanced Data? Stop Using ROC-AUC and Use AUPRC Instead,” Towards Data
Science, June 6, 2022, https://towardsdatascience.com/imbalanced-data-stop-using-roc-auc-and-use-auprc-
instead-46af4910a494.
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Data Subset Precision Recall PR AUC
SCE Training 0.32 0.33 0.30

Validation 0.32 0.32 0.31
SDG&E Training 0.61 0.62 0.67

Validation 0.62 0.62 0.69

A5.4. BTM PV Base Case Results and Scenarios

In addition to the base case scenario run for BTM PV that was calibrated to PV capacity forecasts in
the 2021 Integrated Energy Policy Report (IEPR), Kevala ran scenarios for PV adoption to explore
the change in adoption propensity resulting from an alternative rate design for NEM. The base
case NEM pricing scenario assumed the NEM 2.0 structure to persist through the study period.
The time-of-use (TOU) periods and rate differentials remained unchanged, and the cost of BTM PV
installations was held constant. Therefore, the underlying assumption for this study is that the
relationship between the cost of PV installations and rates remains unchanged. The second
scenario involved adopting a new rate structure for residential NEM that included a monthly grid
access charge of $5/kW and an export rate that offset the generation rate. This structure was
consistent with the Proposed Decision in the proceeding to reform NEM (R.20-08-020) issued on
December 13, 2021. Rather than modeling the exact proposal in that Proposed Decision, Kevala
chose this simplified structure as a scenario because it was generally consistent with the Proposed
Decision at the time. Since the study was conducted, the CPUC adopted a final Decision on
December 15, 2022 to reform NEM by creating a Net Billing Tariff.

The BTM PV forecast shows that PV’s percentage contribution to the system peaks is between 0%
and approximately 23% across the three I0Us. The results at the feeder level are far more diverse.
For example, for the base case for PG&E in 2025, PV’s percentage contribution to each feeder’s
peak range from 0% to -75%, while the percentage contribution at the IOU level is -1.81%. Table
A5-8 shows the PV percentage contribution to the system-level peak by IOU and forecast year.
Due to PV production’s dependence on the sun, the relative impact of PV on the peak load
depends not only on the capacity of PV installed but also the hour of day that the peak load
occurs. For all scenarios and I0Us, the peak-load hour migrates from late afternoon (4 p.m. PT for
SDG&E and SCE) or early evening (7 p.m. PT for PG&E) in 2025 to 9 p.m. PT by 2035; this is due to
the deployment of electric vehicles (EVs) and evening EV charging. Therefore, even as the installed
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capacity of PV increases over the study horizon, its impact on the peak load decreases to a 0%
percentage contribution for all IOUs and scenarios by 2035, except for the SCE base case.'™

As reported previously, the Modified BTM Tariffs scenario results in a 4.3% reduction in installed
PV capacity by 2035. When looking at impacts on the net-load hour, the relative difference
between these two scenarios is smaller.'® In 2025, the Modified BTM Tariffs scenario reduces the
magnitude of PV’s percentage contribution by less than 0.4% across the IOUs. By 2035 under any
high transportation electrification scenario, there is no difference in PV’s impact on system-level
peak load between the two BTM Tariff scenarios because the peak load hour occurs after the sun
has set.

Table A5-8: PV percentage contribution to the net-load peak by IOU, forecast year, and scenario (Source:
Kevala)

-23.35%

-1.76% -4.46% | -22.82% 0% -1.18% 0% 0% 0% 0%

"9 This scenario is an exception, at which the 2035 peak hour occurs at 6 p.m. PT instead of 9 p.m. PT.
' The two BTM rate design scenarios can be compared for a given transportation electrification scenario
(e.g., Scenario 2 versus 3 or 4 versus 5).
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For the Part 2 Study, other rate design scenarios may be considered as part of the mitigations in

the case studies. Such scenarios may include changing DER behavior patterns to reflect reactions
to new TOU periods to address high electrification scenario challenges. Kevala understands that
rate design is a highly complex process that involves a deep understanding of each IOU’s avoided
costs in the future as well as policy objectives and customer acceptance and response. Kevala will
work in close collaboration with the CPUC on any rate design changes assumed to test PV
adoption or other DER adoptions and will most likely rely on load shapes rather than expected
marginal costs and maintain the same price differentials currently in TOU rates.
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Appendix 6. Behind-the-Meter Battery Energy Storage
System Modeling Methodology Details

This appendix contains detailed information about the behind-the-meter (BTM) battery energy
storage system (BESS) sizing, behavior, and adoption algorithms, including evaluation results used
to validate each model on historical data. Kevala believes the results of the BESS analytics
completed for this Part 1 Study provide reasonable and sufficient estimates of the impacts of BESS
adoption on distribution planning given the nascent nature of this technology in California. Figure
53 (see Section 3.4.3) summarizes the complete BESS modeling process.

A6.1. BTM BESS Sizing

The BESS sizing model analyzed a premise’s net (baseline) load (demand plus photovoltaic (PV)) to
select the number of commercially available battery modules to potentially install. Kevala adjusted
the battery features for capacity (kWh) and power (kW) to a set of standard commercially available
batteries (see Table A6-1). For residential systems, the power rating of a BESS system was sized to
meet a defined percentage of maximum daily energy consumption.’ The model then selected a
corresponding number of Tesla Powerwalls to exceed this threshold.

Table A6-1: Ratings of commercially available BESS systems considered by the BESS sizing model162 (Source:

Kevala)
Options by Power rating (kW) Energy rating Energy-to-Power Ratio Manufacturer
Customer Class (kWh)
Residential 5 14 2.8 Tesla
Non-Residential 5 13.5 2.7 Tesla
13.5 10 1.3 Solaredge
7.6 17 1.9 Pika/Generac
9 11 2.2 Energport
5 64.5 2.2 Energport
29 45 1.6 Energport

'¢! Kevala defined this percentage by calculating daily energy consumption on a 24-hour basis and selecting
the maximum consumption over the year; it was not calculated from the peak demand hour.
182 Kevala assumed a standard 90% round-trip efficiency for all models.
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Options by Power rating (kW) Energy rating Energy-to-Power Ratio Manufacturer
Customer Class (kWh)
29 129 2.2 Energport
60 129 2.2 Energport
55 110 2.0 Delta
125 268 2.1 CPY
125 250 2.0 Dynapower
130 232 1.8 Tesla

For non-residential premises, Kevala assumed the BESS systems to charge from the grid, so the
size was optimized to reduce demand charges over a given duration. (The battery attempts to
charge during the daily intervals in which load is lowest and discharges during the daily intervals in
which load is highest.) If the model did not find a commercially available battery that provided the
desired autonomy duration, then the model returned the largest battery system available (Tesla
Powerpack with power rating of 130 kW and energy rating of 232 kWh).

The sizing model included two important configuration options:

e Duration (the maximum number of hours of a battery autonomy) for non-residential
premises

e Percentage of maximum daily energy consumption the BESS can serve for residential
premises

To find the best parameters, Kevala used a grid search approach, considering duration from a
range of 2-4 hours and the percentage of maximum daily load from 0.05 to 0.8. Kevala compared
predicted sizes to actual interconnection records for the premises in each 10U territory that had
BESS installed:

e 18,500+ premises in Pacific Gas and Electric (PG&E)
e 11,000+ premises in Southern California Edison (SCE)
e 8,000+ premises in San Diego Gas & Electric (SDG&E)

As discussed further in the Interconnection Data section, these counts were based on April 2021
interconnection data, after BESS mapped to the same premise were combined together and BESS
that could not be mapped to a unique premise were excluded. Also, as noted, approximately 80%
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of interconnection records were missing energy ratings and only provided power ratings, so
Kevala imputed energy ratings using a 2-to-1 energy-to-power ratio. Because of this missing
data,’® Kevala emphasized the power rating estimation over the energy rating in conducting this
evaluation. Using this historical data, Kevala found the thresholds that resulted in the lowest mean
absolute error,'® root mean squared error,'®> and mean absolute percentage error'*® to be 3
hours’ duration for non-residential systems and 8% of maximum daily energy consumption for
residential premises. The 8% threshold corresponds to about 2 hours of energy backup over a 24-
hour period.

Table A6-2 shows the results of the evaluations. The mean absolute percentage error on the
power ratings is about 30%. The vast majority of residential premises were allocated a single Tesla
Powerwall, which reflects current market availability and limited historical data. The results are
also skewed by some very high commercial outliers.

'3 This issue is expected to persist for Part 2 even if Kevala receives a more up-to-date interconnection
dataset unless the IOUs have updated their data gathering practices.

'%* Mean absolute error is defined as the sum of absolute errors between predicted and actual values,
divided by the sample size. It quantifies the typical difference between the predicted BESS rating and the
actual rating in the interconnection data, and a smaller value is better.

165 Root mean squared error is the square root of the average squared difference between the predicted
and actual values. It is similar to mean absolute error, but it is more sensitive to outliers where the
prediction was far from the actual value.

16 Mean absolute percentage error is the average of the absolute percentage errors between the predicted
and the actual values. It quantifies the relative vs. the absolute typical difference, but it has limited
usefulness if the actual values are near zero, where the mean absolute percentage error tends toward
infinity.
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Table A6-2: Ratings of commercially available BESS systems considered by the BESS sizing model

(Source: Kevala)
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PG&E 3.45 25.4 31% 60.6 590 60%
SCE 3.60 20.7 26% 10.3 42.6 53%
SDG&E 8.0 69.6 29% 17.1 140 48%

MAE: mean absolute error; RMSE: root mean squared error; MAPE: mean absolute percentage error

A6.2. BTM BESS Behavior

The BESS behavior model implemented different sets of logic for residential versus non-residential
premises using the outputs of the sizing model, the premises’ net-load (baseline plus PV) time
series, a 90% depth-of-discharge limit, and a 90% round-trip efficiency estimate.

For residential premises, Kevala assumed the premise is attempting to maximize its self-
consumption of PV. The algorithm took in a time series (8760) of net-load data and tracked battery
state-of-charge at the same temporal resolution (e.g., hourly). Charging occurred when net-load
was negative, limited by that hour’s net-load value, the battery power rating, and the available
state-of-charge headroom. Discharging occurred when net-load was positive, limited by that
hour’s net-load value, the battery power rating, and the available stored energy. The algorithm
took round-trip efficiency losses into account in the discharging stage, assuming a standard 90%
round-trip efficiency for all BESS models. The discharge will typically happen in the early evening
hours as the sun goes down, which coincides with current time-of-use (TOU) peak periods,
although TOU optimization was not explicitly built into the algorithm.

For non-residential premises, Kevala assumed the premise is attempting to reduce demand
charges by reducing its peak periods. The battery charges at the times of day when demand is
lowest and discharged when demand is highest. The algorithm took in a time series (8760) of net-
load data but did not track state-of-charge on an hourly basis. Instead, the algorithm used the
battery’s energy-to-power ratio to identify how many time series intervals (e.g., 1-hour intervals) it
would take for the battery to discharge from full capacity to empty at the battery’s maximum
discharge rate. For example, a 29 kW battery with 45 kWh energy rating could operate during two
(n=2) 1-hour intervals (one at maximum power output, one at less-than-maximum output).

Then, for each 24-hour period (in this case, in the UTC time zone), the algorithm selected the n-
lowest hourly intervals in the net-load data to charge and the n-highest hourly intervals to
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discharge. This assumed a perfect forecast of each 24-hour period. The charge/discharge power
was limited by the maximum power rating and the state-of-charge but not by the net-load value;
that is, the battery was allowed to discharge more than the simultaneous net-load, potentially
resulting in net-exports during discharging rather than a zeroing out of the net-load. Figure A6-1
illustrates this behavior for a premise with PV and BESS. For this n=2 battery, there are two
intervals of charging or discharging a day, where the magnitude of the first interval is at the
maximum power rating, and the second interval is at a less than maximum power rating due to
state-of-charge limits.

Figure A6-1: Example of a non-residential premise’s baseline load plus PV, PV, and BESS profiles for July
2020. Battery is sized to 29 kW and 45 kWh; time stamps shown are in UTC as opposed to local time in
California. (Source: Kevala)
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A6.3. BTM BESS Adoption

Kevala selected and trained a multilevel logistic regression (MLR) model to model BESS adoption
propensity using the features reported in Table A6-3. The features selected for this model
included customer class, whether or not the premise had PV, maximum load, and demographic
features from the U.S. Census Bureau’'s American Community Survey (ACS). The MLR model first
grouped premises into four groups by the categorical variables (customer class, has/does not have
PV), then trained a regression model on the remaining numerical features. The overall regression
model was the same for the four groups, but because each group had unique training data, the
regression resulted in unique parameters for each group. Each numerical feature was
represented by a normal distribution in the MLR model; to better fit a normal distribution, some
features with long tails were log-transformed.’’

17 For datasets with far outliers, also referred to as distributions with long tails, a logarithmic
transformation can pull the outliers closer in so that a normal distribution better represents the underlying
data.
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Table A6-3: Categorical and numerical features used to train the BESS adoption model (Source: Kevala)

income

Categorical or Feature Granularity Data Source Log-Transformed?
Numerical
Categorical Customer class: Premise level Rates N/A
residential or non-
residential
Has PV: Yes or no Premise level PV adoption model N/A
Numerical Percentage of Census block group Census-ACS No
owner-occupied
premises
Maximum daytime Premise level Baseline (gross) Yes
baseline load load'68
Percentage of Census block group Census-ACS No
college or higher
education degree
holders
Median household Census block group Census-ACS No

Compared with other distributed energy resources (DERs) such as PV, very few BESS systems have

been installed in California, which complicates training the MLR model. Less than 0.5% of premises

have BESS installed, which means the historical data available to train the BESS adoption model is
considered a highly unbalanced dataset. Unless a method is added to account for this, data

science models based on unbalanced datasets tend to predict only one outcome. In this case, a |

model would always predict non-adoption because it is so much more prevalent in the training

set. To address this issue, Kevala added a step during the BESS adoption model training called

'8 During model training, Kevala calculated the baseline load input from customer advanced metering
infrastructure (AMI) data plus a PV production estimate using PVWatts for those customers with known PV
systems from historical interconnection data. During model forecasting, the baseline load input was the

output from the baseline load forecast model (see Section 3.3.2).
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undersampling,'®® which is a data science technique that mitigates the impacts of unbalanced
training data.

To train each investor-owned utility’s (IOU’s) BESS model, Kevala randomly split all premises' in
that IOU into two subsets: a training (in-sample) set (67%) and a validation (out-of-sample) set
(33%). Kevala conducted undersampling on the training set only to address the issue of the
unbalanced dataset before training the MLR model. Then, both the training and validation data
were run through the trained model to generate adoption propensity scores for all premises.
Kevala calculated the evaluation metrics of precision and recall using an adoption threshold,
which was based on the historical adoption rate in each IOU’s training and validation dataset.
Kevala used the interconnection data to identify the historical adoptions.

Table A6-4 reports the results for all three IOUs. The evaluation metrics are consistent between
the training and validation dataset for each 10U, which indicates the models are not overfit and
did a good job of generalizing to the out-of-sample data. While the precision and recall values are
low, they are greater than the historical adoption rate in this highly unbalanced dataset, which
indicates a better-than-random adoption selection (e.g., values are greater than the historical
adoption rate of <0.005). The PR AUC metric is considered the most pertinent metric for highly
unbalanced datasets, and while there is strong consistency in the PR AUC results, the values are
considered low; this speaks to the challenges of modeling future adoption predictions on such a
limited historical dataset.'”

Table A6-4: BESS adoption evaluation metrics for each IOU’s adoption model (Source: Kevala)

Data Subset Precision Recall PR AUC
PG&E Training 0.127 0.134 0.083
Validation 0.126 0.133 0.082

' Undersampling randomly removes samples from the majority class (e.g., premises that have not yet
adopted BESS in the historical data) to resolve the challenges from unbalanced training data. For more
information on undersampling, see: The imbalanced-learn developers, “3. Under-sampling — Version 0.9.1.,”
https://imbalanced-learn.org/stable/under_sampling.html.

170 premises must have all the data features listed in Table A6-3 to be eligible, and residential premises with
BESS installed but no PV are ignored based on the behavior assumptions described previously. For example,
the eligible dataset for PG&E comprises 4.8 million premises, after removing 252,000 premises for missing
data and 169 residential records that have installed BESS but not PV.

"' See Appendix 5 for detailed definitions of precision, recall, and PR AUC.
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Data Subset Precision Recall PR AUC
SCE Training 0.090 0.093 0.059

Validation 0.094 0.098 0.060
SDG&E Training 0.094 0.095 0.071

Validation 0.098 0.100 0.072

A6.4. BTM BESS Base Case Results and Scenarios

The Modified BTM rate design scenario results in slight differences in BESS outcomes compared to
the Base Case scenario (calibrated to the 2021 Integrated Energy Policy Report, or IEPR) because
of the linkage between BTM PV and BESS. Similar to PV, the adoption propensity score used to
calibrate the Existing BTM Tariffs BESS scenario was used to calibrate the Modified BTM Tariffs
BESS scenario. Kevala did not directly include payback period in BESS adoption modeling, but
there are indirect follow-on effects for premises that switch from PV adopters to non-adopters. If a
premise does not adopt PV, its adoption propensity for adopting BESS falls dramatically.

Table A6-5 shows the BESS percentage contribution to system peak by IOU, year, and scenario. In
all cases, the percentage contribution is negative (around -1% or less). A negative percentage
contribution implies that BESS are discharging in aggregate during the peak load hour. As the
system peak load hours are modeled to occur in the late afternoon, shifting to evening as the
adoption of electric vehicles (EVs) progresses, this overlaps with the time when residential BESS
are discharging following as or after the sun sets.'” The results at the feeder level are far more
diverse, including some feeders that peak while BESS are charging in aggregate instead of
discharging. For example, for the base case IEPR scenario for PG&E in 2025, BESS’s percentage
contribution to each feeder’s peak ranges from -13% to 20%, while the percentage contribution at
the IOU level is -0.77%.

'72 This behavior is based on the current assumptions that TOU mid-peak and peak period will continue to
be in the late afternoon and evening in the future. TOU periods are implicitly rather than explicitly included
in the current residential BESS behavior algorithm.
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Table A6-5: BESS percentage contribution to the net-load peak by IOU, forecast year, and scenario (Source:

Kevala)
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Appendix 7. Energy Efficiency Modeling Methodology
Details

This appendix contains detailed information about the energy efficiency (EE) sizing, behavior, and
adoption algorithms, including evaluation results used to validate each model on historical data.
Kevala believes the results of the EE analytics completed for this Part 1 Study provide accurate and
sufficient estimates of the impacts of EE adoption on distribution planning. Figure 54 (see Section
3.4.4) shows the process flow of the EE evaluation method to develop the premise-level EE
forecasts. Figure A7-1 summarizes EE modeling.

Figure A7-1: EE modeling summary (Source: Kevala)
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Kevala employed a stepwise approach to quantifying the estimated total annual energy savings
from EE technologies for each premise. The key steps for sizing EE include the following:

1. Identify historical EE program participants (i.e., participating premises). Using the

California Energy Data and Reporting System (CEDARS) database,'”* Kevala first identified
which customers participated in EE programs between 2018 and 2020, and the estimated
energy savings resulting from each participating premise. Next, Kevala matched those
participating premises to the historical premise-level advanced metering infrastructure

'3 California Public Utilities Commission (CPUC), “CEDARS: California Energy Data and Reporting System,”
https://cedars.sound-data.com/.
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(AMI) data received from the utilities to quantify the participant’s annual baseline load
energy consumption prior to EE program participation.

2. Calculate percent savings. Using only participating premises for which baseline load
energy consumption prior to EE program participation could be calculated, Kevala
calculated the ratio of the first year of gross annual energy (kWh) savings'’ to the sum of
the participating premise’s energy consumption the year prior to participating.

3. Develop distribution of percent savings by customer group. First, Kevala classified each
participating premise in the sample by customer class and California Energy Commission
(CEC) climate zone. Next, Kevala calculated the distribution of percent savings for each
classification. Figure A7-2 provides an example of these residential and commercial sector
percent savings distributions. Table A7-1 shows the customer class and CEC climate zones
for which Kevala computed the distribution of savings.

Figure A7-2: Example distribution of percent savings by grouped premises using EE program
portfolio participation data (Source: Kevala analysis)
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Table A7-1: Customer classes and CEC climate zones (Sources: Kevala, CEC)

Residential 1-16
Commercial
Agricultural
Industrial
Public

174 Estimate of gross annual savings was based on data from the CEDARS database.
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4. Estimate potential annual savings by premise. Based on a premise’s class and CEC
climate zone, Kevala randomly selected the percent annual savings for each premise from
the relevant sample distribution. Kevala multiplied the baseline load forecast for 2025,
2030, and 2035 for each premise by the percent annual savings to estimate the annual
energy savings from EE participation for each premise.

A7.2. EE Behavior

Kevala assumed the hourly shape of savings to be the same as the baseline load forecast for the
premise. That is, Kevala calculated the premise EE load profile by multiplying an identified
premise’s annual percent savings by the forecasted hourly baseline load for that premise. Kevala
recognizes that the profile of energy savings depends on the EE technologies employed by the
participating premise. Ideally, a profile of savings by measure would be applied to the premise.
Kevala was not able to identify which EE measures were installed at each premise.

A7.3. EE Adoption

To forecast which premises will adopt EE, Kevala applied the following process based on historical
EE program participation. Kevala understands that many more premises implement EE without
participating in an EE program. Additionally, some EE is implemented via changes in codes and
standards that impact all new construction and influence what is available in the market (e.g., a
customer can only choose from available equipment to replace an air conditioner, light bulbs,
etc.).

1. Estimate EE adoption propensity. Kevala analyzed data from historical EE program
participation to understand those premise-level characteristics that drive EE adoption.
Using a Bayesian modeling approach, Kevala trained a model that related premise
attributes (features) to actual EE adoption (target) to estimate EE adoption propensity
scores.

Some key assumptions go into this adoption modeling approach:

e The adoption of EE in the sample of adoptions from 2018 through 2020 is
representative of adoption in the population for 2025, 2030, and 2035.
e There is a statistically robust relationship between the features and target.

To evaluate the performance of the adoption model, Kevala chose the area under the
receiver operating characteristic curve (AUC ROC) metric. This metric summarizes
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performance over all adoption thresholds.'” Kevala chose this metric because it is
designed to quantify how well the model is able to separate the adopting premises from
the non-adopting premises. Specifically, AUC ROC quantifies how the model performs on
the tradeoff between the true positive rate (e.g., predicting adoption at a premise where
adoption actually occurred) and the false positive rate (e.g., predicting adoption at a
premise where adoption did not actually occur). The AUC ROC is bounded between 0.0 and
1.0, with higher scores indicating better performance and 0.5 indicating that the model
performs at the same level as random chance.

This metric is appropriate for this study because adoption levels are based on targets that
vary for different scenarios or time horizons, and the best choice of model is one that
performs well regardless of the threshold value selected. The best performing and
conceptually reasonable feature set based on the AUC ROC score of 0.68 (see Figure
A7-3)'" included the following features:

¢ Log-scaled mean daily delivered energy: An indicator of the magnitude of load at
the premise. The prominence of this metric in driving adoption could be caused by the
limited data available, which may be biased to measures with larger savings driven by
high energy use and misses smaller, behavior-related actions such as home energy
reports.

e Log-scaled ratio of max to mean daily delivered energy: An indicator of the
peakiness of load at the premise.

e Log-scaled parcel building footprint square feet: An indicator of the size of the
buildings at the premise.

¢ Residential or non-residential premise indicator variable: Used to create the
multilevel split in the model such that residential premises are modeled with different
parameters from non-residential premises.

17> Wikipedia provides a helpful overview of this model at:
https://en.wikipedia.org/wiki/Receiver_operating_characteristic.

176 Kevala had a better performing model with a score of 0.75 on the validation data and 0.76 on the training
data, but it was deemed to be overfit and had lower validation set scores.
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Figure A7-3: AUC ROC score for EE adoption modeling (Source: Kevala analysis)
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To follow up on the analysis, Kevala examined the distribution of predicted probabilities
produced by the model to understand any patterns the model is capturing.

Figure A7-4 shows the distribution of predicted probabilities for residential versus non-
residential premises. The predicted probabilities for residential premises appear to follow a
skewed normal distribution, while the non-residential premises have a flatter distribution
with a higher mean probability.

Part |: Bottom-Up Load Forecasting and System-Level Electrification Impacts Cost Estimates, Kevala, Inc. 175



kevalal R.21-06-017 ALJ/ML2/KHY/fzs

Figure A7-4: Distribution of predicted probabilities for residential versus non-residential premises

(Source: Kevala analysis)
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Kevala reviewed whether climate zones or percent of savings features were statistically
significant drivers of adoption. Neither were found to be strong drivers of adoption.

After experimenting with including payback (calculated as average measure costs per first
year kWh saved basis per sector), Kevala found that feature also did not prove to be a
significant contributor. This may be due to the lack of data available to determine which EE
measures participating premises implemented. That is, these payback estimates ignored
the potential distribution of costs (on a per kWh of savings basis) based on the varying
costs of measures adopted (e.g., the cost per kWh of savings for efficient lighting could be
very different for weatherization measures, which may be influenced by premise-specific
characteristics). Further, actual costs and associated incentives of measures installed
through programs are highly dependent on the savings delivery mechanism, be it codes
and standards, a rebate program, a behavioral program, or market forces.

The Part 1 Study findings related to the lack of statistically significant drivers of adoption
are further supported by the CPUC's 2021 California Energy Efficiency Market Adoption
Characteristics Study.'”” This study identified that true customer purchase decision behavior

77 Guidehouse and Opinion Dynamics, California Energy Efficiency Market Adoption Characteristics Study
Methodology and Results, April 2021, https://www.cpuc.ca.gov/-/media/cpuc-website/divisions/energy-
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is not solely based on financial indicators and the complexities of the decision for each
unique measure or customer cannot be simply captured via a survey or objective
characteristics. The study attempted to inform willingness-to-adopt algorithms with
financial and non-financial indicators in customer decision-making using behavioral science
research. The non-financial indicators included the customer’s perception of a technology’s
environmental impacts, social status/statement signaling, ease of installation, and
aesthetics or features unrelated to energy use as key data points.

Rank premises by adoption propensity. Kevala used the adoption propensity scores for

each premise to rank premises with the highest level of propensity for each customer class
listed first.

With the sizing, behavior, and adoption propensity results, Kevala then calibrated adoption to the

2021 Integrated Energy Policy Report’s (IEPR’s) mid-mid case scenario.

1.

Develop EE adoption targets by class. To ensure the level of EE adoption is calibrated to
the IEPR mid-mid case scenario, Kevala used the EE forecast from the IEPR estimated for
each transmission access charge (TAC). This forecast was then further divided by customer
class to generate a target for each class by IOU. These targets were annual non-coincident
peak energy savings from EE by class by year.

Select premises for adoption by forecast year. For each class, Kevala selected premises
for adoption by selecting premises in their ranked order until the annual target savings for
the forecast year for the class was reached. Once a premise was selected for adoption,
Kevala assumed the EE savings would persist for the remaining forecast years. For
example, if a premise was chosen to provide savings in 2025, those savings remained in
place through 2035, effectively lowering the incremental targets of EE adoption in
subsequent years.

Because the total portfolio EE adoption was based on the 2021 IEPR mid-mid case scenario,
when the adopted premises reached maximum non-coincident demand savings, the data
pipeline stopped the adoption calculation. Based on the 2021 IEPR analysis, a range of
percent savings were achieved across the sectors. As a result, the EE adoption aligns to the
IEPR mid-mid case energy forecast allocation by sector.

division/documents/energy-efficiency/2021-potential-goals-study/market-adoption-report-

final.pdf?sc_lang=en&hash=131848F75C4A50EB35D9247F45FB4257
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Appendix 8. Building Electrification Modeling
Methodology Details

This appendix contains detailed information about the building electrification (BE) sizing, behavior,
and adoption algorithms, including evaluation results used to validate each model on historical
data. Figure 55 (see Section 3.4.5) shows the key steps for the BE analysis. Figure A8-1 summarizes
BE modeling.

Figure A8-1: BE modeling summary (Source: Kevala)
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A8.1. BE Sizing

Typically BE (also known as fuel substitution) sizing would be a function of the amount of fuel that
electricity would replace, such as replacing a natural gas heater with an electric heater. Kevala
originally planned to base BE sizing on annual gas consumption at the premise; however, that
data was not available for this study.'”® As a result, Kevala’s approach involved sizing BE at the
premise using the premise’s existing baseline consumption. Kevala used the following steps to
calculate the size of BE potential at each premise.

1. Calculate annual kWh baseline load. Using the baseline forecast (net-load less

photovoltaic (PV) behavior), Kevala estimated the baseline load at each premise for each of
the forecast years (see Section 3.3).'”

178 Kevala requested gas usage data from the investor-owned utilities (IOUs) but only Southern California
Gas’ data was available at the time of this study.
17 Kevala assumes energy efficiency (EE) and BE to be embedded in the baseline load.
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2. Develop BE load ratios. Kevala calculated BE load ratios for the residential and
commercial sectors by climate zone. Kevala did not develop BE load ratios for the
agricultural or industrial sectors because there is limited application of BE to agriculture
and fuel substitution at industrial sites is highly diverse.

The methodology to generate these load ratios varied by the residential and commercial
sectors:
a. Forthe residential sector, Kevala used the California Residential Appliance
Saturation Survey (RASS)'® by climate zone unit energy consumption (UEC) for:
i.  Heat pump and furnace fan unit
i.  Whole home
iii.  Electric water heating
iv.  Space cooling
b. For the commercial sector, Kevala used 2012 Pacific Region Commercial Buildings
Energy Consumption Survey (CBECS) data '®" The specific end uses for potential
electrification in commercial buildings included space heating, water heating, and
cooking. The percent increase in kWh of the baseline whole premise consumption
was the multiplication of the following three values by end use.
i.  Percentage of the population of buildings with natural gas consumption
ii.  Percentage of buildings with the end use of interest
iii.  Percentage of the whole building consumption attributed to that end use

3. Apply BE load ratios. After developing the BE load ratios and matching them to a premise
based on the premise’s class and climate zone, these ratios were applied to the premise
baseline load forecast calculated in the first step.

Kevala had planned a more detailed sizing approach using natural gas data but did not receive it
in time for this study. Kevala has since received and processed the natural gas data from the I0Us
for the Part 1 Study sample period (2018-2021). Kevala proposes requesting additional natural gas
data for Part 2 to match the additional advanced metering infrastructure (AMI) data being
requested (post-2021 and potentially before 2018).

Further, some of the data Kevala used in the existing method was dated. Specifically, Kevala used
the 2012 Pacific Region CBECS data because the 2018 end use-related tables had not yet been

1% California Energy Commission, 2019 California Residential Appliance Saturation Study, Volume 2: Results,
Tables 37-39, July 2021, https://www.energy.ca.gov/sites/default/files/2021-08/CEC-200-2021-005-RSLTS.pdf.

81 U.S. Energy Information Administration, 2012 CBECS Survey Data, Tables E1, E2, and E5,
https://www.eia.gov/consumption/commercial/data/2012/index.php?view=consumption.
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published. Kevala has confirmed that the U.S. Energy Information Administration released the
2018 CBECS data on September 28, 2022, so it is available for use in the Part 2 Study.

Kevala also proposes to explore creating different sizing models for residential versus non-
residential to further refine its approach in Part 2.

A8.2. BE Behavior

Typically, new consumption from BE would be based on the end use converted to electricity, such
as space heating, water heating, or clothes drying. Unfortunately, this data was not available at the
premise level for the Part 1 Study. As a result, Kevala defined a load profile appropriate for the
new electricity consumption using the National Renewable Energy Laboratory’s (NREL’s)
ResStock'®? and ComStock'® databases. Specifically, Kevala randomly chose a load shape from the
used distribution of the all-electric default load shapes from those two NREL databases for each
premise. Kevala then applied these randomly chosen load shapes to the electrification size for the
premise.

While the NREL databases are a good choice for the load shapes and should continue to be used
for the Part 2 Study, Kevala proposes improving on these profiles by pursuing two options:

e First, Kevala will look at refining BE to specific technologies, such as heat pumps, for sizing
and load shapes. In this case, Kevala will use the same process for BE for other
technologies that are less prevalent but could emerge as more dominant during the study
period (e.g., natural gas-intensive industrial processes).

e Second, Kevala will look to estimate the change in load profile versus the electrification
profile. That is, in using NREL’s electric-only load profiles as the load shape, the results may
not be reflecting the change in use. For example, using the load profile for an all-electric
home for the incremental BE load that is layered on a baseline load forecast that does not
include electric load could underestimate the peak use of the home that results from
electric heat as the peak use is muted by a shape that includes other less weather sensitive
loads.

A8.3. BE Adoption

Historical data on adoption of BE technologies is needed to train a model that predicts future
adoptions. Further, BE only occurs if there are other fuels that can be substituted with electricity,

182 ResStock is an NREL load profile library using a combination of building models and metered data.
Kevala filtered the data to California with the space and water heating fuel set to electricity only.

'8 ComStock is an NREL load profile library. Kevala filtered the data to California with the space and water
heating fuel set to electricity only.
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such as natural gas. Therefore, BE adoption is uniquely dependent on the level of natural gas use
at the premise. For this study, Kevala was not able to develop a robust BE adoption model due to
the lack of historical adoption data and natural gas data for all IOUs. Kevala requested data
regarding gas use from each IOU, but it was not received in time to incorporate into this study. As
aresult, Kevala used the same adoption propensity scores from EE for BE to rank order the BE
adoption by premise. Appendix 7 provides the EE adoption and adoption evaluation results used
to validate each model on historical data before its use in the prediction pipeline.

Kevala proposes several efforts to address this gap in Part 2:

e Kevala has received and processed the natural gas data from Pacific Gas and Electric
(PG&E), San Diego Gas & Electric (SDG&E), and Southern California Gas. The first planned
modification is to include gas use or other related metrics in testing a new BE adoption
model.

e Kevala plans to request additional data from the IOUs regarding granting incentives to their
customers for adopting BE technologies, such as electric water heaters and electric heat
pumps.

e Kevala will research other jurisdictions to see if there are any studies that may provide
useful in further refining the adoption model and results.

For the Part 1 Study, Kevala held the BE forecasts constant across all scenarios. For the Part 2
Study, Kevala proposes to explore potential scenarios for accelerated BE adoption that are
consistent with Senate Bill (SB) 1477'* and Assembly Bill (AB) 3232.'® Kevala will work with the
California Public Utilities Commission (CPUC) in developing these high BE scenarios.

The Part 2 Study proposes exploring mitigation options to reduce the implications of high DER
adoption.

1% SB 1477 was passed on September 13, 2018 and sets new state policy standards for low-emission
buildings and sources of heat energy.
https://leginfo.legislature.ca.gov/faces/billTextClient.xhtmlI?bill_id=201720180SB1477.

185 AB 3232 was passed on September 13, 2018 and sets new state policy standards for zero-emission
buildings and sources of heat energy.
https://leginfo.legislature.ca.gov/faces/billTextClient.xhtmI?bill_id=201720180AB3232.
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Appendix 9. EV and EVSE Modeling Methodology
Details

This appendix contains additional details regarding the data sources and methods Kevala used to
generate the premise-level electric vehicle (EV) adoption allocations and EV service equipment
(EVSE) siting forecasts that animate the EVSE charging behavior and their subsequent grid impacts.
EV counts serve as inputs to the EVSE model (see Figure A9-1).

Figure A9-1: EV and EVSE pipeline modeling overview (Source: Kevala)
Eleciric Vehloles

Electric Vehicle Supply Equipt.

A9.1. EV and EVSE Modeling Overview

Figure A9-2 summarizes the high-level, interconnected computational steps that Kevala executed
for the EV and EVSE modeling pipelines. As the figure indicates, the EV pipeline was executed first,
and the outputs from the EV steps then served as inputs to the EVSE pipeline. The EV and EVSE
pipeline executed specific calculations for personal (i.e., privately owned) and fleet (i.e., owned by
a fleet operator) vehicles and for these vehicles’ associated EVSE.

The EV and EVSE modeling pipelines began by identifying the target number of total assets (i.e.,
vehicle counts or charging port counts) to be allocated or sited for a given year. Following this
step, the EV and EVSE models conducted the sizing step, which determined the type of vehicles or
charging ports available—i.e., personal, light-duty (LD), battery electric vehicle (BEV), small car, or
fleet, depot, direct current fast charging (DCFC) 50 kW—and the total potential count of vehicles or
charging ports for a given premise. Importantly, the sizing step only determined what type of asset
and how many of those assets could be adopted in the event that premise is selected in the
adoption step; the step of actual adoption occurred in the adoption step.
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Next, the models ran an adoption propensity analysis that calculated the actual type and count of

the vehicle(s) or charging port(s) adopted at a given premise for a given year (i.e., one personal,
LD, BEV, small car at a residential premise or 10 fleet, depot, DCFC 50 kW at a commercial
premise). The adoption step was the last step for the EV model.

For the EVSE pipeline, the behavior step was the final step. It involved determining the annual

hourly charging profile for a given parcel for a given year based on the energy requirements of the
vehicle(s) projected to charge at the given parcel.
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Figure A9-2: Summary of the high-level EV and EVSE pipeline modeling steps (Source: Kevala)
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The EV and EVSE modeling methodologies differed from the Part 1 Study’s other DER modeling

approach in several important ways.

e Forecasted EVs were taken as an input into the EV model: For each scenario, the EV
model used one of three California state agency zero-emission vehicle (ZEV) adoption
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forecasts as direct modeling inputs. These forecasts represented the most reasonable and
robust reflection of California’s ambitious ZEV adoption policies at the time of their
selection in the second quarter of 2022. To reflect the grid impacts associated with the
achievement of the state’s ZEV adoption policies, the Part 1 Study used state forecasts that
are already serving as inputs to inform other statewide modeling and planning decisions.
For the other DER models, Kevala calculated or estimated the forecasted number of DER
counts for given technology (i.e., PV or BESS) based on an analysis of the data. Further
details about these adoption forecasts are provided in the following sections.

e Target setting—not sizing—was done as the first step of the EV and EVSE modeling
process: Whereas the Part 1 Study’s other DER modeling pipelines began with a sizing step,
the EV and EVSE modeling pipelines began with a target step. As described previously, this
is because Kevala designed the EV analysis to reflect the obtainment of the state’s
ambitious 2035 ZEV adoption targets, which are contained in the state agency ZEV adoption
forecasts that set the targets the EV model seeks to achieve for each year in each scenario.

e The EV and EVSE modeling steps followed a different sequence than other DERs: The
other DERs modeled in the Part 1 Study follow a sizing-behavior-adoption sequence. The EV
and EVSE models did not follow this sequence. Instead, the EV model followed a target-
sizing-adoption approach, and the EVSE model followed a target-sizing-adoption-behavior
approach.

e The EVSE model contained four steps: target, size, adoption, behavior: The EVSE model
was the only DER model with four steps. As described previously, this is because it
contained a target step in addition to the three other core steps (size-adoption-behavior).

The following sections contain further details on the target, sizing, adoption, and behavior steps
illustrated in Figure A9-1.

A9.2. EV Adoption Targets

In consultation with the California Public Utilities Commission (CPUC), Kevala selected publicly
available light-duty vehicle (LDV), medium-duty vehicle (MDV), and heavy-duty vehicle (HDV) ZEV
adoption forecasts produced by the California Air Resources Board (CARB) and California Energy
Commission (CEC) to serve as the ZEV adoption forecast inputs for the Part 1 Study’s five
electrification scenarios. Table A9-1 summarizes the CEC and CARB LDV, MDV, and HDV ZEV
adoption forecasts and the associated vehicle counts that Kevala used in the Part 1 Study.
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Table A9-1: Summary of CEC and CARB LDV, MDV, and HDV ZEV adoption forecasts used for the Part 1 Study
scenarios (Sources: CARB, CEC, Kevala)

ARB 2021 A |
c 0 dvanced Clean Cars CEC 2021 IEPR bookend scenario
CEC 2021 Il (ACC 1)
IEPR mid
scenario
CARB 2020 State SIP Strat
ate oI Strategy CEC 2021 IEPR high scenario
(555)
3,172,598 | 10,013,953 9,530,034
227,140 218,710 230,876

*The values in this table represent the forecasted ZEV adoption counts from 2022 to 2035 that the model
allocated based on the CARB and CEC ZEV adoption forecasts. These values exclude all ZEV counts prior to
2022, thus they do not represent the total cumulative ZEV counts for all three investor-owned utilities
(I0Us).

**The two High Transportation Electrification scenarios incorporate transportation electrification
assumptions similar to those applied to the 2022 IEPR demand forecast mid-mid case (i.e., the 2022 IEPR
Planning Forecast). At the time the Part 1 Study was developed, the 2022 IEPR had not yet been adopted, so
the 2021 IEPR mid-mid case was used for the Part 1 Base Case.

Kevala selected the three CARB and CEC ZEV adoption forecasts for the Part 1 Study because they
represent a meaningful range of ZEV adoption levels that align with California policy goals and
market forecasts. The CPUC project team facilitated the acquisition of these adoption forecasts,
which CARB and CEC provided directly to CPUC.

As Table A9-2 shows, the number of LDV ZEVs in the High Transportation Electrification scenario
(10,013,953) are greater than the number of LDV ZEVs in the Accelerated High Transportation
Electrification scenario (9,530,034), which is counterintuitive because the scenario names indicate
that the Accelerated High Transportation scenario should have higher adoption than the High
Transportation Electrification scenario. This difference occurred because Kevala identified and
selected the Base Case and Accelerated High Transportation Electrification scenarios' ZEV
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adoption forecasts prior to the High Transportation Electrification scenario’s ZEV adoption
forecast.'® At the time Kevala selected these inputs, it was not known that the High
Transportation Electrification scenario’s LDV ZEV adoption forecast would have a greater number
of 2035 adoptions compared to the Accelerated High Transportation Electrification scenario. As
such, it was the timing—not a deliberate modeling choice—that drove this counterintuitive
outcome.

Because the CARB and CEC ZEV adoption forecasts use different vehicle classification systems,
Kevala needed to harmonize the forecasts’ classification systems into a common set of vehicle
classes based on the CEC’s vehicle classification system. Table A9-2 summarizes Kevala’s
harmonized CARB and CEC vehicle classes. Importantly, the LDV, MDV, and HDV harmonized
classification system also aligns to the Experian Vehicles in Operation (VIO) data, which was
Kevala’s source of vehicle registration data.

The VIO data is a purchased dataset that provides vehicle registration information at the Census
block group level for the year, make, model, duty, powertrain, and vehicle class for the vehicles
registered in a given Census block group. Kevala used this data to develop detailed insights into
where current vehicle types (i.e., duty, powertrain, vehicle class) are registered so that it could
appropriately allocate vehicles from the CARB and CEC ZEV adoption forecasts in a manner that
corresponded to their historic geographic registration location.

Table A9-2: Summary of Kevala’s harmonized CARB and CEC vehicle classes (Sources: CARB, CEC, Kevala)

Duty Powertrains Vehicle Classes
LDV BEV, Plug-in Hybrid Small Car, Large Car, Small Sport Utility Vehicle (SUV), Large SUV,
Electric Vehicle (PHEV) Pickup, Van, Sport Car
MDV BEV Gross Vehicle Weight Rating (GVWR) 3, GVWR 4-5, GVWR 6,
GVWR6 - Delivery

' The LDV, MDV, and HDV ZEV adoption forecasts were determined by the Joint Agency Steering
Committee (JASC) High Electrification Interagency Working Group and selected in March 2022, after the ZEV
adoption forecasts for the Base Case and Accelerated High Transportation Electrification scenarios had
been selected. For more information about the Interagency Working Group’s high electrification scenario,
refer to the May 24, 2022, CEC Resolution (No. 22-0524-5) that adopted it for use in transmission planning
and as part of the 2021 IEPR “single forecast set,” at https://www.energy.ca.gov/filebrowser/download/4171.
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Duty Powertrains Vehicle Classes

HDV BEV GVWR7, GVWR8*, GVWRS - Box Truck, GVWRS8 - Long Haul
Tractor, School Bus, Urban Bus

*GVWRS - Box Truck and GVWRS8 - Long Haul Tractor were differentiated from GVWR8 to model their
distinctly long daily average vehicle miles traveled (VMT).

A9.2.1. Personal EV Targets

Personal EVs are vehicles that are owned—or expected to be owned—by an individual user and
are not registered or used as an asset by a fleet operator. Kevala undertook the following steps to
generate scenario-specific personal EV targets (i.e., vehicle counts by duty, powertrain, and vehicle
class) from the three CARB and CEC ZEV adoption forecasts and scenarios:

e For each year of each forecast or scenario, isolated the LDV adoptions and then separated
these ZEV adoptions into personal LDVs from the fleet LDVs. Set targets using only
personal LD ZEV counts.

e Harmonized the associated vehicle counts by duty, powertrain, and vehicle class to the
common Kevala vehicle class system (see Table A9-2).

e Allocated the state- and forecast zone-level associated vehicle counts to the IOU service
area level.

As Figure A9-3 illustrates, there were important differences between the personal EV adoption
rates across the three IOUs and vehicle powertrains for the Base Case, High Transportation
Electrification, and Accelerated High Transportation Electrification scenarios.

e For all three IOUs and across powertrains, the Base Case scenario ZEV adoption forecast
(CEC 2021 IEPR forecast mid case) had the lowest level of overall personal EV adoptions.

e For the PHEV powertrain type, the High Transportation Electrification scenario (which used
an early version of CARB’s ACC | vehicle populations to 2025 and ACC Il vehicle populations
after 2026) had the highest adoption level.

e For the BEV powertrain type, the Accelerated High Transportation Electrification scenario
(CEC 2021 IEPR Bookend Forecast Case) had the highest level of adoption.

The differing rates of personal EV adoption by powertrain types, which vary significantly in their
energy requirements, and across the various forecasts and scenarios created differing energy and
demand requirements that influence the grid impacts associated with the vehicles.
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Figure A9-3: Personal EV targets by scenario, utility, powertrain, and year. Y-axis is the number of vehicles.
(Sources: CARB, CEC, Kevala)
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While the personal EV target did contain a small number of MDVs (such as motor homes, RVs, or
MD trucks), these counts were sufficiently small and the uncertainty associated with them was
sufficiently small that Kevala excluded them from the Part 1 analysis.

A9.2.2. Fleet EV Targets
Fleet EVs are vehicles registered—or expected to be registered—by an entity or operator that will
not be using the vehicle for personal use. While these EV targets are described as fleet targets,
Kevala designed them to represent the total population of non-personally owned or registered

vehicles; they were not organized or grouped in a manner that enables adoption forecasting for
an individual fleet operator's specific fleet vehicle. As such, identifying the fleet EV targets does not
constitute the development of individual, fleet entity-level EV targets.

For the fleet EV targets, Kevala followed steps similar to those it executed to develop the personal
EV targets to develop scenario-specific fleet EV targets (i.e., vehicle counts by duty, powertrain, and
vehicle classes) from the three CARB and CEC ZEV adoption forecasts:
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For each year of each forecast, isolated the LDV adoptions and then separated these ZEV
adoptions into personal LDVs from the fleet LDVs. Set targets using only fleet LD ZEV
counts.

Identified all MD and HD ZEV counts and added these vehicles to the fleet target.
Harmonized the CARB and CEC forecasted vehicle counts by duty, powertrain, and vehicle
classes to the common Kevala vehicle class system (see Table A9-2).

Allocated the state- and forecast zone-level CARB and CEC forecasted vehicle counts to the
Census tract level using Experian VIO data for each year of each forecast.

After completing these steps, Kevala had the flexibility to aggregate each adoption forecast’s

annual Census tract-level fleet EV target counts across a variety of geographic levels, including

counties and the IOUs’ service areas.

The series of charts contained in Figure A9-4 present the cumulative fleet EV adoption counts,

broken out by vehicle class, powertrain, and year. Some noteworthy trends emerge across the

three scenarios from the detailed comparison of these vehicle class adoption rates.

GVWR3 BEV counts for the High Transportation Electrification scenario, the inputs for which
are sourced from CARB’s 2020 SSS MDV/HDV ZEV adoption forecast, were low compared to
the adoption rates of this vehicle class compared to the other two scenarios. This
difference is because for the harmonized vehicle class mapping Kevala developed to align
the disparate vehicle classes contained in the CARB and CEC forecasts, the GVWR3 vehicle
class only maps to CARB’s LHD2 vehicle class, and CARB’s 2020 SSS MDV/HDV adoption
forecast contains relatively few of these vehicles.

For the GVWR8 Combo Box and GVWR8 Combo Long Haul vehicle classes, the Base Case
scenario had greater vehicle counts compared to the High Transportation Electrification
and Accelerated High Transportation Electrification scenarios. This difference is a reflection
of the underlying vehicle class breakdowns contained in the CEC ZEV adoption forecasts
used to set these scenarios. Similarly, the High Transportation Electrification scenario’s
relatively large number of GVWR7 and GVWRS8 counts compared to the Base Case and
Accelerated High Transportation Electrification scenarios are also a reflection of the
underlying vehicle class breakdown contained in each respective scenario’s ZEV adoption
forecast targets.
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Figure A9-4: Fleet EV targets by scenario, statewide, vehicle class powertrain, and year. Y-axis is the number
of vehicles. (Sources: CARB, CEC, Kevala)
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Unlike the personal EV targets, which excluded MDV (and HDV) vehicles, the fleet EV targets
contained all MDV and HDV vehicles the state agency forecasts identified as non-personally owned
vehicles.

A9.3. EV Sizing

The EV sizing stage involved determining the vehicle type and the quantity of EVs that could
potentially be adopted at a given EV-eligible premise in a given year.

A9.3.1. Vehicle Type — Personal and Fleet

For personal and fleet EVs, Kevala specified each vehicle type by duty, powertrain, and vehicle
class. The vehicle type combinations for LDV, MDV, and HDV are presented in Table A9-3 and align
with the harmonized CARB and CEC vehicle classes contained in Table A9-2. The MDV and HDV
duty, powertrain, and classes apply exclusively to fleet EVs whereas the LDV duty, powertrain, and
classes may apply to fleet and personal EVs.
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Table A9-3: Summary of vehicle type duty, powertrain, and vehicle class used for sizing personal and fleet
EVs (Sources: CARB, CEC, Kevala)

Duty Powertrain Vehicle Class

Small Car

Large Car

Sport Car

BEV Small SUV

Large SUV

Van

Pickup
LDV

Small Car

Large Car

Sport Car

PHEV Small SUV

Large SUV

Van

Pickup

GVWR3

GVWR 4 and 5
MDV BEV

GVWR6

GVWR®6 Delivery

GVWR?7

GVWRS8

GVWR8 Combo Long Haul
HDV BEV

GVWR8 Combo Box

Urban Bus

School Bus

Each premise was eligible to adopt only one vehicle type at a premise. If more than one vehicle
were adopted at a premise, say for a fleet, they would all be of the same vehicle type. This is a
simplifying assumption Kevala made in the absence of sufficient empirical evidence regarding the
exact composition of premise- or address-level vehicle registration data. Kevala proposes
exploring additional data sources to support this analysis in the Part 2 Study.
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After determining the possible vehicle type combinations by duty, powertrain, and vehicle class,
Kevala assigned each of the vehicle types a forecast of the vehicle battery capacity (in kWh) and
range (in miles). Kevala sourced LDV battery capacity and range forecast data from the CEC’s
Assembly Bill (AB) 2127 Report. For MDV and HDV battery capacity and range information, Kevala
sourced current model year data from the U.S. Department of Energy’s (DOE’s) Alternative Fuels
Data Center.'®” Because the MDV and HDV data did not contain a forecast of the necessary vehicle
attributes, Kevala applied the rate of change observed in the CEC’s AB 2127 Report for the LDV
BEV Pickup vehicle class forecast data to develop the necessary forecast for the MDV and HDV
attributes.

Taken together, these two values provided a vehicle type’s fuel economy in kWh per mile, which
was the amount of energy (kWh) a given vehicle type requires to travel the number of miles it is
expected to cover in a given year. Each vehicle type combination (i.e., duty x powertrain x vehicle
class) had its own fuel economy (kWh/mile) forecast, and each vehicle class had its own annual
VMT.

Kevala sourced LDV VMT values from the U.S. Bureau of Transportation Statistics’ Local Area
Transportation Characteristics for Households (LATCH) data, which provides personal vehicle
mileage by county.'®® Kevala sourced MDV and HDV VMT values from the U.S. Bureau of
Transportation Statistics’ Vehicles in Use Survey (VIUS), as summarized by M.J. Bradley &
Associates.'®

A9.3.2. Vehicle Quantity — Personal and Fleet

Similar to vehicle type, Kevala assigned a vehicle count to each premise eligible to adopt an EV. In
the sizing step, the vehicle quantity being assigned to a given premise is determining the number
of vehicles that would be adopted in the adoption stage should the given premise be selected by the
adoption propensity algorithm. Thus, although each EV-eligible premise was assigned a vehicle
quantity for each year, not all premises were selected for a given scenario in a given year. Details
on the adoption stage are provided in the EV Adoption section.

For premises eligible to adopt personal EVs, which include single-unit dwellings (SUDs) and multi-
unit dwellings (MUDs), the vehicle count was randomly assigned to each premise based on

7 U.S. Department of Energy, Alternative Fuels Data Center, Alternative Fuel and Advanced Vehicle Search,
https://afdc.energy.gov/vehicles/search/results.csv?current=true.

'8 Bureau of Transportation Statistics, “Local Area Transportation Characteristics for Households (LATCH
Survey), February 2021, https://www.bts.gov/latch.

'8 M.J. Bradley & Associates, Medium- & Heavy-Duty Vehicles: Market structure, Environmental Impact, and EV
Readiness, July 2021,
https://www.edf.org/sites/default/files/documents/EDFMHDVEVFeasibilityReport22jul21.pdf.
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probabilities Kevala assumed for SUDs and MUDs. The probabilities of vehicle quantity at each
premise varied based on the year and whether the premise was a SUD or MUD. For SUD premises,
the quantity of vehicles that could be adopted was either one or two, with the probability of
adopting two vehicles increasing slightly in each year. For MUD premises, Kevala assumed just one
vehicle could be adopted. Kevala made these simplified assumptions because there is a lack of
data to determine exactly the number of vehicles that are appropriate to assume for SUD and
MUD premises, and these assumptions were assumed to be conservative. Importantly, these
assumptions did not limit the total number of vehicles that could be adopted; they simply
restricted the number of vehicles that could be adopted at a single premise.

For fleet EV-eligible premises, Kevala used the following procedure to assign a count of fleet EVs:

1. ldentify the total number of adoptions expected to occur for the combination of scenario,
year, Census tract, and vehicle type that applied to the premise.

2. Based on the year, assume no more than 50% of the total adoptions in a Census tract could
occur at any one premise.

3. Calculate the maximum number of adoptions that could occur at a premise by multiplying
the results of steps 1 and 2.

4. Gather the percentile ranking of the premise within its Census tract in terms of area.
Premise area was estimated by dividing each parcel’s area by the number of premises on
the parcel. Normalized the rank to the range [0,1], so the lowest-ranked premise had a
score of 0 and the top-ranked premise had a score of 1.

5. Multiply that score by the maximum number of adoptions that could occur at a premise to
obtain the number of EVs adopted at the premise.

To give an example of the entire process: if a Census tract will adopt 300 fleet BEV LDVs in 2025,
and the maximum percentage of adoptions that could be assigned to a premise in this tract is
50%, then the maximum number of fleet BEV LDVs in the premise is 300 * 0.50 = 150 for that year.
If a premise is ranked in the 33rd percentile for the area, it will be sized with 0.33 * 150 =50
vehicles.

Kevala also set an upper limit on the number of fleet vehicles that could be adopted at one
premise. This value, 180, was based on the 99.9th percentile of the Federal Motor Carrier Safety
Administration’s Motor Carrier Census data.'®

1% Federal Motor Carrier Safety Administration, Motor Carrier Census data,
https://ai.fmcsa.dot.gov/SMS/Tools/Downloads.aspx.
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A9.4. EV Adoption

The EV adoption model incorporated a variety of inputs to calculate a premise-level score that was
used to rank a premise’s likelihood to adopt either personal EVs or fleet EVs based on the eligibility
criteria of the premise itself.

After each EV-eligible premise within a geographic area was scored, the adoption model then
selected the number of premises based on their score (starting from the highest ranking
premises, then moving down the ranking) until the number of vehicles—by duty, powertrain, and
vehicle class—achieved the personal EV and fleet EV targets for the given scenario and year. (The
number and type of personal EVs and fleet EVs assigned to a given premise were determined in
the EV sizing stage, described previously.)

Importantly, while the overall number of ZEVs is still very low across the three IOUs service areas,
the number of personal EVs was sufficient to enable more sophisticated premise-level adoption
modeling compared to the modeling that is possible with fleet EVs. This is because the number of
fleet (i.e., non-personally owned) EV adoptions, particularly of MDVs and HDVs is, at this pointin
time, too low to enable the type of more complex adoption modeling that is possible with
personal EVs.

A9.4.]. Personal EV Adoption
The personal EV adoption model provided a premise-level score for the adoption of vehicles
categorized for personal use on a subset of residential premises.

The underlying personal EV adoption model framework was based on Bayesian multilevel logistic
regression (MLR), which provides an adoption propensity score for a given premise in a year.
Kevala used the urban group feature (i.e., urban, suburban, and rural) provided in the U.S. Bureau
of Transportation Statistic’s dataset as the grouping level of the multilevel model with the
assumption that different urban groups have different drivers of EV adoption.

In addition to the urban group features, the personal EV adoption MLR model considered the
following categories of features to score a premise’s likelihood of adopting the vehicle type and
the quantities determined in the sizing stage.

1. Parcel-level features (Source: Regrid third-party parcel data)
a. Average premise area and footprint
2. Utility customer data (Source: utility’s customer information)
a. Residential customer sector
b. SUD or MUD residences (determined using utility data and parcel data)
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3. Demographic features (Source: U.S. Census data)
a. Home ownership

b. Education

c. Race

d. Age

e. Income

f. Population density

4. Hourly energy usage features (Source: utility’s advanced metering infrastructure (AMI)
data)
a. Max daytime hourly netload aggregated by premise (net kWh)
5. Vehicle population features (Source: Experian VIO data)
a. EV density (number of ZEV vehicles per population in a Census block group)

To score premises for personal EV adoption, Kevala conducted a rigorous, multiple-step process to
evaluate and identify the categories and features contained in the above list, along with the
decision to use the urban group feature as the level in the MLR. This process involved the
following five steps:

1. Data exploration: Kevala conducted a detailed data exploration exercise involving the
cleaning and merging of multiple utility and third-party datasets to identify a group of
premises with sufficiently complete features and EV adoption data to support the EV
adoption model development. Ultimately, because only Pacific Gas and Electric (PG&E) had
enough premises with utility-provided EV identification data, Kevala selected its data for the
model development process. Kevala then applied this model to the other IOUs’ service
areas because there was not sufficient data to develop IOU-specific models based on
Southern California Edison (SCE) and San Diego Gas & Electric’s (SDG&E’s) current data.

PG&E’s service area contained 4.3 million usable residential premises in its service area,
where 116,000 premises were labeled by PG&E as being EV adopters. The number of
labeled EV adopters is fewer than the 331,000 LD EVs that PG&E reported residing in its
service area in its 2021 Annual EV Report.”' The discrepancy between the number of EVs
that can be positively identified at a premise compared to the total number of registered
vehicles in a service area occurs because not all EV owners enroll on utility EV rates or EV
programs. As such, the number of premises where EV adoption could be positively

19" “Compliance Filing of Southern California Edison Company

(U 338-E), San Diego Gas & Electric Company (U 902 E), and Pacific Gas

and Electric Company (U 93 E) Pursuant to Ordering Paragraph 2 of Decision 16-06-011,”
R.18-12-006, Excel Files to Joint IOU's Compliance Filing on OP 2 to D.16-06-011, March 31, 2022.
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confirmed was low: only 2.5% of 4.3 million premises. This type of highly unbalanced
dataset, with relatively thin data on which Kevala could conduct its analysis, created
challenges in identifying features that were consistently highly predictive of EV adoption.
Despite this challenge, Kevala was able to develop a strong, defensible personal EV
adoption model.

2. Feature selection: The 4.3 million PG&E premises that passed the screening process had
164 potential features, from which Kevala selected 20 for initial inclusion for rigorous
feature selection. The feature selection process included two steps. First, Kevala conducted
an initial correlation analysis to measure the strength of the association between two
variables, which supports the identification of features with stronger statistical correlations
with the target variable (EV adopted) and helps identify features that should be removed
from the analysis because they are cross-correlated and duplicative. Second, Kevala
applied the two features’ selection methods to identify the optimal number of model
features. Table A9-4 presents the final parameters selected for the MLR.

Table A9-4: Personal EV adoption model features (Sources listed in the second column)

Order Source Feature
1 AMI Log of max hourly daytime load
2 Vehicle Registration Log of density of existing EVs in census block
3 Parcel Normalized number of premises on parcel

4 U.5. Census Bureau-American Log of census block group population densit
Community Survey (ACS) 9 group pop y

5 Parcel Multi-Unit Dwelling Label

Normalized estimated premise building

6 Parcel footprint

7 Census-ACS Median household income

8 Census-ACS Percent of white householders

9 Census-ACS Median age

10 Census-ACS Percent education level of college or more

11 Census-ACS Percent of households owner occupied

12 Parcel Rank of estimated premise area in census tract
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Order Source Feature
13 Census-ACS Urban group (rural, suburban, urban)
14 Parcel Normalized estimated premise area

3. Model structure: Determining the model structure, namely the levels in the MLR, was an

important step that occurred roughly in parallel to the feature selection step. After

conducting a variety of different tests, Kevala determined that adding urban group (urban,
suburban, rural) levels to the MLR improved modeling performance compared to models
without the urban group levels. Based on this observation, Kevala decided to use the urban

group levels in its final model.

4. Train model with in-sample data: After determining the model’s structure and features,
Kevala iteratively trained the personal EV adoption model on a randomly selected subset of
the data to refine the feature coefficients and determine their correlation with the target

variable, EV adoption.

5. Evaluate model’s performance with out-of-sample data: Once a version of the model
was trained, Kevala tested its predictive performance against a subset of the data that was

excluded from the model training step. Because the model had not been exposed to this
out-of-sample data, this data could serve as a test of how well the model could predict the

actual adoption of personal EVs. Steps 4 and 5 were conducted iteratively until the very

best model coefficients were determined and the highest level of correct recall could be

achieved.

A9.4.2. Fleet EV Adoption
Kevala assigned a score between 0 and 1 to each fleet EV-eligible premise; this score represents its

propensity to adopt fleet EVs. After all premises were scored, Kevala ranked the premises and

applied a threshold so that only the highest-scoring premises adopted ZEVs.

For each non-agricultural premise, Kevala used the premise’s estimated area (i.e., the square
footage of all building and non-building property associated with the premise) and the ratio of the

premise’s estimated area to the premise’s estimated building footprint to rank the premise. This

calculation essentially ranked a commercial, industrial, or other non-agricultural, non-residential

premise by the amount of non-building area available at the premise. Because far too few

adopted fleet EVs are currently registered, Kevala assumed this value to be the best proxy for a

premise’s likelihood of adopting a fleet EV. This is an approach that Kevala can revisit in the Part 2

Study.
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Kevala used a similar method for agricultural premises, again using the premise's estimated area
as the first feature, but the second feature was only the premise’s estimated building footprint—
not the ratio of the premise’s area to its building footprint. Kevala made this choice to reduce
higher scores on agricultural premises with large amounts of cropland (non-building area that is
not available for fleets) and increase scores on agricultural premises with higher building
footprints more likely to have non-EV fleet vehicles domiciled.

A9.5. EVSE Adoption Targets

Kevala determined the EVSE adoption targets using the ZEV adoption targets contained in each
scenarios’ ZEV adoption forecasts and a ratio of how many EVSE charging ports are assumed to be
required to support a given population of ZEVs. The concept of an EVSE-to-EV ratio is well-
established; this approach is used for the U.S. DOE’s Alternative Fuels Data Center’s Electric
Vehicle Infrastructure Projection Tool (EVI-Pro) Lite tool, which also underpins the EVSE forecasting
model for the CEC’s AB 2127 Report.'

EVSE-to-EV ratios are specific to the type EVSE charging port and its charging capacity, as well as
the duty and powertrain of the ZEV. For the Part 1 Study, Kevala drew upon the EVSE use cases
and demand levels contained in the AB 2127 Report, along with its own assumptions when they
were not contained in the AB 2127 Report. Table A9-5 summarizes the EVSE use cases and
charging level included in this Part 1 Study. Additional details regarding the combination of EVSE
use cases and charging levels used for this study are contained in the EVSE Sizing section.

Table A9-5: Summary of EVSE use cases and charging level by ZEV ownership type and duty (Sources: CEC,

Kevala)
Ownership Duty Use Case Primary / Secondary Use Demand Level
Case
SUD (Time-of-use .
P Level 1 (L1), Level 2 (L2
(TOU), non-TOU) rimary evel 1 (L1), Level 2 (L2)
MUD Primary L2
Personal EV Lbv Public Secondary L2, DCFC
Workplace Secondary L2
Corridor Secondary DCFC

192 U.S. Department of Energy, Alternative Fuels Data Center, EVI-Pro Lite tool, https://afdc.energy.gov/evi-
pro-lite/load-profile/assumptions.
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Fleet

Primary

Fleet Primary DCFC
MDV / HDV Public Secondary DCFC
Corridor Secondary DCFC

Kevala categorized EVSE ports into two groups and generated EVSE adoption targets for these
groups using slightly different approaches. The EVSE categories are as follows:

¢ Primary charging use cases: EVSE use case where a ZEV sources its primary energy from,
usually during nighttime charging. These can be conceptualized as home charging.
o SUD (enrolled on a TOU rate)
o SUD (not enrolled on a TOU rate)
o MUD
o Fleet depot
e Secondary charging use cases: EVSE use cases that provide supplemental charging to
meet the ZEV’s remaining energy needs. These can be thought of as daytime chargers that
are used by personal EVs while at work, shopping, or on long distance trips and by fleet EVs
when they are conducting long-haul routes or otherwise requiring charging away from
their home base.
o Public (LDV and MDV/HDV)
o Workplace
o Corridor (LDV and MDV/HDV)

For the SUD primary charging use cases, Kevala assumed that all adopted BEV and PHEV personal
EVs received either an L1 or L2 charger, with 39% adopting an L1 and 61% adopting an L2. For
MUDs, one L2 charger was allocated for every five personal EVs that were adopted.

For the fleet depot primary charging use case, Kevala used the EVSE-to-EV ratio from the AB 2127
Report, which is roughly 0.5, or one charger for every two vehicles. Kevala applied this ratio for
LDV and MDV/HDV fleet EVs, where LDVs were assigned L2 chargers and MDV/HDVs were
assigned DCFC chargers.
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To find the number of EVSE counts for the secondary charging use cases of public, workplace, and
corridor for a given scenario, year, county, and type of charger, Kevala found an appropriate ratio
of EVSE ports to EVs and multiplied it by the number of relevant EVs that were adopted. Kevala
calculated the EVSE-to-EV ratios as described below.

Corridor LDV DCFC Ratio

For the denominator of the EVSE-to-EV ratio, Kevala used the total number of BEVs from the AB
2127 Report’s 2020 CARB Mobile Source Strategy (MSS) values for 2020, 2025, 2030, and 2035. For
the numerator, the EVSE port count, Kevala took the predictions from AB 2127 Report, Tables E-1
through E-4; for each charger level 150 kW and higher, Kevala took the median of the upper and
lower bounds, then summed across charger levels for the total EVSE count. Kevala used linear
interpolation to obtain values for intermediate years.

Corridor and Public MD/HDV DCFC Ratio

Kevala used a similar approach for these two use cases. The ratio of 350 kW chargers to
MDV/HDVs in 2030 in the AB 2127 Report (roughly 0.08) was used for all scenarios and years.
Kevala assumed these EVSE ports would be split 60/40 between the corridor and public use cases,
so the ratio was multiplied by 0.6 or 0.4 depending on the use case.

Public LDV L2 and DCFC, and Workplace L2 Ratios

Kevala derived these EVSE port to EV count ratios from the annual forecasted statewide EVSE port
and EV counts from the AB 2127 2020 CARB Mobile Source Strategy results. These statewide ratios
were applied evenly to each county in the study area.

EV Counts
Kevala counted the relevant EVs (in a given scenario, year, county) for each EVSE type:

e Corridor LDV DCFC: LDV BEV

e Corridor MDV/HDV DCFC: MDHDV BEV
e Public MDV/HDV DCFC: MDHDV BEV

e Public LDV L2: LDV BEV plus PHEV

e Public LDV DCFC: LDV BEV

e Workplace L2: LDV BEV plus PHEV

Kevala then multiplied these vehicle counts by the matching EVSE-to-EV ratio to obtain annual
EVSE port targets by charging use case, county, and scenario. As described in the EVSE Adoption
section, these county-level EVSE targets were ready for allocation to individual premises.
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A9.6. EVSE Sizing

EVSE sizing models determine the type and quantity of chargers to be adopted at a given premise,
for a given year and a given scenario. In the EVSE sizing step, charger type and quantity are highly
interrelated. As such, determining the type and quantity of EVSE that a premise is sized for
effectively occurs simultaneously. This is particularly true for the primary charging use cases,
where type and quantity are determined at the same time and are a direct function of whether the
premise adopts an EV in the EV adoption stage.

The EVSE sizing stage first determined an eligible premise’s charger type, such as SUD, MUD, and
fleet or public, workplace, and corridor. After this, Kevala used the premise’s charger type as an
input to the algorithm that determined the quantity of chargers the given premise could adopt in
the EVSE adoption stage.

Table A9-5 summarizes the EVSE use cases, primary and secondary use case categorization, and
charging level included in the Part 1 Study.

Primary Charging Use Cases
Kevala determined the premise-level EVSE type and quantity for the primary charging use cases,
including SUD, MUD, and fleet, using the following process:

e SUD EVSE type: Premises marked as having the “Residential’ customer sector based on the
utility-provided rate code and the utility-assigned North American Industry Classification
System (NAICS) code and determined by Kevala likely to be a SUD were eligible for any LDV
and primary charging use case “Single-Unit Dwelling: TOU Rate” and “Single-Unit Dwelling:
non-TOU” rate.

o SUD EVSE count: Every personal EV adopted at a SUD premise, regardless of TOU
status, received either an L1 or L2 EVSE charger. Each personal EV was assumed to
receive its own charger.

e MUD EVSE type: Premises marked as having the “Residential” customer sector based on
the utility-provided rate type and utility-assigned NAICS code and determined by Kevala
likely to be a single unit at a MUD, or a premise with one master meter representing a
whole MUD were eligible for any LDV and primary charging use case “Multi-Unit Dwelling.”

o MUD EVSE count: For MUDs, the EVSE-to-EV ratio was 0.2, meaning 1 L2 MUD charger
was provided for every five personal EVs adopted.

e Fleet EVSE types: Premises marked with “Commercial,” “Industrial,” “Agricultural,” “Public,”
or “Non-Residential’ customer sector based on their utility-provided rate type and utility-
assigned NAICS code were eligible for any LDV or MDV/HDV with the primary charging use
case “Fleet Depot.”
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o Fleet EVSE count: For fleet depot charging use cases, Kevala used a fixed EVSE-to-EV
ratio from the HEVI-LOAD model in the AB 2127 Report, which was roughly one
DCFC charger to every two MDV/HDV fleet EVs adopted at a given premise. LDV fleet
EVs were allocated EVSE at the same ratio, but they were allocated L2 chargers, not
DCFC ones.

Kevala determined the execution of EVSE sizing for a given premise by whether the premise was
selected to adopt one or more EVs in the EV adoption stage described previously. If a premise’s
adoption score met a given scenario and year’s threshold for EV adoption, then that premise
would automatically be sized in the EVSE sizing stage with the type and number of chargers its EVs
require.

Secondary Charging Use Cases

Kevala determined the premise-level EVSE type for the secondary charging use cases, including
public, workplace, and corridor, through the following process described. Unlike the primary
charging use cases where the first step was a function of the premise type (i.e., residential,
commercial, industrial, etc.), the secondary charging use case process began with calculating the
quantity of chargers by EVSE type using the EVSE-to-EV ratios described in the EVSE Adoption
Targets section.

e Public and workplace EVSE types: There were three combinations of public EVSE chargers
based on the vehicle duty that they support and their capacity level: Public LDV L2, Public
LDV DCFC, and Public MDV/HDV DCFC. There was only one type of workplace charger:
Workplace LDV L2. The probability of a given public or workplace EVSE type being assigned
to an eligible premise was a function of the given EVSE type’s market share. For example, if
the EVSE adoption target for public and workplace EVSE types for a given scenario and year
was 10,000, if 2,500 of those chargers were Public LDV L2 charger, then the likelihood that
an eligible premise would be assigned a Public LDV L2 charger was 25%.

o Public and workplace EVSE counts: Kevala determined the total quantity of public and
workplace EVSE types for a given scenario and year in the EVSE adoption target step
using the appropriate EVSE-to-EV ratios. The number of public or workplace EVSE
chargers adopted at a given eligible premise was based on an analysis of the U.S.
Department of Energy’s Alternative Fuels Data Center Alternative Fueling Stations
Locations dataset, which contains the number of ports, by type, a given address has
installed historically.'

1% Department of Energy, Alternative Fuels Data Center, “Alternative Fueling Stations Locations,”
https://afdc.energy.gov/stations/.
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e Corridor EVSE types: There were two combinations of corridor EVSE chargers based on

the vehicle duty they support: Corridor LDV DCFC and Corridor MDV/HDV DCFC. The
probability of a corridor-eligible premise being assigned either an LDV or MDV/HDV charger
was a function of that charger type’s market share. For example, if the total corridor EVSE
target for a given scenario and year was 1,000, if 750 of those chargers were MDV/HDV
chargers, then the probability of a given corridor-eligible premise adopting an MDV/HDV
charger was 75%.

o Corridor EVSE counts: Kevala determined the number of corridor-EVSE types for a
given scenario and year in the EVSE adoption target step using the appropriate
EVSE-to-EV ratios. As with the public and workplace EVSE types, the number of
corridor-EVSE chargers adopted at a given eligible premise was based on an analysis
of the U.S. Department of Energy’s Alternative Fuels Data Center Alternative Fueling
Stations Locations dataset. Because this dataset contains limited information on
corridor chargers, Kevala used the address-level public DCFC port counts as a proxy.

Once the EVSE sizing state determined the EVSE type, it then assigned each charger its kW power
rating based on its specific EVSE type and capacity level, as well as the year of adoption. Kevala
used the following values, which are sourced from the AB 2127 Report. These values were derated
from their nameplate capacity levels to reflect real-world operating performance.

e SUD L1: 1.9 kW (assumed to be fixed across all forecast years and vehicle classes)
e SUDL2:
o BEV: 7.7 kW-12.0 kW (depending on forecast year and vehicle class)
o PHEV: 3.9 kW-6.2 kW (depending on forecast year and vehicle class)
e MUDL2:
o BEV: 7.7 kW-12.0 kW (depending on forecast year and vehicle class)
o PHEV: 3.9 kW-6.2 kW (depending on forecast year and vehicle class)
o Fleet LDV L2:
o BEV: 7.7 kW-12.0 kW (depending on forecast year and vehicle class)
o PHEV: 3.9 kW-6.2 kW (depending on forecast year and vehicle class)

e Fleet MDV/HDV DCFC: 45 kW (assumed to be fixed across all forecast years and vehicle
classes)

e Public LDV L2: 6.6 kW (assumed to be fixed across all forecast years and vehicle classes)

e Public LDV DCFC: Varies by year according to the charging power and market share of BEV
LDV vehicle types. For each year, Kevala took a weighted average of the charging power
values in Table B-7 of the AB 2127 Report, with the weights given by the market share of
each vehicle type.

o 116 kW-277 kW (depending on forecast year)
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e Public MDV/HDV DCFC: 345 kW (assumed to be fixed across all forecast years and vehicle
classes)
e Workplace L2: 6.6 kW (assumed to be fixed across all forecast years and vehicle classes)
e Corridor LDV: Varies by year according to AB 2127 Figure B-3:
o 2020: 145 kw
2025: 245 kw
2030: 345 kw
o 2035:445 kw
e Corridor MDV/HDV DCFC: 345 kW (assumed to be fixed across all forecast years and
vehicle classes)

o

o

A9.7. EVSE Adoption

Kevala determined a premise’s EVSE adoption propensity by whether the EVSE was a primary
charging use case or a secondary charging use case.

Primary Charging Use Cases

For primary charging use cases (SUD, MUD, and fleet), a premise’s EVSE adoption propensity was
entirely dependent on whether the premise adopted one or more personal EVs or fleet EVs in the
EV adoption stage. For example, if a residential SUD premise was sized with two BEVs in the EV
sizing stage and the premise’s score ranked above the necessary threshold in the EV adoption
stage, then the premise would automatically receive two SUD chargers. The probability associated
with the type of SUD chargers it adopts (i.e., L1 or L2) were determined for the premise in the EVSE
adoption target stage.

Secondary Charging Use Cases

Because secondary charger use cases were adopted at premises that do not domicile personal
EVs or fleet EVs, their adoption propensities were based on premise-level features, not whether
they have adopted an EV.

Workplace and public adoption propensity scores were the average of two features:

e The premise's percentile rank, based on area, in its county expressed as a value between 0
and 1
e The fraction of commercial premises in the premise's Census tract.

The two features were given weights of 0.7 and 0.3, respectively, and Kevala added a degree of
randomness to incorporate real-world uncertainty.
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For corridor charger adoption propensity, Kevala assigned each premise a score based on the
volume of traffic nearby. Kevala used the Caltrans traffic and truck volumes Annual Average Daily
Traffic (AADT) datasets, which contain data for traffic markers throughout California. For 50 kW
chargers, Kevala used the total traffic volume; for 350 kW chargers, the volume of trucks was used.
Traffic volume was expressed as a rank between 0 and 1—that is, the traffic marker with the
highest total traffic volume had a total traffic volume score of 1, and the marker with the median
truck volume had a truck volume score of 0.5. To obtain the adoption score for a premise, Kevala
found the five closest traffic markers and randomly chose one based on a range of different
probabilities. Kevala added a degree of randomness to incorporate real-world uncertainty.

A9.8. EVSE Behavior

Across all EVSE charger types, Kevala generated the hourly EVSE behavior load curves on an hourly
basis using a model that simulates hourly charging usage based on the input variables contained
in Table A9-6.

Table A9-6: EV and EVSE input variables for hourly EVSE load curves (Sources: U.S. Census Bureau, U.S. Bureau
of Transportation Statistics, NREL, Kevala)

Input Variable Description

List of vehicle attributes from EV sizing stage that contain the following
attributes:

e Vehicle class: Class of vehicle (e.g., Large SUV, GVWR3)

e Vehicle quantity: Number of vehicles at the location

e  (Capacity: Maximum range/capacity of EV

e Efficiency: EV efficiency (miles/kWh)

EVSE Vehicle Inputs

Mean Departure Time / Mean Return The average hour a vehicle departs/arrives at the charging location/ depot

. n an rational
Time on an operational day

Depart Time Standard Deviation / Departure/return time standard deviation
Return Time Standard Deviation

Mean Route Mileage / VMT Standard The average/standard deviation miles an EV travels during an operational
Deviation day between departure and return time

Active Days of Week Day of operations for a fleet EV

Holidays Whether the fleet is operational on Federal U.S. holidays
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Input Variable Description
Charge Threshold The state of charge at which EV starts seeking a charge
Simulation Start / Simulation End Start and end dates of the charging simulation

The type of charger (L1, L2, DCFC) that makes up the charger or group of

Charger Type

gertyp chargers supporting the EVs at a given premise
Charger Quantity The number of chargers sited at a given premise
Power Charger power (kW) from EVSE sizing stage

EVSE use case for which charging behavior simulation is run; it can be SUD,
EVSE Use Case . .
MUD, fleet, public, corridor, etc.

Given a range of input variables provided for a given simulation, an EVSE behavior curve was
generated such that the vehicles meet their charging requirements in the shortest time available
given the charging quantity/power. Kevala ran these simulations millions of times across each year
of each forecast and then aggregated them at scale for all of the appropriate vehicle and charger
combinations.

Primary versus Secondary Charging Use Cases

There are important differences between the primary charging use cases (SUD, MUD, and fleet
use cases) and the secondary charging use cases (public, workplace, and corridor use cases) for
EVSE load modeling.

For primary charging use cases, Kevala sized a premise for some vehicle(s) and then sized for EVSE
to accommodate them. These vehicles were assumed to be consistently associated with their
respective primary chargers. Therefore, it was possible to reasonably determine when these
vehicles use their primary charger (e.g., in the evenings) and how much charge they need (daily
VMT). For example, if a town had seven premises, and each premise had one small car, each
premise would also have its own primary L1 or L2 charger (seven primary chargers in total).

For secondary charging use cases, Kevala sized premises first for EVSE. Because these are
secondary charge points, the number of assumed charging events (rather than the exact, unique
vehicle expected to charge at the EVSE) was used to simulate the charger’s behavior curve. Kevala
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used changing behavior analysis described in the AB 2127 Report,'* and the latest version of the

U.S. DOE’s EVI-Pro 2 tool to develop its assumptions.' The EVSE vehicle inputs (see Table A9-6)
drawn from geospatially proximate vehicles that have been adopted served as inputs to the EVSE
behavior curve simulation. Continuing the example from above, the modeling assumption would
be that each of these small cars uses a public DCFC charger once per week. Table A9-7 provides
the events-per-day assumptions Kevala made for the secondary charging use cases.

Table A9-7: Secondary charging use cases: number of charging events per day, by year, EVSE use case, and
EVSE type (Sources: CEC, Kevala, NREL)

EVSE Use Case and Type Year Events Per Day
2025 2
Workplace, L2 2030 2
2035 2
2025 2
Public LDV, L2 2030 3
2035 3
2025 4
Public LDV, DCFC 2030 5
2035 6
2025 4
Public MDV / HDV, DCFC 2030 4
2035 4
2025 >
Corridor LDV, DCFC 2030 7
2035 8
2025 6
Corridor MDV / HDV, DCFC 2030 6
2035 6

194 California Energy Commission, Assembly Bill 2127 Electric Vehicle Charging Infrastructure Assessment:
Analyzing Charging Needs to Support Zero-Emission Vehicles in 2030, July 14, 2021, p. B-6,
https://efiling.energy.ca.gov/getdocument.aspx?tn=238853.

1% National Renewable Energy Laboratory, “Electric Vehicle Infrastructure Projection Tool (EVI-Pro):
California Energy Commission (CEC) Integrated Energy Policy Report (IEPR) Workshop,” August 6, 2020, p. 10,
https://www.nrel.gov/docs/fy210sti/77651 .pdf.
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Appendix 10. PG&E Distribution Planning Assumptions

Pacific Gas and Electric Company (PG&E) provided the capacity planning criteria and typical design
parameters that are summarized in Figure A10-1. Kevala used these in determining the
infrastructure requirements in this study.

Figure A10-1: Assumed design parameters and capacity planning criteria for PG&E (subject to change)

/ Pacific Gas & Electric \

Standard Power Transformer Sizes
23021 KV 75 MVA
230M12 kV ; 45 MVA
115012 kV ; 45 MVA
70012 KV : 30 MVA
60/12 KV : 30 MVA

Max Loading Criteria
<= 3 Dist Transformers per Substation
MNameplate Rating @ 100%

Typical Number Circuits per Transformer
75 MVA =3 Circuits
45 MVA = 4 Circuits
30 MVA =3 Circuits

Service Transformer Loading Criteria {Utility
did not provide)

Residential = 150%
Commercial & Industrial = 125%
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Appendix | |. SCE Distribution Planning Assumptions

Southern California Edison (SCE) provided capacity planning criteria and typical design parameters
that are summarized in Figure A11-1. Kevala used these in determining the infrastructure
requirements in this study.

Figure A11-1: Design parameters and capacity planning criteria provided by SCE

/ Southern California Edison \

Standard Power Transformer Sizes
115/33 kV : 28 MVA
115/16 kV : 28 MVA
115/12 kV : 28 MVA
66/16 kV 1 28 MVA
66/12 kV 1 28 MVA

Max Loading Criteria
<= 4 Dist Transformers per Substation

Typical Number Circuits per Transformer
28 MVA = 3 Circuits

Service Transformer Loading Criteria
Residential = 150%
Commercial & Industrial = 125%

\ /
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Appendix |2. SDG&E Distribution Planning Assumptions

San Diego Gas & Electric Company (SDG&E) provided the capacity planning criteria and typical
design parameters that are summarized in Figure A12-1. Kevala used these in determining the
infrastructure requirements in this study.

Figure A12-1: Design parameters and capacity planning criteria provided by SDG&E

/ San Diego Gas & Electric \

Standard Power Transformer Sizes
138/12 kKW : 28 MVA
69/12 kV | 28 MVA

Max Loading Criteria
<=4 Dist Transformers per Substation
Mameplate Rating @ 100%

Typical Number Circuits per Transformer
28 MVA = 4 Circuits

Service Transformer Loading Criteria

Residential = 150%
Commercial & Industrial = 125%

A /

(End of Attachment 1)

Part |: Bottom-Up Load Forecasting and System-Level Electrification Impacts Cost Estimates, Kevala, Inc. 211



kevalal R.21-06-017 ALJ/ML2/KHY/fzs

Part |: Bottom-Up Load Forecasting and System-Level Electrification Impacts Cost Estimates, Kevala, Inc. 212



